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The Navier wall law at a boundary with random roughness

David Gérard-Varet
∗

Abstract

We consider the Navier-Stokes equation in a domain with irregular boundaries. The
irregularity is modeled by a spatially homogeneous random process, with typical size ε≪
1. In the parent paper [8], we derived a homogenized boundary condition of Navier type
as ε→ 0. We show here that for a large class of boundaries, this Navier condition provides
a O(ε3/2| ln ε|1/2) approximation in L2, instead of O(ε3/2) for periodic irregularities. Our
result relies on the study of an auxiliary boundary layer system. Decay properties of this
boundary layer are deduced from a central limit theorem for dependent variables.

Keywords: Wall laws, rough boundaries, stochastic homogenization, decay of correlations

1 Introduction

The concern of this paper is the effect of a rough boundary on a viscous fluid. In most
situations of physical relevance, such effect can not be described in detail: either the precise
shape of the roughness is unknown, or its spatial variations are too small for computational
grids. Therefore, one may only hope to account for the averaged effect of the irregularities.
This is the purpose of wall laws: the irregular boundary is replaced by an artificial smoothed
one, and an artificial boundary condition (a wall law) is prescribed there, that should reflect
the mean impact of the roughness.

This paper is a mathematical study of wall laws, in the following simple setting: we
consider a two-dimensional rough channel

Ωε = Ω ∪ Σ ∪Rε

where Ω = R×(0, 1) is the smooth part, Rε is the rough part, and Σ = R×{0} their interface.
We assume that the rough part has typical size ε, that is

Rε =
{

x, x2 > εω
(x1

ε

)}

for a K−Lipschitz function ω : R 7→ (−1, 0), K > 0. More will be assumed on the boundary
function ω hereafter (see figure for an example of such a rough domain).
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Figure 1: The rough domain Ωε.

We assume that in this channel domain, the viscous fluid obeys to the stationary incom-
pressible Navier-Stokes equations:



























− ∆u+ u · ∇u+ ∇p = 0, x ∈ Ωε,

div u = 0, x ∈ Ωε,
∫

σε

u1 = φ,

u|∂Ω = 0,

(1.1)

where σε denotes any vertical cross-section of Ωε and φ > 0. The third equation in (1.1)
expresses that a flux φ is imposed across the channel. Note that this flux does not depend
on the cross-section, due to the incompressibility and no-slip condition at the boundary. We
also stress that, up to minor changes, we could apply our analysis to many variants of this
problem, notably to elliptic type systems or to unstationary Navier-Stokes.

In this simple setting, the search for wall laws resumes to the following problem: to find
a boundary operator Bε(x,Dx), regular in ε, acting at the artificial boundary Σ, such that
the solution of



























− ∆u+ u · ∇u+ ∇p = 0, x ∈ Ω,

div u = 0, x ∈ Ω,
∫

σ
u1 = φ, u|x2=1 = 0,

Bε(x,Dx)u|Σ = 0

(1.2)

approximates well the solution uε of (1.1) in Ω.

This type of homogenization problems has been considered in many mathematical works.
On wall laws for scalar elliptic equations, we refer to [2]. On wall laws for fluid flows, see
[1, 3, 4, 19, 20, 11]. See also [21] on porous boundaries. These works go along with more
formal computations, grounded by empirical arguments (cf for instance [9, 23]). We finally
mention [15, 10] for the study of roughness-induced effects on geophysical systems.

All these studies have been carried under two assumptions:
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• compact domains, for instance bounded channels or periodic in the variable x1.

• periodic irregularities, meaning that the boundary function ω is periodic.

The first restriction is just a small mathematical convenience, that gives direct compactness
properties through Rellich type theorems. The second assumption is of course a big simpli-
fication, both from the point of view of mathematics and physics. These assumptions were
considerably relaxed in the recent article [8] by A. Basson and the author. As the present
note extends this article, we now describe shortly its main results and underlying difficulties.

In all papers on wall laws, the starting point is a formal expansion of uε:

uε(x) ∼ u0(x) + 6φεv(x/ε) + . . .

Formally, the leading term u0 satisfies (1.2) with the simple no-slip condition

Bε(x,Dx)u := u = 0 at Σ (1.3)

The solution of this approximate system is the famous Poiseuille flow :

u0(x) = (U(x2), 0) , U(x2) = 6φx2(1 − x2)

Note that u0 is defined in all R
2. This zeroth order asymptotics can be mathematically

justified, at least for small fluxes φ: we prove in article [8]

Theorem 1 There exists φ0, ε0 > 0, such that for all φ < φ0, ε < ε0, system (1.1) has a
unique solution uε in H1

uloc(Ω
ε). Moreover,

‖uε − u0‖H1

uloc
(Ωε) ≤ C

√
ε, ‖uε − u0‖L2

uloc
(Ω) ≤ C ′ε.

We stress that these estimates hold without further assumption on the boundary: we only
assume that ω has values in (−1, 0) and is K−Lip. A look at the proof shows that the
constants C and C ′ are only increasing functions of K.

Theorem 1 expresses that the wall law (1.3) provides a O(ε) approximation of uε in
L2

uloc(Ω). See also [19] for a similar result in a bounded channel. However, this wall law does
not account for the behaviour of uε near the boundary, and can therefore be refined. Indeed,
as the Poiseuille flow u0 does not vanish at the lower part of ∂Ωε, a boundary layer corrector
εφv(x/ε) must be added to the expansion. The (normalized) boundary layer v = v(y) is
defined on the rescaled infinite domain

Ωbl = {y, y2 > ω(y1)}

and formally satisfies the following Stokes problem











− ∆v + ∇q = 0, x ∈ Ωbl,

div v = 0, x ∈ Ωbl,

v(y1, ω(y1)) = −(ω(y1), 0).

(1.4)

Note the inhomogeneous Dirichlet condition, that cancels the trace of u0.

Although linear, the boundary layer system (1.4) is quite challenging. First, the well-
posedness is not clear. As the boundary function ω is not decreasing at infinity, one can
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expect only local integrability of the solution v in variable y1. The derivation of local bounds
is not obvious: the Stokes operator being vectorial, one can not use scalar tools such as the
maximum principle or Harnack inequality. Moreover, as Ωbl is unbounded in all directions,
the Poincaré inequality (which allows to get H1

uloc estimates in the channel) is not available.
Besides the well-posedness issue, the qualitative properties of v seem also out of reach without
further hypothesis.

Under an assumption of periodic irregularities, the analysis of (1.4) becomes straightfor-
ward. If ω is say L periodic in y1, it is easy to show well-posedness in the space

{

v ∈ H1
loc(Ωbl), v L− periodic in y1,

∫ L

0

∫ +∞

ω(y1)
|∇v|2dy2dy1 < +∞

}

.

Moreover, a simple Fourier transform in y1 shows that

‖v(y) − v∞‖ ≤ C e−δy2/L, v∞ = (α, 0), α =
1

L

∫ L

0
v1(s)ds, δ > 0,

that is exponential convergence to a constant field v∞ = (α, 0) at infinity.

The constant α at infinity is then responsible for a O(ε) tangential slip. Namely, chosing
as a wall law the Navier-slip condition

Bε(x,Dx)v = (v1 − εα∂2v1, v2) = 0 at Σ, (1.5)

it can be shown (in this periodic framework) that the solution of (1.2) provides a O(ε3/2)
approximation of uε in L2. We refer to [19] for all necessary details. The error estimate ε3/2

comes from the fact that the boundary layer term satisfies ‖ε(v(x/ε) − (α, 0))‖L2 = O(ε3/2).

The periodicity hypothesis is a stringent one, and one may wonder if the use of Navier
slip condition can be justified in more general configurations. This issue has been adressed
rigorously in the recent article [8]. Inspired by the probabilistic modeling of heterogeneous
media (see for instance [22]), we considered irregularities that are not distributed periodically,
but randomly, following a stationary stochastic process. Namely, the rough boundary is seen
as a realization of a stationary spatial process. Following the well-known construction of
Kolmogorov, this amounts to consider the space

P = {ω : R 7→ (−1, 0), ω K − Lip}

of all possible rough boundaries, together with the cylindrical σ− field C (that is generated
by the coordinates ω 7→ ω(t)) and with a stationary measure π. Stationary means that π is
invariant by the group of translation

τh : P 7→ P, ω 7→ ω(· + h).

