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On b-perfect chordal graphs *

The b-chromatic number of a graph G is the largest integer k such that G has a coloring of the vertices in k color classes such that every color class contains a vertex that has a neighbour in all other color classes. We characterize the class of chordal graphs for which the bchromatic number is equal to the chromatic number for every induced subgraph.

Introduction

We deal here with finite undirected graphs. Given a graph G and an integer k ≥ 1, a coloring of G with k colors is a mapping c : V (G) → {1, . . . , k} such that any two adjacent vertices u, v in G satisfy c(u) = c(v). For every vertex v, the integer c(v) is called the color of v. The sets c -1 (1), . . . , c -1 (k) that are not empty are called the color classes of c. A b-coloring is a coloring such that every color class contains a vertex that has a neighbour in each color class other than its own, and we call any such vertex a b-vertex. The b-chromatic number b(G) of a graph G is the largest integer k such that G admits a b-coloring with exactly k colors. The concept of b-coloring was introduced in [START_REF] Irving | The b-chromatic number of graphs[END_REF] and has been studied among others in [START_REF] Faik | La b-continuité des b-colorations: complexité, propriétés structurelles et algorithmes[END_REF][START_REF] Hoàng | On the b-dominating coloring of graphs[END_REF][START_REF] Kouider | Some bounds for the b-chromatic number of a graph[END_REF][START_REF] Kouider | Bounds for the b-chromatic number of some families of graphs[END_REF][START_REF] Kratochvíl | On the b-chromatic number of graphs[END_REF]. Let ω(G) be the maximum size of a clique in a graph G, and let χ(G) be the chromatic number of G. It is easy to see that every coloring of G with χ(G) colors is a b-coloring, and so every graph satisfies χ(G) ≤ b(G). Hoàng and Kouider [START_REF] Hoàng | On the b-dominating coloring of graphs[END_REF] call a graph G b-perfect if every induced subgraph H of G satisfies b(H) = χ(H). Also a graph G is b-imperfect if it is not b-perfect, and minimally b-imperfect if it is b-imperfect and every proper subgraph Given a collection H of graphs, a graph G is usually called H-free if no induced subgraph of G is a member of H. When H consists of only one graph H, we may write H-free instead of {H}-free. We let P k and C k respectively denote the graph that consists of a path (resp. cycle) on k vertices. We use + to denote the disjoint union of graphs, and nF is the graph which has n components all isomorphic to F . For example, 2K 2 is the graph with two components of size 2, and the first three graphs in F are P 5 , P 4 + P 3 and 3P 3 . We say that two vertices x, y in a graph G are twins if every vertex of G \ {x, y} that is adjacent to any of x, y is adjacent to both. Note that two twins may be adjacent or not.

It is a routine matter to check that the graphs in class F are b-imperfect and minimally so. More precisely, for i = 1, 2, 3, we have χ(F i ) = 2 and b(F i ) = 3, and F i admits a b-coloring with 3 colors in which its three vertices of degree 3 have color 1, 2, 3 respectively; and for i = 4, . . . , 22, we have χ(F i ) = 3 and b(F i ) = 4.

We will prove the conjecture in the case of chordal graphs. Recall that a graph G is chordal [START_REF] Golumbic | Algorithmic Graph Theory and Perfect Graphs[END_REF][START_REF] Ramírez-Alfonsín | Perfect Graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization[END_REF] if every cycle of length at least four in G has a chord (an edge between non-consecutive vertices of the cycle). We call hole any chordless cycle of length at least four. In these terms, a graph is chordal if and only if it is hole-free.

Theorem 1. Every F-free chordal graph is b-perfect.