As a consequence of this modeling, the domains Ωε, Ωbl, as well as the velocity fields uε

or v depend on the parameter ω. As discussed earlier, the existence result and estimates
of theorem 1 are uniform on P . Moreover, it was shown in article [8] that the function
ω 7→ uε(ω, ·) (extended by 0 outside Ωε(ω)) is measurable as a function from P to H1

loc(R
2).

Using this probabilistic structure, we have been able to extend partially the results of the
periodic case. Key elements of our analysis are:
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• the well-posedness of the boundary layer system, obtained in functional spaces encoding
the relation

v(τh(ω), y1, y2) = v(ω, y1 + h, y2).

• the convergence of v(ω, y) to (α(ω), 0) as y2 → +∞, both in L2(P ) and almost surely,
locally uniformly in y1. Such convergence is deduced from the ergodic theorem.

More on the boundary layer system will be provided in the next sections. As regards the
Navier wall law (1.5), the main result of [8] resumes to

Theorem 2 There exists α = α(ω) ∈ L2(P ) such that the solution uN of (1.2), (1.5) satisfies

‖uε − uN‖L2

uloc
(P×Ω) = o(ε).

We remind that ‖w‖L2

uloc
(P×Ω) := supx

(

∫

P

∫

B(x,1)∩Ω |w|2dxdP
)1/2

.

Theorem 2 shows that a slip condition of Navier type improves the approximation of uε.
As in the periodic case, the random variable α in (1.5) comes from the convergence of the
boundary layer v. If the measure π is ergodic, α does not depend on ω, as pointed out in [8].

A natural concern about this result is the o(ε) bound, which is only a slight improvement
of the O(ε) in theorem 1. A look at article [8] shows that this poor bound is due to the
lack of information on the way v converges at infinity. Contrary to the periodic case, where
convergence at exponential rate is established, the simple use of the ergodic theorem does not
yield any speed rate.

The present paper aims at clarifying this point. Losely, we will show that for a large
class of boundaries, the Navier wall law provides a O(ε3/2| ln(ε)|1/2) approximation of the real
solution. Namely, we will make the two following assumptions on our random roughness:
(H1) The measure π is supported by

Pα = {ω : R 7→ (−1, 0), ‖ω‖C2,α ≤ Kα}

for some α > 0 and some Kα > 0.
(H2) The randon boundary has no correlation at large distances, that is the σ-fields

σ (s 7→ ω(s), s ≤ a) and σ (s 7→ ω(s), s ≥ b)

are independent for b− a ≥ κ, for some κ > 0.
Under these assumptions, the main theorem of the paper reads:

Theorem 3 For small enough φ and under (H1)-(H2), the following refined estimate holds:

‖uε − uN‖L2

uloc
(P×Ω) = O(ε3/2| ln(ε)|1/2).

Before entering the proof of this theorem, let us give a few hints. Theorem 3 is deduced from
a central limit theorem for the quantity v(ω, y) − (α, 0). Broadly, this theorem comes from
good properties of the random variables

Xn(ω) =

∫ n+1

n
v(ω, y1, 0) dy1.
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Due to the elliptic nature of the Stokes operator, such random variables are not independent.
However, under assumption (H2), we are able to prove that the correlation terms E(XnX0)
decay fast enough as n→ ∞. As a result, one can prove a central limit theorem on Xn, and
then a similar one on v−(α, 0). We point out that such type of results for dependent variables
with strong decay of correlations is quite classical and has been used in various fields. We
refer to [7] for a review paper related to dynamical systems, and to recent articles [24, 12] for
applications in a PDE context.

As a consequence of this central limit theorem, we show that the boundary layer converges

to a constant as |y−1/2
2 |. Note that this is in sharp contrast with the periodic case, where

exponential convergence holds (we stress that periodic boundaries are highly correlated, thus
far from satisfying (H2)).This speed of convergence is resposible for the ε3/2| ln(ε)|1/2 in the
Navier wall law.

The main difficulty is to obtain the decay of correlations of variables like Xn. The proof
relies on precise estimates of the Green function for the Stokes operator above a non flat
boundary. Such estimates follow from sharp elliptic regularity results, where one must pay
attention to the oscillation of the boundary. This is achieved under the regularity assumption
(H1), using ideas of Avellaneda and Lin for homogenization of elliptic systems [5, 6].

2 Boundary layer decay and Navier approximation

In this section, we explain how Theorem 2 follows from estimates on the solution v of (1.4).
Such estimates will be established in the following sections. At first, we remind the main
features of v, as stated in article [8].

2.1 The boundary layer system

As emphasized in the introduction, to solve (1.4) in a deterministic way, that is for each
possible boundary ω, is still unclear. Hence, one must take advantage of the probabilistic
setting. First, notice that a reasonable solution v should satisfy:

v(τh(ω), y1, y2) = v(ω, y1 + h, y2). (2.1)

Together with the stationarity assumption, this relation sort of substitutes to the identity

v(y1 + L, y2) = v(y1, y2)

used in the treatment of L−periodic roughness. It allows to extend the well-posedness result,
through an appropriate variational formulation.

This formulation has been described in article [8]. First, one introduces the new unknown

w(y) := v(y) + (y2, 0)1{y2<0}(y),

and replace system (1.4) by






















− ∆w + ∇q = 0, x ∈ Ωbl \ {y2 = 0},
div w = 0, x ∈ Ωbl,

w|∂Ωbl = 0,

[w]|y2=0 = 0, [∂2w − (0, q)]|y2=0 = (−1, 0),

(2.2)
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where [·]|y2=0 denotes the jump at y2 = 0. Then, one multiplies formally the Stokes equation
by a test function w′ = w′(ω, y) that satisfies div w′ = 0, w′|∂Ωbl = 0. Integrating by parts
over Ωbl ∩ {|y1 < 1} yields

∫

Ωbl∩{|y1<1}
∇w · ∇w′ =

∫

{|y1|<1, y2=0}
w′

1 +

∫

Ωbl∩{|y1|=1}
(∂nw − qn)w′.

Finally, if w, w′ satisfy relation (2.1), one can integrate with respect to ω, and thanks to the
stationarity of π, get rid of the annoying boundary term at the r.h.s:

E

∫

Ωbl∩{|y1<1}
∇w · ∇w′ = E

∫

{|y1<1, y2=0}
w′

1

Afterwards, this formal variational formulation can be rigorously defined and solved: in
short, one can apply the Riesz theorem in a functional space of Sobolev type, made of functions
w such that

E

∫

Ωbl∩{|y1<1}
|∇w|2 < +∞,

and satisfying almost surely (2.1), together with div w = 0, w|Ωbl = 0. We refer to [8] for all
details. Note that stationarity implies:

supt,R E
1

R

∫

Ωbl∩{|y1−t|<R}
|∇w|2 = E

∫

Ωbl∩{|y1<1}
|∇w|2 < +∞.

Back to the original system (1.4), this variational solution w provides almost surely a
solution v(ω, ·) ∈ H1

loc

(

Ωbl
)

in the sense of distributions. Moreover, the ergodic theorem
yields (see [8])

sup
R

1

R

∫

Ωbl∩{|y1|<R}
|∇v|2 < +∞, almost surely.

In order to understand the origin of the Navier approximation, the next step is to describe
the behavior of v as y2 → +∞. For periodic roughness, one can show exponential convergence
of v to a constant vector field v∞ = (α, 0). However, the rate of convergence goes to zero
with the period L. When dealing with stationary random boundaries, that broadly speaking
contain all periods, the exponential decay does not hold a priori. In other words, there is a
problem associated to the Fourier spectrum, that is discrete in the periodic case, and may
accumulate to zero in the random case.

Again, this problem has been (partially) overcome in [8]. The first step is to obtain a
representation of v in terms of a Stokes double layer potential, cf proposition ??. Almost
surely, for any

v(ω, y) =

∫

R

G(t, y2) v(ω, y1 − t, 0) dt

= −
∫

R

t ∂tG(y2)
1

t

∫ t

0
v(ω, y1 − s, 0) ds dt

where G is the Poisson type kernel for the Stokes operator over a half space. Then, the ergodic
theorem and a few calculations yield:

1

t

∫ t

0
v(ω, y1 − s, 0) ds → v∞(ω) = (α(ω), 0), t → ±∞,
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where the convergence holds almost surely (locally uniformly in y1), as well as in L2(P )
(uniformly in y1). In the case where the stationary measure π is ergodic, the constant α does
not depend on ω. Finally, back to the integral representation, and with similar treatment for
derivatives of v:

∀β ∈ N
2, |β| ≥ 1, E |v(·, 0, , y2) − α(·)|2 + y

2|β|
2 E

∣

∣

∣
∂β

y v(·, 0, y2)
∣

∣

∣

2
−−−−−→
y2→+∞

0. (2.3)

We refer to [8, Proposition 13] for all details.

2.2 Refined estimate for Navier wall law

Most of the analysis of the present paper will be devoted to a refined asymptotic estimate of
the boundary layer:

Theorem 4 Under assumptions (H1), (H2), for all β ∈ N
2,

y
2|β|+1
2 E

∣

∣

∣
∂β (v(·, 0, y2) − α(·))

∣

∣

∣

2
−−−−−→
y2→+∞

σβ ≥ 0. (2.4)

It is of course a much sharper convergence result than (2.3). Before tackling its proof, we
explain how it implies theorem 2. Arguments are direct adaptation from section 5 in [8].

On the basis of the boundary layer analysis, one can build an approximation of uε of
boundary layer type. Namely, we introduce

uε
app(ω, x) = u0(x) + 6φ ε v

(

ω,
x

ε

)

+ 6φ εu1(ω, x) + 6φ ε rε(ω, x).

In this approximation, u0 is the Poiseuille flow and v(ω, ·) is the boundary layer solution of
(1.4). As v does not converge to zero at infinity, we add a large scale corrector u1 satisfying:































u0 · ∇u1 + u1 · ∇u0 − ∆u1 + ∇p = 0, x ∈ Ω,

div u1 = 0, x ∈ Ω,
∫ 1

0
u1 · e1dx2 = 0,

u1|y2=0 = 0, u1|y2=1 = −(α, 0).

(2.5)

It is just a combination of a Couette and a Poiseuille flow: u1 = αx2 (2 − 3x2) e1. Still, this
approximation does not vanish at the boundary, which explains the addition of another term
rε(ω, x). It must satisfy



















rε(x1, 0) = 0,

rε(x1, 1) = v

(

x1

ε
,
1

ε

)

− (α, 0),

div rε = 0, x ∈ Ω.

(2.6)

This remainder can be taken small in the sense of

Proposition 5 This problem possesses a (non unique) solution rε such that

sup
x

E ‖rε‖2
H2(B(x,1)∩Ω) = O(ε| ln ε|).
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Proof: The proof of this result mimics the one of proposition 14 in [8]. The corrector rε can
be chosen in the form

rε = ∇⊥ψ, ψ = a(x1)x
3
2 + b(x1)x

2
2 + c(x1)x2 + d(x1).

The streamfunction ψ is determined up to a constant and polynomial in x2. Its coefficients
have explicit dependence on v− (α, 0). Hence, the H2 estimate on rε follows from the control
of various terms involving v− (α, 0). For instance, one must bound the L2(P × (−1, 1)) norm
of

∫ x1

0
v2

(

ω,
t

ε
,
1

ε

)

dt = ε

∫ x1/ε

0
v2

(

ω, y1,
1

ε

)

dy1

= ε

∫ 1/ε

ω(x1/ε)
(v1 − α)

(

ω,
x1

ε
, y2

)

dy2

− ε

∫ 1/ε

ω(0)
(v1 − α)(ω, 0, y2) dy2 := Iε(ω, x1) − Iε(ω, 0)

where the last equality comes from the Stokes formula. Using stationarity of π, we get

E

∥

∥

∥

∥

x1 7→
∫ x1

0
v2

(

·, t
ε
,
1

ε

)

dt

∥

∥

∥

∥

2

L2(−1,1)

≤ 4E|Iε(·, 0)|2.

Thanks to the refined estimate (2.4), we finally obtain

E|Iε(·, 0)|2 ≤ C

(

ε2 E

∫ 1

ω(0)
|(v1 − α)(·, 0, y2)|2dy2 + ε

∫ 1/ε

1
E |(v1 − α)(·, 0, y2)|2dy2

)

≤ C ′ε2 + C ′′ε

∫ 1/ε

1
y−1
2 dy2 = O(ε| ln ε|)

All other terms involve similar computations. These are straightforwardly adapted from the
proof of proposition 14 in [8], using (2.4) instead of (2.3).

Once the approximate solution uε
app is built, one can obtain by energy estimates the

following bounds, for φ small enough:

‖uε − uε
app‖L2

uloc
(P×Ω) = O

(

ε3/2| ln(ε)|1/2
)

,

‖uε
app − uN‖L2

uloc
(P×Ω) = O

(

ε3/2| ln(ε)|1/2
)

,

which of course imply theorem 2. As the proof is very similar to what was done in paper [8],
we do not expand more and refer to it for all details.

3 A central limit theorem

Up to the end of the paper, we will assume (H1)-(H2), and focus on theorem 4. It is classical
that (H2) implies ergodicity of π, so that the constant α does not depend on ω. We start
again from an integral representation

∂β
y (v(ω, 0, y2) − (α, 0)) =

∫

R

∂β1

t ∂β2

y2
G(t, y2) (v(ω,−t, 0) − (α, 0)) dt

= −
∫

R

∂β1+1
t ∂β2

y2
G(t, y2)

∫ t

0
(v(ω,−s, 0) − (α, 0))) ds dt,

(3.1)
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where the matrix kernel G is given by

G(y) =
2y2

π(y2
1 + y2

2)
2

(

y2
1 y1y2

y1y2 y2
2

)

We introduce

V (ω, t) :=

∫ t

0
(v(ω,−s, 0) − (α, 0)) ds.

A simple change of variable leads to

y
|β|+1/2
2 ∂β

y (v(ω, 0, y2) − (α, 0)) =

∫

R

∂β1+1
t ∂β2

y2
G(u, 1) y

−1/2
2 V (ω, y2u) du. (3.2)

Our first goal is to show that the l.h.s. converges in law to a gaussian distribution, for all β.
We will focus on the case |β| = 0, the other cases being handled in the exact same way. We
state

Proposition 6 The function V satisfies the following properties:

i) E |V (·, t)|2 ≤ C|t|

ii) The random process y
−1/2
2 V (ω, y2 u) converges weakly to a gaussian process B(ω, u) as y2

goes to infinity.

iii) The covariance matrices also converge, that is for all indices i, j and for all s, t,

E y−1
2 Vi(·, y2 s)Vj(·, y2 t) −−−−−→

y2→+∞
EBi(·, s)Bj(·, t)

We remind that the process Xn(ω, t) with values in R
2 converges weakly to X(ω, t) if, for all

T > 0 and all continuous bounded function F : C
(

[−T, T ],R2
)

7→ R,

EF(Xn) −−−−−→
n→+∞

EF(X).

Theorem 4 is then a direct consequence of

Corollary 1 The random process y
1/2
2 (v(ω, 0, y2) − (α, 0)) converges in law to a gaussian

vector with zero average. Moreover, for all i, j,

E (vi(·, 0, y2) − (α, 0)i) (vj(·, 0, y2) − (α, 0)j) −−−−−→
y2→+∞

σij,

where σ is the covariance matrix of this gaussian vector.

Proof of the corollary: To prove convergence in law to a gaussian vector Nσ of covariance
matrix σ, we need to show that for any F ∈ C∞

c (R),

EF

(
∫

R

∂tG(t, 1) y
−1/2
2 V (·, y2t) dt

)

−−−−−→
y2→+∞

EF (Nσ) .