Proof of Theorem 1. Suppose that the theorem is false, and let G be a counterexample to the theorem for which [START_REF] Berge | Graphs[END_REF][START_REF] Golumbic | Algorithmic Graph Theory and Perfect Graphs[END_REF]). Since G is a counterexample to the theorem, it admits a b-coloring c with k ≥ χ(G)+1 = ω(G) + 1 colors. For i = 1, . . . , k, let u i be any b-vertex of color i, that is, a vertex that has a neighbour of each color other than i. Let U = {u 1 , . . . , u k }. Note that, since k > ω(G), the set U does not induce a clique. As usual, we say that a vertex is simplicial if its neighbourhood induces a clique. 1.1. For i = 1, . . . , k, vertex u i is not simplicial.

|V (G)|+|E(G)| is minimal. Recall that, since G is chordal, it satisfies χ(G) = ω(G) (see
Proof. Suppose on the contrary and up to symmetry that u 1 is simplicial. Since u 1 is a b-vertex, it has a neighbour v i of each color i = 2, . . . , k. Then the set {u 1 , v 2 , . . . , v k } induces a clique of size k > ω(G), a contradiction. So Claim 1.1 holds.

1.2. G contains a 2K 2 .
Proof. Suppose that G contains no 2K 2 . Since U is not a clique, we may assume up to symmetry that u 1 , u 2 are not adjacent. By Claim 1.1, vertex u 1 has two neighbours v, v ′ that are not adjacent, and vertex u 2 has two neighbours w, w ′ that are not adjacent. Suppose that u 1 is adjacent to w. Then u 1 is not adjacent to w ′ , for otherwise u 1 , w, u 2 , w ′ induce a hole. One of v, v ′ is not equal to w, say v = w. Also v = w ′ since u 1 is adjacent to v and not to w ′ . If v is not adjacent to u 2 , then v is adjacent to w ′ , for otherwise {u 1 , v, u 2 , w ′ } induces a 2K 2 ; but then either {u 1 , v, w ′ , u 2 , w} or {u 1 , v, u 2 , w} induce a hole. So v is adjacent to u 2 . Then u 2 is not adjacent to v ′ , for otherwise {u 1 , v, v ′ , u 2 } induces a hole. Then v ′ is adjacent to w ′ , for otherwise {u 1 , v ′ , u 2 , w ′ } induces a 2K 2 . But then either {u 1 , v ′ , u 2 , w, w ′ } (if v ′ , w are not adjacent) or {v ′ , u 2 , w, w ′ } (if v ′ , w are adjacent) induces a hole. Therefore u 1 is not adjacent to w. Similarly, u 1 is not adjacent to w ′ , and u 2 is not adjacent to any of v, v ′ . Now v must be adjacent to w, for otherwise {u 1 , v, u 2 , w} induces a 2K 2 , and by symmetry, to w ′ as well. But then {v, u 2 , w, w ′ } induces a hole, a contradiction. So Claim 1.2 holds.

We say that a subgraph of G is big if it contains at least two vertices. Since G contains a 2K 2 , it contains a set S that induces a subgraph with at least two big components and is maximal with this property. Let R = V (G) \ S.

1.3. Every vertex of R has a neighbour in every big component of S.

Proof. Suppose on the contrary that some vertex x of R has no neighbour in some big component C of S. Then S ∪ {x} induces a subgraph with at least two big components (of which C is one), which contradicts the maximality of S. So Claim 1.3 holds.

1.4. R is a clique.
Proof. Suppose on the contrary that there are two non-adjacent vertices u, v in R. Consider two big components Z 1 , Z 2 of S. By Claim 1.3, for each i = 1, 2, u has a neighbour u i in Z i and v has a neighbour v i in Z i . Since Z i is connected, we may choose u i , v i and a path u i -• • • -v i in Z i such that this path is as short as possible (possibly u i = v i ). So no interior vertex of this path is adjacent to u or v. But then the union of the two paths u

1 -• • • -v 1 , u 2 -• • • -v 2 ,
plus u and v, forms a hole in G, a contradiction. So Claim 1.4 holds.

1.5.

There is a big component Z of S such that every vertex of R is adjacent to every vertex of every big component of S \ Z.

Proof. Suppose the contrary, that is, there are two big components Z 1 , Z 2 of S and vertices x 1 , x 2 of R such that x 1 has a non-neighbour in Z 1 and x 2 has a no-neighbour in Z 2 . For each i = 1, 2, since Z i is connected and by Claim 1.3, there are adjacent vertices y i , z i in Z i such that x i is adjacent to y i and not to z i . If

x 1 = x 2 , then z 1 -y 1 -x 1 -y 2 -z 2 is a P 5 in G, which contradicts that G is F-free. So x 1 = x 2 ,
and by the same argument we may assume that x 1 is adjacent to all of Z 2 and that x 2 is adjacent to all of Z 1 . By Claim 1.4, vertices x 1 , x 2 are adjacent. Then {x 1 , x 2 , y 1 , y 2 , z 1 , z 2 } induces an F 4 , which contradicts that G is F-free. So Claim 1.5 holds.

Let Z be a big component of S as described in Claim 1.5. Let T = S \ Z. So T contains a big component of S. Put U Z = U ∩ Z and U T = U ∩ T .

1.6. For every vertex a ∈ R and every set Y ⊂ Z that induces a connected subgraph and contains no neighbour of a, there exists a vertex of Z that is adjacent to all of Y ∪ {a}.

Proof. Pick any vertex y in Y . Since Z is connected, and a has a neighbour in Z by Claim 1.3, there is a shortest path z 0 -z 1 -• • • -z p in Z such that z 0 is adjacent to a and z p = y. Let t be any vertex in a big component of T . By Claim 1.5, vertices a, t are adjacent. Then p = 1, for otherwise z 2 -z 1 -z 0 -a-t is a P 5 . Thus z 0 is adjacent to both a, y. We show that z 0 is adjacent to all of Y . In the opposite case, since Y is connected there are adjacent vertices y ′ , y ′′ such that z 0 is adjacent to y ′ and not to y ′′ ; but then y ′′ -y ′ -z 0 -a-t is a P 5 , a contradiction. So Claim 1.6 holds.

1.7. |R| ≤ ω(G) -2.
Proof. By the definition of S, the set T contains two adjacent vertices a, b. By Claim 1.4, R ∪ {a, b} is a clique. So Claim 1.7 holds.

1.8. U Z = ∅.
Proof. Suppose on the contrary that Z contains no vertex of U . Consider the graph G ′ = G \ Z. Clearly, G ′ is a chordal and F-free graph, and

|V (G ′ )| + |E(G ′ )| < |V (G)| + |E(G)|. We show that c is a b-coloring of G ′ .
To establish this, consider vertex u i for each i = 1, . . . , k and consider any color j = i.

If u i is not in R, then u i has the same neighbours in G and in G ′ , so u i is a b-vertex in G ′ . Now suppose that u i is in R. If u j is in a component of S of cardinality 1, then N (u j ) ⊆ R,
so u j is a simplicial vertex by Claim 1.4, which contradicts Claim 1.1. Thus u j is in a big component of T . Then u j is a neighbour of u i by Claim 1.5 and the definition of Z. Thus every u i is a b-vertex for c in G ′ . But then G ′ is a counterexample to the theorem, which contradicts the minimality of G. So Claim 1.8 holds.

1.9. T contains no P 4 and no 2P 3 .

Proof. Suppose on the contrary that T contains a set Q of vertices that induces a P 4 or a 2P 3 . Therefore Z contains no P 3 , for otherwise taking a P 3 in Z plus Q would give an induced F 2 or F 3 . Since Z is connected and contains no P 3 , it is a clique. By Claim 1.8, we may assume that u 1 is in Z. For j = 2, . . . , k, let v j be a neighbour of u 1 of color j. Since {u 1 , v 2 , . . . , v k } is not a clique, we may assume that v 2 , v 3 are not adjacent. Since N (u 1 ) ⊂ R ∪ Z and both R, Z are cliques, we may assume that v 2 ∈ R and v 3 ∈ Z. By Claim 1.7, R contains at most k -3 of the v j 's; so we may assume that v 4 ∈ Z. Now, if v 2 is not adjacent to v 4 , then W ∪{v 1 , v 2 , v 3 , v 4 } induces an F 8 or F 9 ; while if v 2 is adjacent to v 4 then the same set contains an induced F 5 . So Claim 1.9 holds.