Unsurprisingly, we take

Nσ :=

∫

R

∂tG(t, 1)B(ω, t) dt.
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We decompose, for any T > 0,

EF

(
∫

R

∂tG(t, 1) y
−1/2
2 V (·, y2t) dt

)

− EF (Nσ)

= EF

(
∫ T

−T
∂tG(t, 1) y

−1/2
2 V (·, y2t) dt

)

− EF

(
∫ T

−T
∂tG(t, 1)B(·, t) dt

)

+ EF

(
∫

R

∂tG(t, 1) y
−1/2
2 V (·, y2t) dt

)

− EF

(
∫ T

−T
∂tG(t, 1) y

−1/2
2 V (·, y2t) dt

)

+ EF

(
∫

R

∂tG(t, 1)B(·, t) dt
)

− EF

(
∫ T

−T
∂tG(t, 1)B(·, t) dt

)

:= J1 + J2 + J3

We now show that expressions J1, J2, converge to zero (J3 is similar to J2 and simpler). Let
δ > 0. We have

|J2| ≤ max |F ′| E
∫

|t|>T
|∂tG(t, 1)|

∣

∣

∣
y
−1/2
2 V (ω, y2t)

∣

∣

∣
dt

≤ max |F ′|
(

∫

|t|>T
|∂tG(t, 1)| dt

)1/2 (
∫

|t|>T
|∂tG(t, 1)| E

(

y−1
2 |V (ω, y2t)|2

)

dt

)1/2

≤ C

(

∫

|t|>T
|∂tG(t, 1)| dt

)1/2(
∫

|t|>T
|∂tG(t, 1)| t dt

)1/2

where the last line comes from point ii) of proposition 6. Thus, for T large enough, indepen-
dently of y2, |J2| ≤ δ/2. Such T being fixed, for y2 large enough, we get |J1| ≤ δ/2 by point
i) of proposition 6. This yields convergence in law. The convergence of the covariance matrix

E (vi(·, 0, y2) − (α, 0)i) (vj(·, 0, y2) − (α, 0)j)

=

∫

R

∫

R

E

(

∂tG(s, 1)y
−1/2
2 V (·, y2 s)

)

i

(

∂tG(t, 1)y
−1/2
2 V (·, y2 t)

)

j
ds dt

follows from the dominated convergence theorem, using i) and iii) of proposition 6. We get

σij = E

∫

R

∫

R

(∂tG(s, 1)B(·, s))i (∂tG(t, 1)B(·, t))j ds dt.

This concludes the proof of the corollary.

It remains to prove theorem 6. Note that point ii) is essentially a central limit theorem
for the sequence of random variables

Xn(ω) = F ◦ τn(ω), F (ω) =

∫ 1

0
(v(ω, t, 0) − (α(ω), 0)) dt.

The problem is that these random variables are not independent, due to “propagation of
information at infinite speed” in the Stokes system. To establish a central limit theorem for
such type of sequences is a classical question. The basic idea is that one can extend the central
limit theorem to non independent sequences that feature a good decay of correlations as n goes
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to infinity. We now illustrate this general principle on our problem, using assumption (H2).
We follow the presentation of article [24], in which a similar question arises for a semilinear
heat equation with random source. Let Cn the σ-algebra generated by the applications y1 7→
ω(y1), |y1| < n.We state the following lemma:

Lemma 7 Suppose that vn := E (v(·, 0, 0) | Cn) satisfies

E |vn − v(·, 0, 0)|2 ≤ C n−α

for some α > 1. Then, proposition 6 holds.

Proof of the lemma: We write the decomposition

v(·, 0, 0) − (α, 0) = v1 − (α, 0) +

+∞
∑

j=1

(

v2j − v2j−1
)

with the sum converging in L2(P ). The corresponding sum for V is

V =
+∞
∑

j=0

V j , V j(ω, t) =

∫ t

0

(

v2j − v2j−1
)

◦ τs(ω) ds,

where v1/2 := (α, 0). Then, we have: ‖V (·, t)‖L2(P ) ≤ ∑+∞
j=0 ‖V j(·, t)‖L2(P ). By the as-

sumption of independence at large distances, the correlations E

(

v2j ◦ τt(ω) v2j ◦ τt+s(ω)
)

and E

(

v2j ◦ τt(ω) v2j−1 ◦ τt+s(ω)
)

vanish for |s| ≥ κ+ 2j+1. We introduce

n :=
[

|t|/(κ + 2j+1)
]

.

If n = 0, we just write

E
∣

∣V j(·, t)
∣

∣

2 ≤ |t|2E

∣

∣

∣
v2j − v2j−1

∣

∣

∣

2
.

If n ≥ 1, we decompose

E
∣

∣V j(·, t)
∣

∣

2
= E

∣

∣

∣

∣

∣

n−1
∑

k=0

∫ (k+1)t/n

kt/n

(

v2j ◦ τs − v2j−1 ◦ τs
)

ds

∣

∣

∣

∣

∣

2

≤ E

∣

∣

∣

∣

∣

∫ t/n

0

n−1
∑

k=0

(

v2j ◦ τs+kt/n − v2j−1 ◦ τs+kt/n

)

ds

∣

∣

∣

∣

∣

2

≤ 2
(

κ+ 2j+1
)

∫ |t|/n

0

n−1
∑

k=0

E

∣

∣

∣
v2j − v2j−1

∣

∣

∣

2

Using the bound on the conditional expectations, we end up with

‖V j(·, t)‖2
L2(P ) ≤ C |t| min(|t|, 2j) 2−jα. (3.3)

for some constant C = C(κ). We thus get i). To prove ii), we just write the decomposition

v(·, 0, 0) − (α, 0) =

+∞
∑

j=0

(

v2j − v2j−1
)

, y
−1/2
2 V (ω, ty2) = y

−1/2
2

+∞
∑

j=0

V j(ω, ty2).
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It is well-known that each finite sum satisfies a central limit theorem, that is

∀k, y
−1/2
2

k
∑

j=0

V j(ω, ty2) −−−−−→
y2→+∞

Bk(ω, t)

in the sense of weak convergence, to some gaussian process Bk(ω, t). Moreover, the covariance
matrix also converges, that is

y−1
2 E

k
∑

j=0

V j
l (·, sy2)

k
∑

j=0

V j
m(·, ty2) −−−−−→

y2→+∞
EBk

l (ω, s)Bk
m(ω, t).

In short, it is due to the fact that the random variables

Xn,j(ω) = F j ◦ τn(ω), F j(ω) =

∫ 1

0

(

v2j − v2j−1
)

◦ τt(ω) dt, n ∈ Z,

have zero correlations at large distances: see [13, theorem (7.11) p424] for a similar result and
detailed proof. Moreover, thanks to estimate (3.3), the remainder

Rk(ω, t, y2) =

+∞
∑

j=k

y
−1/2
2 V j(ω, ty2)

converges to zero as k → +∞, locally uniformly in t, uniformly in y2. Hence, points (ii) and
(iii) of proposition 6 hold, which ends the proof of the lemma.

We still have to estimate the variance of vn − v(·, 0, 0). Following [24], we can turn this
question into a question of domain of dependence for solutions of (1.4). Precisely, starting
from the measure π on P , we define a new measure πn on the product space

Pn = {(ω1, ω2) ∈ P × P, ω1(t) = ω2(t), |t| ≤ n} .

endowed with its cylindrical σ−field. Namely, πn is defined in the following way:

1. πn(A×A) := π(A), ∀A ∈ Cn, which determines πn over the sub σ−field Dn generated
by the applications t 7→ (ω1(t), ω2(t)), |t| ≤ n.

2. For all k ≥ 1, for all t1, . . . , tk with |tj | > n, for all borelian subsets B1
1 , . . . , B

k
1 ,

B1
2 , . . . , B

k
2 of R, and

A1 := ∩k
j=1{ω1, ω1(tj) ∈ Bj

1}, A2 := ∩k
j=1{ω2, ω2(tj) ∈ Bj

2}

πn(A1 × A2 | Dn)(ω1, ω2) := π(A1 | Cn)(ω1) π(A2 | Cn)(ω2), which determines πn condi-
tionaly to Dn.

It is then easy to derive the following identity, see [24]:

E |vn − v(·, 0, 0)|2 =
1

2

∫

P n

|v(ω1, 0, 0) − v(ω2, 0, 0)|2 dπn.

Thus, if Ωbl(ω1) and Ωbl(ω2) are two boundary layer domains with boundaries that coincide
over [−n, n], we need to estimate the difference of the corresponding boundary layer solutions
v(ω1, 0, 0) and v(ω2, 0, 0). This is the purpose of the next section.
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4 Decay of correlations

Throughout the rest of the paper, we will assume (H1). The main difficuly is to prove the
following

Proposition 8 Under assumption (H1), for all 0 < τ < 1, for almost every ω1, ω2 ∈ P ,

|v(ω1, 0, 0) − v(ω2, 0, 0)| ≤ C

n2τ−1
, (4.1)

where C does not depend on ω1, ω2.