1.10. U T = ∅.
Proof. Suppose on the contrary that T contains no vertex of U . Let G ′ be the graph obtained from G by removing all edges whose two endvertices are in

T . Graph G ′ satisfies |V (G ′ )| + |E(G ′ )| < |V (G)| + |E(G)| since
we have removed at least one edge because T contains a big component of S. We will show that (a) c is a b-coloring of G ′ , (b) G ′ is a chordal graph, and (c) G ′ is F-free. These facts will imply that G ′ is a counterexample to the theorem, which will contradict the minimality of G and complete the proof of the claim.

To prove (a), it suffices to observe that every vertex of U is a b-vertex for c in G ′ , because the edges we have removed from G to obtain G ′ are not incident with any vertex of U .

To prove (b), observe that in G ′ all vertices of T are simplicial (because their neighbourhood is in R) and thus cannot lie in a hole of G ′ . Moreover, G ′ \ T = G \ T . So G ′ contains no hole and is chordal. Now we prove (c). Suppose on the contrary that G ′ contains a member F of F. Note that G ′ does not contain F i for i = 10, . . . , 22, because every such F i contains a hole of length 4 or 5, while G ′ is chordal. Thus F must be one of F 1 , . . . , F 9 . Graph F must contain two vertices of T that are adjacent in G, for otherwise F would be an induced subgraph of G. Let x, y be two vertices of T in F that are adjacent in G. So x, y lie in the same big component of T , and it follows from Claim 1.5 that the neighbourhood of each of them in G ′ is R. In particular, in F they are non-adjacent twins. This immediately implies that F cannot be F 1 , F 4 or F 8 since such graphs do not have twins. Thus F must be one of F 2 , F 3 , F 5 , F 6 , F 7 , F 9 . Note that, in each of these six cases, there is up to symmetry only one pair of non-adjacent twins.

Suppose that F is either F 2 or F 3 . So F has vertices x, y, a, z 1 , . . . , z p , edges xa, ya, and either (if F is F 2 ) p = 4 and {z 1 , . . . , z 4 } induces a P 4 , or (if F is F 3 ) p = 6 and {z 1 , . . . , z 6 } induces a 2P 3 with edges z 1 z 2 , z 2 z 3 , z 4 z 5 , z 5 z 6 .

As observed above, we may assume that x, y ∈ T and consequently a ∈ R; then vertices z 1 , . . . , z p are in a big component of S, and, by Claim 1.5, they cannot be in T , so they are in Z. Let p = 4. By Claim 1.6, Z contains a vertex z that is adjacent in G to a, z 1 , . . . , z 4 . Then {z, z 1 , . . . , z 4 , a, x, y} induces an F 8 in G, a contradiction. Now let p = 6. By Claim 1.6, Z contains a vertex z that is adjacent in G to a, z 1 , z 2 , z 3 and a vertex z ′ that is adjacent in G to a, z 4 , z 5 , z 6 . If z = z ′ , then {z, z ′ , z 1 , . . . , z 6 } induces an F 6 or F 7 in G, a contradiction. So z = z ′ . But then {z, z 1 , . . . , z 6 , a, x, y} induces an F 9 in G, a contradiction.

Suppose that F is either F 5 or F 9 . So F has vertices x, y, a, b, z 1 , . . . , z p , edges xa, xb, ya, yb, ab, az 1 , z 1 z 2 , z 1 z 3 , z 2 z 3 and either (if F is F 5 ) p = 3 and az 2 is an edge, or (if F is F 9 ) p = 6 and vertices z 4 , z 5 , z 6 induce a P 3 and are adjacent to a. As observed above, we may assume that x, y ∈ T and consequently a, b ∈ R, and so z 1 , . . . , z p ∈ Z. By Claim 1.6, Z contains a vertex z that is adjacent in G to b, z 1 , z 2 , z 3 . Then z is adjacent to a, for otherwise {z, a, b, z 1 } induces a hole in G. But then {z, a, b, z 1 , z 3 , x} induces an F 4 in G, a contradiction.