Together with the results of the preceding section, this proposition concludes the proof of
theorem 4 (take τ > 3/4), and therefore the proof of the main theorem 2. In fact, the sharper
bound

|v(ω1, 0, 0) − v(ω2, 0, 0)| ≤ C

n
,

that is with τ = 1 would still be true. We will discuss this briefly in the last section of the
paper. For the sake of brevity, we only prove here the weaker form (4.1).

The main difficulty is that the boundary layer solutions v(ω1, y) and v(ω2, y) of (1.4) are
not defined on the same domain, so that estimates on the difference are not directly available.
If the Poisson equation rather than the Stokes system was considered, representation of the
solution in terms of Brownian motion would allow to conclude quite easily. Again, this will
be explained in the last section of the paper.

In the case of system (1.4), we are not aware of such representation, and the bound (4.1)
will come from an accurate description of the (matrix) Green function of the Stokes operator
above a humped boundary. We consider for all ω ∈ C2,α, and for all z ∈ Ωbl(ω) = {y2 >
ω(y1)}, the system:











−∆Gω(z, ·) + ∇Pω(z, ·) = δz I2 in Ωbl(ω),

div Gω(z, ·) = 0 in Ωbl(ω),

Gω(z, ·) = 0 on ∂Ωbl(ω).

(4.2)

where δz is the Dirac mass at z, and I2 is the 2 × 2 identity matrix. Let us remind how to
build the matrix Green function (Gω, Pω). Up to a vertical translation of the domain, we
can first assume that z2 > 0. We then introduce the Green function (G0, P0) for the Stokes
operator in the upper-half plane, see [14]. Extending G0(z, ·), P0(z, ·) by 0 for y2 < 0, the
functions

H(z, ·) := Gω(z, ·) −G0(z, ·), Q(z, ·) := Pω(z, ·) − P0(z, ·)
satisfy formally






















−∆H(z, ·) + ∇Q(z, ·) = 0 in Ωbl(ω),

div H(z, ·) = 0 in Ωbl(ω),

Hω(z, ·) = 0 on ∂Ωbl(ω),

[H(z, ·)] = 0,
[

∂2H(z, ·) −Q(z, ·) ⊗ e2
]

= − [∂2G0(z, ·) − P0(z, ·) ⊗ e2] ,

where [ · ] is the jump along {y2 = 0} ∩ Ωbl(ω). The jump on the derivative is explicit, as

∂2G0(z, (y1, 0
+)) − P0(z, (y1, 0

+)) ⊗ e2 =
2z2

π((z1 − y1)2 + z2
2)

2

(

(z1 − y1)
2 (z1 − y1)y2

(z1 − y1)y2 y2
2

)

.
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Standard variational formulation yields existence and uniqueness of a solution H(z, ·) with
∇H(z, ·) in L2. In turn, this provides a unique solution Gω(z, ·) to (4.2). The corresponding
pressure field Pω(z, ·) is determined up to the addition of a constant matrix. Note that
uniqueness yields the relation

Gτh(ω)(z, y) = Gω((z1 + h, z2), (y1 + h, y2)). (4.3)

Our key estimate is provided by

Lemma 9 For all 0 < τ < 1, for all z, y ∈ Ωbl(ω) satisfying |z − y| ≥ 1, we have

∑

|β|≤2

|∂β
yGω(z, y)| + |∇yPω(z, y)| ≤ C

δ(z)τ (1 + δ(y))τ

|z − y|2τ
, (4.4)

where δ(·) denotes the distance to the boundary ∂Ωbl(ω), and C is a constant depending only
on τ and on ‖ω‖C2,α .

Note that by symmetry of G, we also have

∑

|β|≤2

|∂β
zGω(z, y)| ≤ C

(1 + δ(z))τ (1 + δ(y))τ

|z − y|2τ
. (4.5)

Moreover, in the course of the proof of lemma 9, we will show that for all y, z ∈ Ωbl(ω),

|Gω(z, y)| ≤ C
(∣

∣ln |z − y|
∣

∣+ 1
)

. (4.6)

Let us show proposition 8, postponing the proof of lemma 9 to the next section. We first
need to connect the solution v(ω, ·) of (1.4) to the Green function Gω. For this purpose, we
rather consider

w(ω, y) = v(ω, y) + y2 1{y2<0}(y).

which satisfies (2.2). Note that v and w coincide at y = 0. Formally, w should be equal to

w̃(ω, z) =

∫

{y2=0}
Gω(z, y) e1 dy. (4.7)

Using estimates (4.4), (4.6), it is standard to show that w̃ is a solution of (2.2) in H1
loc(Ωbl).

Using bound (4.5), one has even

∫

Ωbl∩{|z1|<1}
|∇w̃|2 ≤ C < +∞,

for all ω ∈ Pα.

Extending w̃(ω, ·) by 0 outside Ωbl(ω), one can show that ω 7→ w̃(ω, ·) is measurable from
Pα to H1

loc(R
2) (see the appendix for details). Moreover, thanks to (4.3), w̃ satisfies the

stationarity relation w̃(τh(ω), y) = w̃(ω, (y1 +h, y2)). Finally, using that w and w̃ both satisfy
(2.2), a simple energy estimate on the difference leads to

E

∫

Ωbl∩{|z1|<1}
|∇ (w̃ −w)|2 = 0
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which shows that w = w̃ almost surely.

It remains to estimate the difference

v(ω1, 0, 0) − v(ω2, 0, 0) =

∫

{y2=0}
(Gω1

((0, 0), y) −Gω2
((0, 0), y)) e1,

for every ω1, ω2 in Pα which coincide over [−n, n]. This integral is bounded by

I1 + I2 :=

∫

y2=0,|y1|>n
|Gω1

−Gω2
| ((0, 0), y) dy

+

∫

y2=0,|y1|≤n
|Gω1

−Gω2
| ((0, 0), y) dy

The use of (4.4) gives

I1 ≤ C

∫

y2=0,|y1|>n

1

|y1|2τ
dy1 ≤ C

n2τ−1
.

where C, which depends a priori on ‖ωi‖C2,α , can be chosen uniformly over Pα, as all C2,α

norms are bounded by Kα. To bound the second term, we first assume that ω2 > ω1 for
|y1| > n, which is always possible up to introduce an intermediate third boundary. Hence,
Ωbl(ω2) ⊂ Ωbl(ω1). To lighten notations, we introduce

Ωbl
1,2 := Ωbl(ω1) \ Ωbl(ω2), Γ1,2 := ∂Ωbl(ω2) \ ∂Ωbl(ω1),

as well as
P̃ (y) := Pω2

(

(0, 0), (y1, ω2(y1))
)

, y ∈ Ωbl
1,2

which defines a continuous extension of Pω2
((0, 0), ·) outside Ωbl(ω2). Finally, we define the

vector fields

U(y) := (Gω1
−Gω2

) ((0, 0), y), Q(y) := (Pω1
− Pω2

) ((0, 0), y), y ∈ Ωbl(ω2),

U(y) := Gω1
((0, 0), y), Q(y) := Pω1

((0, 0), y) − P̃ (y), y ∈ Ωbl
1,2.

They satisfy


































−∆U + ∇Q = 0, y ∈ Ωbl(ω2),

−∆U + ∇Q = −∇P̃ , y ∈ Ωbl
1,2,

div U = 0, y ∈ Ωbl(ω1),

U = 0, y ∈ ∂Ωbl(ω1),

[U ] |Γ1,2
= 0, [∂nU −Q⊗ n] |Γ1,2

= −∂nGω2
((0, 0), y)|Γ1,2

.

(4.8)

A direct energy estimate yields
∫

Ωbl(ω1)
|∇U |2 ≤

∫

Γ1,2

|∂nGω2
((0, 0), y)| |U | +

∫

Ωbl
1,2

|∇P̃ | |U |

≤
(

∫

Γ1,2

|∂nGω2
((0, 0), y)|2

)1/2(
∫

Γ1,2

|U |2
)1/2

+
(

∫

Ωbl
1,2

|∇P̃ |2
)1/2(

∫

Ωbl
1,2

|U |2
)1/2

≤ C

(

(

∫

Γ1,2

|∂nGω2
((0, 0), y)|2

)1/2
+
(

∫

Ωbl
1,2

|∇P̃ |2
)1/2

)

(

∫

Ωbl
1,2

|∂y2
U |2
)1/2

.
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Note that all y in both Γ1,2 and Ωbl
1,2 satisfy |y1| > n. Using (4.4), we end up with
∫

Ωbl(ω1)
|∇U |2 ≤ C n1−4τ

Back to I2, we obtain

|I2| ≤
√

2n

(

∫

|y1|≤n,y2=0
|U |2

)1/2

≤ C
√
n

(

∫

Ωbl(ω1)
|∂y2

U |2
)1/2

≤ C

n2τ−1
.