Finally suppose that F is either F 6 or F 7 . So F has vertices x, y, a, b, z 1 , . . . , z 4 and edges xa, xb, ya, yb, ab, z 1 z 2 , z 1 z 3 , z 1 z 4 , z 2 z 3 , z 2 z 4 and possibly (if F is F 7 ) the edge az 1 . As observed above, we may assume that x, y ∈ T and consequently a, b ∈ R and z 1 , . . . , z 4 ∈ Z. By Claim 1.6, Z contains a vertex z that is adjacent in G to a, z 2 , z 3 , z 4 . Vertex z is also adjacent to z 1 , for otherwise {z, z 1 , z 3 , z 4 } induces a hole. By Claim 1.6, Z contains a vertex z ′ that is adjacent in G to b, z 1 , . . . , z 4 . If none of z, z ′ is adjacent to both a, b, then either {z, z ′ , a, b} or {z, z ′ , a, b, z 2 } induces a hole. So we may assume, up to symmetry, that z is adjacent to both a, b. But then {z, a, b, x, z 2 , z 3 , z 4 } induces an F 5 in G, a contradiction. Thus Claim 1.10 holds.

U T is a clique.

Proof. Suppose on the contrary that u 1 , u 2 are non adjacent vertices of U T . By Claim 1.1, vertex u 1 has two neighbours v, v ′ that are not adjacent, and vertex u 2 has two neighbours w, w ′ that are not adjacent. By Claims 1.4 and 1.5 we have v, v ′ , w, w ′ ∈ T . If u 1 is adjacent to w, then {u 1 , w, u 2 , w ′ } induces a P 4 or a hole, which contradicts Claim 1.9 or the chordality of G. So u 1 is not adjacent to w, and by symmetry it is not adjacent to w ′ , and u 2 is not adjacent to any of v, v ′ . If v is adjacent to w, then {v, u 1 , v ′ , w} induce a P 4 or a hole, a contradiction. So v is not adjacent to w, and by symmetry it is not adjacent to w ′ , and v ′ is not adjacent to any of w, w ′ . But now {u 1 , v, v ′ , u 2 , w, w ′ } induces a 2P 3 , which contradicts Claim 1.9. So Claim 1.11 holds.

By Claim 1.10, there is a vertex u of U in T . By Claim 1.1, vertex u has two neighbours t, t ′ that are not adjacent. By Claims 1.4 and 1.5, we have t, t ′ ∈ T . In other words, there is a P 3 t-u-t ′ in T .

1.12. Z contains no P 4 and no 2P 3 .

Proof. In the opposite case, a P 4 or 2P 3 from Z plus the P 3 t-u-t ′ from T form an induced F 2 or F 3 in G, a contradiction. So Claim 1.12 holds.

1.13. U Z is a clique.
Proof. Suppose on the contrary that u 1 , u 2 are non adjacent vertices of U Z . Since Z is connected, it contains a path from u 1 to u 2 , and since, by Claim 1.12, Z contains no P 4 , such a path has length 2, that is, Z contains a vertex x adjacent to both u 1 , u 2 . Suppose that some neighbour y = x of u 1 is not adjacent to x. Then y is also not adjacent to u 2 , for otherwise {y, u 1 , x, u 2 } would induce a hole; and so y-u 1 -x-u 2 is a P 4 . If y ∈ Z this contradicts Claim 1.12, and if y ∈ R then u 2 -x-u 1 -y-t is a P 5 , another contradiction. Therefore, x is adjacent to every neighbour of u 1 different from x, and similarly it is adjacent to every neighbour of u 2 different from x. By Claim 1.1, u 1 has neighbours v, v ′ that are not adjacent. Suppose that one of v, v ′ , say v, is in R. Then, since R is a clique, v ′ is in Z, and, by the preceding argument, we have x = v ′ and x is adjacent to v, v ′ . But then {v, u 1 , v ′ , x, t, u, t ′ } induces an F 5 , a contradiction. Thus v, v ′ are both in Z. Likewise, u 2 has neighbours w, w ′ that are not adjacent, and they are both in Z. If u 2 is adjacent to v, then u 2 , v, u 1 , v ′ induce either a P 4 or a hole, a contradiction. Thus u 2 is not adjacent to v, and similarly not to v ′ , and u 1 is not adjacent to any of w, w ′ . Then v is not adjacent to w, for otherwise u 1 -v-w-u 2 is a P 4 . Similarly, v is not adjacent to w ′ , and v ′ is not adjacent to any of w, w ′ . But now {u, t, t ′ , u 1 , v, v ′ , u 2 , w, w ′ } induces a 3P 3 in G, a contradiction. So Claim 1.13 holds.

Let C T be the set of colors that appear in U T . By Claim 1.10, we have

|C T | = |U T | ≥ 1. Let C Z be the set of colors that do not appear in R ∪ U T .
By Claim 1.1, a member of U must be in a big component of T , and so, by Claims 1.4, 1.5 and 1.11, R ∪ U T is a clique; thus |C Z | ≥ 1. Consider any color j ∈ C Z . By the definition of U , every member of U T must have a neighbour of color j, and by the definition of C Z , any such neighbour must be in T . Let w j be one vertex of color j that is adjacent to the most members of U T . So w j ∈ T . Suppose that w j has a non-neighbour u ′ in U T . Let w ′ j be a neighbour of u ′ of color j. So w ′ j ∈ T . Since u ′ is adjacent to w ′ j and not to w j , the choice of w j implies the existence of a vertex u ′′ of U T that is adjacent to w j and not to w ′ j . But then w j -u ′′ -u ′ -w ′ j is a P 4 , which contradicts Claim 1.9. Thus w j is adjacent to all of

U T . Now R ∪ U T ∪ {w j } is a clique, which implies |C Z | ≥ 2. Let W = {w j | j ∈ C Z }. Note that W is not a clique, for otherwise R ∪ U T ∪ W would be a clique of size k (because it contains a vertex of each color). For each color j ∈ C Z , the definition of C Z implies that u j is in Z. So |U Z | ≥ |C Z | ≥ 2.
Consider any color h ∈ C T . By the definition of U , every member of U Z must have a neighbour of color h, and by the definition of C T and by Claim 1.5, any such neighbour must be in Z. Let y h be one vertex of color h that is adjacent to the most members of U Z . So y h ∈ Z. Suppose that y h has a non-neighbour u ′ in U Z . Let y ′ h be a neighbour of u ′ of color h. So y ′ h ∈ Z. Since u ′ is adjacent to y ′ h and not to y h , the choice of y h implies the existence of a vertex u ′′ of U Z that is adjacent to y h and not to y ′ h . But then y h -u ′′u ′ -y ′ h is a P 4 , which contradicts Claim 1.12. Thus y h is adjacent to all of

U Z . Let Y = {y h | h ∈ C T }. So |Y | = |C T |. Suppose that Y is not a clique.
So there are non-adjacent vertices y g , y h in Y . Thus |C T | ≥ 2, and we have u g , u h ∈ U T . Recall that W is not a clique, so it contains two non-adjacent vertices w i , w j , and by the definition of W we have u i , u j ∈ U T . But then {y g , y h , u i , u j , w i , w j , u g , u h } induces an F 6 , a contradiction. Thus Y is a clique, and so

Y ∪ U Z is a clique of size at least |C T | + |C Z | ≥ 3.
Let R 1 be the set of vertices of R that have at most one neighbour in Y ∪ U Z , and let R 2 = R \ R 1 . If some vertex a ∈ R 2 has a non-neighbour v in Y ∪ U Z , then, since a has two neighbours z, z ′ in Y ∪ U Z , we see that {a, z, z ′ , v, t, u, t ′ } induces an F 5 , a contradiction (recall that t-u-t ′ is a P 3 in T ). Thus every vertex of R 2 is adjacent to every vertex of Y ∪ U Z . This implies R 1 = ∅, for otherwise R ∪ Y ∪ U Z would be a clique of size k (because it contains a vertex of each color).