This ends the proof of proposition (8).

5 Green function estimates

This section is devoted to the proof of lemma 9, that is sharp estimates on the Green function
(Gω, Pω) for the Stokes operator above the humped boundary y2 = ω(y1), where ω belongs
to C2,α. A fundamental remark is that the Green function satisfies the scaling

∀ε > 0, Gωε(εz, εy) = Gω(z, y), ωε(x1) = εω(x1/ε). (5.1)

We want estimates (4.4) to hold for |z − y| large, that is for ε := |z − y|−1 small. By
relation (5.1), to establish such estimates amounts to get local estimates for the Green function
Gωε . Thus, this is again a homogenization problem: more precisely, we must show that the
oscillations of the boundary at frequency ε−1 do not affect too much the estimates on Gωε ,
so that it behaves as the Green function for a half-plane. A very close problem has been
considered in the papers [5, 6] by Avellaneda and Lin, namely the derivation of local estimates
for elliptic systems div (A(x/ε)∇ · ), in which A is a positive definite matrix with periodic
coefficients. Our reasoning follows these papers.

For all x ∈ R
2, r > 0, we will denote D(x, r) the disk of center x and radius r, and

Dε(x, r) := D(x, r) ∩ {x2 > ωε(x1)}, Γε(x, r) := D(x, r) ∩ {x2 = ωε(x1)}.
An important property is that for all 0 < r < 1,

|Dε(x, r)| ≥ η r2, (5.2)

for some η > 0 independent of ε. More precisely, η only involves the Lipschitz norm of ωε,
wich is bounded uniformly in ε. This will be used implicitly throughout the sequel.

The core of the proof is to derive elliptic estimates uniform with respect to ε on the
following Stokes problem:











−∆u+ ∇p = div f, x ∈ Dε(x0, 1)

div u = 0, x ∈ Dε(x0, 1),

u = 0, x ∈ Γε(x0, 1),

(5.3)

where x0 ∈ R
2. More precisely, there are two steps in the proof:

1. We show a ε-uniform Hölder estimate on u: for all f ∈ Lq, q > 2 and for µ = 1 − 2/q,

‖u‖C0,µ(Dε(x0,1/2)) ≤ C
(

‖f‖Lq(Dε(x0,1)) + ‖u‖L2(Dε(x0,1))

)

. (5.4)

where C depends only on ‖ω‖C1,α .

2. Thanks to this Hölder estimate, we prove (4.4).

The two next paragraphs correspond to these steps.
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5.1 Hölder estimate

To obtain a Hölder regularity result, a classical approach is to use a characterization of Hölder
spaces due to Campanato (see [16]): for Ω an open connected bounded set, v ∈ C0,µ(Ω) iff
v ∈ L2(Ω) and

sup
x∈Ω,r>0

1

r2+2µ

∫

Ω(x,r)
|v − vx,r|2 <∞, Ω(x, r) := Ω ∩D(x, r), vx,r :=

1

|Ω(x, r)|

∫

Ω(x,r)
v.

One then tries to control such local integrals through energy estimates. This approach has
been successful in the study of elliptic systems, see the work of Giaquinta and coauthors [16].
It extends to the Stokes type equations, cf article [17]. For us, it amounts to controlling

Iε
x,r :=

1

r2+2µ

∫

Dε(x,r)
|u− ux,r|2 <∞, ux,r :=

1

|Dε(x, r)|

∫

Dε(x,r)
u

where u is solution of (5.3). Note that, thanks to (5.2) (see [16]),

‖u‖C0,µ(Dε(x0,1/2)) ≤ Cx0

(

‖u‖L2(Dε(x0,1/2)) + sup
x∈Dε(x0,1/2),r>0

Iε(x, r)

)

with Cx0
independent of ε. In our case, the main problem is to keep track of the dependence

of Iε
x,r on ε. It involves a discussion of the way ε relates to r. Broadly speaking, the idea is

the following: if r is large compared to ε, then the oscillations have small enough amplitude
to apply the regularity results of the flat case. On the contrary, when r gets as small or
even smaller than ε, one can rescale everything by a factor ε, so that oscillations of the
boundary have frequency O(1), and are no longer annoying. Implementation of this idea is a
bit technical, and follows closely the work of Avellaneda and Lin.

We first remind a few elements of regularity theory for Stokes type systems. Let Ω an
open connected bounded set, with Lipschitz boundary. Then, for any ϕ ∈ L2(Ω) satisfying
∫

Ω ϕ = 0, the problem
div w = ϕ, w|∂Ω = 0

has one solution w satisfying ‖w‖H1

0

≤ C ‖ϕ‖L2(Ω), where C can be taken as an increasing

function of |Ω| and of the Lipschitz constant K of the boundary, see [14]. Thanks to this
result, one has quite easily,

‖p −
∫

Ω
p‖L2(Ω) ≤ C ‖∆u+ f‖‖H−1(Ω) (5.5)

where (u, p) ∈ H1(Ω) × L2(Ω) satisfies (in the distributional sense)

−∆u+ ∇p = f, div u = 0, x ∈ Ω. (5.6)

Again, the constant C in (5.5) depends only on |Ω| and the Lipschitz constant of the boundary.

We now state the famous Cacciopoli inequality:

Lemma 10 For all 0 < r < 1, any solution u ∈ H1(Ω) of (5.3) satisfies

‖∇u‖L2(Dε(x,r)) ≤ C
(

r−1 ‖u‖L2(Dε(x,2r)) + rµ ‖f‖Lq(Dε(x,2r))

)

. (5.7)
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Sketch of proof: We remind the main elements of proof. Let η a smooth function with compact
support in D(x, 2r), with η = 1 on D(x, r). Note that |∇η| ≤ Cr−1. Multiplying (5.3) by the
test function η2u, and integrating by parts, one has easily

∫

Dε(x,r)
|∇u|2 ≤

∫

Dε(x,2r)
η2|∇u|2 ≤ C r−2

∫

Dε(x,2r)
|u|2 + C

∫

Dε(x,2r)
|f |2

+ ‖p− px,2r‖L2(Dε(x,2r)) ‖div (ηu)‖L2(Dε(x,2r)).

Using (5.5), we get

‖p− px,2r‖L2(Dε(x,2r)) ≤ C ‖∆u+ div f‖H−1(Dε(x,2r)) = C‖v‖H1(Dε(x,2r))

where v ∈ H1
0 (Dε(x, 2r)) is the solution of

−∆v + ∇p = ∆u+ div f, div v = 0, v|∂Dε(x,2r) = 0.

Note that the previous bound is uniform in ε, as it only involves the Lipschitz constant of ωε

which is uniformly bounded. A simple energy estimate on v gives

‖∇v‖L2(Dε(x,2r)) ≤ C
(

‖∇u‖L2(Dε(x,2r)) + ‖f‖L2(Dε(x,2r))

)

As div (ηu) = ∇η · u, and using Hölder inequality on f , we end up with

∫

Dε(x,r)
|∇u|2 ≤

∫

Dε(x,2r)
η2|∇u|2 ≤ C r−2

∫

Dε(x,2r)
|u|2 + Cδ r

2µ ‖f‖2
Lq(Dε(x,2r))

+ δ‖∇u‖2
L2(Dε(x,2r)),

where δ > 0 is arbitrary small. We conclude as in [17, Theorem 1.1, page 180].

Inequality of type (5.7) has been used by Giaquinta and Modica in the study of elliptic
regularity. In the context of Stokes type system, they obtain a local estimate, see [17]:

Theorem 11 Let Ω of class C1, and (u, p, f) ∈ H1(Ω) × L2(Ω) × Lq(Ω), q > 2, satisfying

−∆u+ ∇p = div f, div u = 0, x ∈ Ω(x0, 1), u|∂Ω∩D(x0,1) = 0.