Consider any color ℓ that appears in R 1 , and let a ℓ be the vertex of R 1 of color ℓ. By the definition of U and R 1 , every vertex of U Z , except possibly one, must have a neighbour of color ℓ in Z. Let x ℓ be one vertex of Z of color ℓ that is adjacent to the most members of U Z . By the same argument as above concerning y h , using the fact that Z contains no P 4 , we obtain that x ℓ is adjacent to every vertex of U Z that has a neighbour of color ℓ in Z. Now we show that x ℓ is adjacent to all of Y ∪ U Z . Suppose on the contrary that x ℓ has a non-neighbour v in Y ∪ U Z . If x ℓ has two neighbours z, z ′ in Y ∪ U Z , then either t-a ℓ -v-z-x ℓ is a P 5 (if a ℓ is adjacent to v), or {v, z, z ′ , x ℓ , a ℓ , t, u, t ′ } induces an F 6 or F 7 , a contradiction. So x ℓ has only one neighbour z in Y ∪ U Z . By the definition of x ℓ , this implies that U Z = {z, z ′ } where z ′ has no neighbour of color ℓ in T . Since z ′ is in U , it must have a neighbour of color ℓ, and this can only be a ℓ . But then x ℓ -z-z ′ -a ℓ -t is a P 5 , a contradiction. Thus x ℓ is adjacent to all of Y ∪ U Z . Now we show that x ℓ is adjacent to all of R 2 . For suppose that x ℓ is not adjacent to some vertex a of R 2 . Let z, z ′ be any two vertices in Y ∪ U Z . Then {x ℓ , z, z ′ , a, t, u, t ′ } induces an F 5 , a contradiction. In summary,

x ℓ is adjacent to all of Y ∪ U Z ∪ R 2 .
Let X = {x ℓ | color ℓ appear in R 1 }. So X = ∅. Suppose that there are two non-adjacent vertices x ℓ , x m in X. Let a ℓ be a vertex of color ℓ in R 1 . Let z, z ′ be any two vertices in Y ∪ U Z . Then a ℓ is adjacent to x m , for otherwise {x ℓ , x m , z, z ′ , a ℓ , t, u, t ′ } induces an F 6 or F 7 . Then a ℓ is adjacent to z ′ , for otherwise x ℓ -z ′ -x m -a ℓ -t is a P 5 . But then {x m , z, z ′ , a ℓ , t, u, t ′ } induces an F 5 , a contradiction. Therefore X is a clique. But now, X ∪ Y ∪ U Z ∪ R 2 is a clique of size k (because it contains a vertex of each color), a contradiction. This completes the proof of the theorem. Theorem 1 can be generalized slightly as follows.

Theorem 2. Every F-free C 4 -free graph is b-perfect.

Proof. Let G be an F-free C 4 -free graph. Since G contains no P 5 , it contains no hole C k with k ≥ 6. We prove that b(G) = χ(G) by induction on the number of C 5 's contained in G. If G contains no C 5 , then it is chordal and the result follows from Theorem 1. So we may now assume that G contains a C 5 . Let z 1 , . . . , z 5 be five vertices such that, for i = 1, . . . , 5 modulo 5, vertex z i is adjacent to z i+1 and not to z i+2 . Let Z = {z 1 , . . . , z 5 }. Let x be a vertex of G \ Z that has a neighbour in Z. If x also has a non-neighbour in Z, then it is easy to see that Z ∪ {x} contains a set that induces either a P 5 , or a C 4 , or an F 16 , a contradiction. Thus x is adjacent to all of Z. Let X be the set of vertices that are adjacent to Z. Note that X is a clique, for if it contained two non-adjacent vertices x, y, then {x, y, z 1 , z 3 } would induce a C 4 . Suppose that G admits a b-coloring c with k > χ(G) colors. We may assume that the colors of c that appear in Z are 1, . . . , ℓ, with 3 ≤ ℓ ≤ 5. So only the colors ℓ + 1, . . . , k may appear in X.