Then, u ∈ C0,µ(Ω(x0, 1/2)) for µ = 1 − 2/q, and

‖u‖C0,µ(Ω(x0,1/2)) ≤ C
(

‖u‖L2(Ω(x0,1)) + ‖f‖Lq(Ω(x0,1))

)

. (5.8)

Unfortunately, we cannot use this theorem assuch. Indeed, the constant C in the last reg-
ularity estimate involves the modulus of continuity of ∇γ, where x2 = γ(x1) describes the
boundary. In our case γ = ωε, such modulus of continuity is not uniformly bounded in ε. We
must proceed in several steps to control the local integrals Iε

x,r. Note that theorem 11 implies
estimate (5.4) when Dε(x0, 1) is far from the boundary. Thus, we can restrict ourselves to a
case in which x0 is close to the oscillating boundary, for instance belongs to the axis x2 = 0.

Lemma 12 For all θ small enough, there exists ε0 > 0 such that for all ε < ε0, and for all
solutions of (5.3) satisfying ‖uε‖L2(Dε(x0,1/4)) ≤ 1, ‖f‖Lq(Dε(x0,1/4)) ≤ ε0, one has

‖uε‖L2(Dε(x0,θ)) ≤ θµ+1.
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Proof of the lemma: Suppose that the result does not hold. Then one can find θ arbitrary
small, and sequences uεj , f j satisfying

‖uεj‖L2(Dεj (x0,1/4)) ≤ 1, ‖f j‖L2(Dεj (x0,1/4)) −−−−→
j→+∞

0, ‖uεj‖L2(Dεj (x0,θ)) > θµ+1.

One can extend all the uε
j , f

j by 0 outside Dεj(x0, 1/4) so that all these functions are defined

on the fixed domain D(x0, 1/4). From the L2 bound on uεj , up to extract a subsequence, we
get

uεj converges weakly to some u in L2(D(x0, 1/4))

and by Cacciopoli inequality (5.7),

uεj converges weakly to u in H1(D(x0, 1/8)), and strongly in L2(D(x0, 1/8)).

One can then take the limit in (5.3), which yields

−∆u+ ∇p = 0, div u = 0, in D(x0, 1/8) ∩ {x2 > 0}, u|D(x0,1/8)∩{x2=0} = 0.

As the upper half plane is a regular domain, we can apply theorem 11, so that for all µ̃ > µ,
for all θ,

‖u‖L2(D(x0,θ)∩{x2>0}) ≤ 2π ‖u‖C0,µ̃(D(x0,θ)∩{x2>0}) θ
µ̃+1

≤ C ‖u‖L2(D(x0,1/8)∩{x2>0}) θ
µ̃+1 ≤ C θµ̃+1.

For θ small enough, it contradicts the lower bound on ‖uεj‖L2(Dεj (x0,θ)).

We fix θ, ε0 as in lemma 12. We then state

Lemma 13 For all ε, k satisfying ε/θk ≤ ε0 (k ≥ 1),

∫

Dε(0,θk)
|uε|2 ≤ θ2kµ+2

(

‖uε‖L2(Dε(0,1/4)) +
1

ε0
‖f‖L2(Dε(0,1/4))

)2

(5.9)

Proof of the lemma: The lemma is deduced from an induction argument on k. For k = 1, the
bound (5.9) is given by lemma 12. Assume now that this bound holds for k ≥ 1. Up to a
horizontal translation, we can assume that x0 = 0. Then, we set

M := ‖uε‖L2(Dε(0,1/4)) +
1

ε0
‖f‖L2(Dε(0,1/4)),

and introduce the rescaled functions

v := θ−kµM−1u(θkx), g = θk−kµM−1f(θkx).

They satisfy

−∆v + ∇q = div g, div v = 0, x ∈ Dε(0, θ−k/4), v|Γε(0,θ−k/4).

Moreover, one has ‖f‖Lq(Dε(0,1/4)) ≤ ε0, and by the induction assumption

‖v‖L2(Dε(0,1/4)) ≤ 1.

Applying lemma 12 to v and g yields the result.

We can now finish the proof of estimate (5.4). Let x ∈ Dε(x0, 1/2). We need to bound
Iε(x, r), for r > 0. There are two cases to handle:
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• The distance between x and the boundary {x2 = ωε(x1)} satisfies δε(x) ≥ ε
ε0

.

Up to take a smaller ε0, we can suppose that ε
ε0
> ε, which implies that there exists x′0 on

the axis {x2 = 0} with |x− x′0| ≤ δε(x). By lemma 13, for all ε/ε0 ≤ r ≤ 1/12,
∫

Dε(x′

0
,3r)

|uε|2 ≤ C r2µ+2
(

‖uε‖L2(Dε(x′

0
,1/4)) + ‖f‖Lq(Dε(x′

0
,1/4))

)2
. (5.10)

If r > δε(x)/2, Dε(x, r) ⊂ Dε(x′0, 3r), and the previous line implies

∫

Dε(x,r)
|uε|2 ≤ C r2µ+2

(

‖uε‖L2(Dε(x′

0
,1/4)) + ‖f‖Lq(Dε(x′

0
,1/4))

)2
.

On the contrary, if r ≤ δε(x)/2, then Dε(x, r) = D(x, r) (it does not intersect the boundary).
A simple rescaling of (5.8) yields

‖u‖C0,µ(D(x,δε(x)/2)) ≤ C
(

δε(x)−1−µ‖uε‖L2(D(x,δε(x))) + ‖f‖Lq(D(x,δε(x)))

)

.

Thus,
∫

Dε(x,r)
|uε|2 ≤ C r2µ+2

(

δε(x)−1−µ‖uε‖L2(D(x,δε(x))) + ‖f‖Lq(D(x,δε(x)))

)2
.

Now, by lemma 13, as δε(x) ≥ ε/ε0,

‖uε‖L2(D(x,δε(x))) ≤ ‖uε‖L2(D(x′

0
,2δε(x)))

≤ C δε(x)µ+1
(

‖uε‖L2(Dε(x′

0
,1/4)) + ‖f‖Lq(Dε(x′

0
,1/4))

)

.

Using the two last inequalities, we end up again with
∫

Dε(x,r)
|uε|2 ≤ C r2µ+2

(

‖uε‖L2(Dε(x′

0
,1/4)) + ‖f‖Lq(Dε(x′

0
,1/4))

)2
,

which in turn clearly implies
∫

Dε(x,r)
|uε − uε

x,r|2 ≤ C r2µ+2
(

‖uε‖L2(Dε(x′

0
,1/4)) + ‖f‖Lq(Dε(x′

0
,1/4))

)2
,

As Dε(x′0, 1/4)) ⊂ Dε(x0, 1), this gives the required estimate.

• The distance between x and the boundary {x2 = ωε(x1)} satisfies δε(x) < ε
ε0

.

This time, there exists x′0 on the axis {x2 = 0} such that |x−x′0| ≤ δε(x)+ε ≤ 2ε/ε0. Again,
for all ε/ε0 ≤ r ≤ 1/12, D(x, r) ⊂ D(x′0, 3r) and (5.10) implies

∫

Dε(x,r)
|uε|2 ≤ C r2µ+2

(

‖uε‖L2(Dε(x′

0
,1/4)) + ‖f‖Lq(Dε(x′

0
,1/4))

)2
.

It remains to handle the case r < ε/ε0. Up to a horizontal translation, we can assume that
x′0 = 0. We introduce the rescaled functions

v =

(

ε

ε0

)−µ

uε

(

ε

ε0
x

)

, g =

(

ε

ε0

)1−µ

f

(

ε

ε0
x

)

.
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They satisfy in particular

−∆v + ∇q = div g, div v = 0, x ∈ Dε0(0, 1), v|Γε0 (0,1) = 0. (5.11)

It is a Stokes type system set in a domain independent of the small parameter ε. Hence,
we can apply theorem 11, which yields: for all r < 1,

∫

Dε0(x,r)
|v−vx,r|2 ≤ C ‖v‖C0,µ(Dε0 (x,r)) r

2µ+2 ≤ C r2µ+2
(

‖v‖L2(Dε0 (0,2)) + ‖g‖L2(Dε0 (0,2))

)2
.

Back to the original unknowns uε, f , we obtain the control of Iε
x,r for r ≤ ε/ε0. This ends

the proof.