If ℓ = 3, let G ′ be the graph obtained from G \ Z by adding three new vertices a 1 , a 2 , a 3 that are pairwise adjacent and all adjacent to all of X. If ℓ = 4 or 5, let G ′ be the graph obtained from G \ Z by adding ℓ new vertices a 1 , . . . , a ℓ that are pairwise not adjacent and all adjacent to all of X. In either case, since X is a clique the new vertices a 1 , . . . , a l are simplicial, so they cannot belong to any hole, and so G ′ has strictly fewer C 5 's than G.

2.1. b(G ′ ) ≥ b(G).
Proof. Let c ′ be the coloring of the vertices of G ′ defined by c ′ (x) = c(x) if x is a vertex of G \ Z and c ′ (a i ) = i for i = 1, . . . , ℓ. Clearly, c ′ is a coloring with k colors. For each i = 1, . . . , k, let u i be a b-vertex of color i for c in G. Suppose that u i is in G \ Z. Consider a neighbour v j of u i of color j in G for any j = i. Then either v j is in G \ Z = G ′ \ Z, and in this case v j is a neighbour of u i of color j in G ′ ; or v j is in Z, and in this case j ∈ {1, . . . , ℓ} and a j is a neighbour of u i of color j in G ′ . So u i is a b-vertex for G ′ . Now suppose that u i is in Z. Then u i must have a neighbour of every color 1, . . . , ℓ different from i, and since such colors do not appear in X, they must appear in Z, and so ℓ = 3 and all colors 4, . . . , k appear in X. Then a i is a b-vertex of color i in G ′ . Thus c ′ has a b-vertex of every color i = 1, . . . , k. So Claim 2.1 holds.

χ(G ′ ) ≤ χ(G).

Proof. Consider any coloring γ of G with χ(G). We may assume that the colors of γ that appear in Z are 1, . . . , h, with 3 ≤ h ≤ 5. Let γ ′ be defined as follows. For x ∈ G \ Z, set γ ′ (x) = γ(x). If ℓ = 3, set γ ′ (a i ) = i for i = 1, 2, 3. If ℓ = 4 or 5, set γ ′ (a i ) = 1 for i = 1, . . . , ℓ. In either case, γ ′ is a coloring of G ′ with at most χ(G) colors. So Claim 2.2 holds.

2.3.

G ′ is F-free and C 4 -free.

Proof. Suppose on the contrary that G ′ contains a subgraph F which is either a member of F or a C 4 . Let A = {a 1 , . . . , a ℓ }. If F contains at most two vertices of A, then, since Z has two adjacent vertices and also two nonadjacent vertices, we can replace the vertices of F ∩ A by an appropriate choice of vertices of Z and we find a subgraph of G that is isomorphic to F , a contradiction. So F must contain at least three vertices of A. Note that in F , the neighbourhood of any of these vertices is equal to F ∩ X, i.e., they are pairwise twins. But this is impossible, because no member of F ∪ {C 4 } has three vertices that are pairwise twins. Thus Claim 2.3 holds. By Claims 2.1-2.3, G ′ is an F-free, C 4 -free graph with b(G ′ ) ≥ b(G) > χ(G) ≥ χ(G ′ ) and G ′ has strictly fewer C 5 's than G, a contradiction. This completes the proof of Theorem 2.
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 1 Figure 1: Class F = {F 1 , . . . , F 22 }
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