5.2 Bounds on the Green function

From the above Hölder estimate, we can deduce the estimate (4.4). The arguments are again
adapted from article [5, pages 819,829-831]. For the sake of completeness, we describe the
ideas at play. The first step is to establish the following bound: for all x, x′ in {x2 > ωε(x1)},

|Gωε(x, x′)| ≤ C
(
∣

∣ln |x− x′|
∣

∣ + 1
)

. (5.12)

where C only involves ‖ω‖C1,α . Note that it implies (4.6). To lighten the notations, we
drop the suffix ω, denoting Gε, G instead of Gωε , Gω. Let us introduce the Green function
G̃ε(x, t, x′, t′) for the Stokes operator over {x2 > ωε(x1)} × T. Namely, it satisfies for all
(x, t) ∈ {x2 > ωε(x1)} × T











−∆G̃ε(x, t, ·) + ∇P̃ ε(x, t, ·) = δx,tI3 in {x2 > ωε(x1)} × T,

div G̃ε(x, t, ·) = 0 in {x2 > ωε(x1)} × T,

G̃ε(x, t, ·) = 0 on {x2 = ωε(x1)} × T.

(5.13)

One has easily that

Gε(x, x′) =

∫

T

(

G̃ε
1(x, 0, x

′, t′), G̃ε
2(x, 0, x

′, t′)
)

dt′.

The point is to show that

|G̃ε(x, t, x′, t′)| ≤ C
1

|x− x′| + |t− t′| .

The estimate (5.12) is then obtained by integration with respect to t′, at t = 0. Such bound on
G̃ε will be deduced from a repeated use of the Hölder estimate (5.4). Note that this estimate
extends without difficulty to similar Stokes problems in dimension n ≥ 2, with q > n and
µ = 1 − n/q. In particular, it holds when the domain is {x2 > ωε(x1)} × T.

Namely, let x̃ := (x, t) and x̃′ := (x′, t′). Let r := |x̃ − x̃′|, and f ∈ C∞
c (Dε(x̃′, r/3)). We

consider the quantity

uε(x̃) =

∫

Dε(x̃′,r/3)
G̃ε(x̃, z̃) f(z̃) dz̃
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The field uε satisfies a Stokes equation with source term f over {x2 > ωε(x1)} × T, with a
Dirichlet boundary condition. We therefore apply the estimate (5.4) to uε. Properly rescaled,
it yields

|uε(x̃)| ≤ C

(

r−3

∫

Dε(x̃,r/3)
|uε|2

)1/2

,

where we used the fact that f vanishes over Dε(x̃, r/3). Thus, we get

∣

∣

∣

∣

∣

∫

Dε(x̃′,r/3)
G̃ε(x̃, z̃) f(z̃) dz̃

∣

∣

∣

∣

∣

≤ C

(

r−3

∫

Dε(x̃,r/3)
|uε|2

)1/2

≤ C ′

(

r−3

∫

Dε(x̃,r/3)
|uε|6

)1/6

≤ C ′ r−1/2

(

∫

Dε(x̃,r/3)
|uε|6

)1/6

≤ C ′′ r−1/2

(

∫

{x2>ωε(x1)}×T

|∇uε|2
)1/2

≤ C ′′ r1/2‖f‖1/2
L2

where the last two inequalities come respectively from the Sobolev imbedding theorem (note
that uε is zero at the boundary so that the imbedding does not involve lower order terms),
and from the standard energy estimate on the Stokes system. By duality, we infer that

(

r−3

∫

Dε(x̃′,r/3)
|G̃ε(x̃, z̃)|2 dz̃

)1/2

≤ C r−1.

Using that G̃ε(x̃, ·) satisfies a homogenenous Stokes system over D(x̃′, r/3), one more appli-
cation of (5.4) leads to

G̃ε(x̃, ỹ) ≤ C

(

r−3

∫

Dε(x̃′,r/3)
|G̃ε(x̃, z̃)|2 dz̃

)1/2

≤ C r−1.

Inequality (5.12) at hand, we can derive the final estimate on G. Let x, x′ ∈ {x2 > ωε(x1)}.
Set this time r := |x− x′|. For all x̄ such that |x̄− x| < 2r, (5.12) implies

∣

∣Gε(x̄, x′)
∣

∣ ≤ C
(
∣

∣ln |x̄− x′|
∣

∣+ 1
)

≤ C ′
(
∣

∣ln |x− x′|
∣

∣+ 1
)

.

Applying (5.4) to the function Gε(·, x′), we get for any τ ∈ (0, 1)

∣

∣Gε(x, x′)
∣

∣ ≤ δε(x)τ ‖Gε(·, x′)‖C0,τ (D(x,r/3))

≤ Cτ δ
ε(x)τ r−1−τ ‖Gε(·, x′)‖L2(D(x,2r/3))

that leads to
∣

∣Gε(x, x′)
∣

∣ ≤ Cτ

(
∣

∣ln |x− x′|
∣

∣+ 1
) δε(x)τ

|x− x′|τ .

Now reversing the roles of x and x′, we obtain

|Gε(x, x′)| ≤ Cτ

(∣

∣ln |x− x′|
∣

∣+ 1
) δε(x)τ δε(x′)τ

|x− x′|2τ
.
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Using the scaling relation (5.1), we get for all y, z ∈ {y2 > ω(y1)}, for ε := |y − z|−1,

G(z, y) = Gε (εz, εy) ≤ Cτ

(∣

∣ln (ε|z − y|)
∣

∣+ 1
) δε(εz)τ δε(εy)τ

|ε(y − z)|2τ
= Cτ

δ(z)τ δ(y)τ

|y − z|2τ
.

Using classical local regularity results for the Stokes equation in a C2,α domain (see [17,
Theorem 1.3, page 198], which extends theorem 11): for |z − y| ≥ 1,

∑

|β|≤2

|∂β
yG(z, y)| + |∇yP (z, y)| ≤ C ‖G(z, ·)‖L2(D(y,1/2))

≤ C
δ(z)τ (1 + δ(y))τ

|z − y|2τ

that is exactly estimate (4.4).

6 Comments

6.1 Well-posedness of the boundary layer system

As mentioned several times in this paper, the well-posedness of system (1.4) is not known
without a structural assumption on ω, like periodicity or stationarity. We stress however that
thanks to our estimates on the Green function Gω, the representation formula (4.7) defines a
solution of (1.4) for any C2,α boundary, cf the fourth section. Hence, the open issue is rather
to find the appropriate functional space for uniqueness.

Such difficulty does not arise when the Stokes operator is replaced by the Laplacian, or
more generally by a scalar elliptic operator. Hence, one can show well-posedness in L∞ of

−∆v = 0 in Ωbl, v(y) = ω(y1) on ∂Ωbl (6.1)

if the function ω is bounded and Lipschitz. For the existence part, one may consider, for all
n ≥ 1, the solution vn of

−∆vn = 0 in Ωbl ∩D(0, n), vn(y) = ω(y1) on ∂
(

Ωbl ∩D(0, n)
)

.

By the maximum principle, ‖vn‖L∞ ≤ ‖ω‖L∞ , so that up to a subsequence it converges to
some v in L∞ weak*. Straightforwardly, v satisfies (6.1).

For the uniqueness part, let v ∈ L∞ satisfying

−∆v = 0 in Ωbl, v(y) = 0 on ∂Ωbl

Let us show that v = 0. As we do not know the behavior of v at infinity, it does not follow
directly from the maximum principle. In the case of a Lipschitz boundary ω, we can conclude
to the uniqueness in the following way. By the change of variables y := (y1, y2 − ω(y1)), the
previous equation becomes

div (A(y)∇v) = 0, y2 > 0, v|y2=0 = 0,

for some elliptic matrix A = (aij) with bounded coefficients. We extend A and v to {y2 < 0}
by the formulas, v(y1, y2) := −v(y1,−y2),

ain(y1, y2) := −ain(y1,−y2), anj(y1, y2) := −anj(y1,−y2), i, j 6= n,

aij(y1, y2) := aij(y1,−y2) otherwise.
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In this way, we get div (A(y)∇v) = 0 on all R
2. Harnack’s inequality for elliptic equations

(see [18]) leads to
sup
|y|<R

(M + v) ≤ C inf
|y|<R

(M + v)

for any R > 0 and M such that M + u ≥ 0. With M = max(0,− inf v) and R going to
infinity, we obtain that v = 0.

6.2 Decay of correlations

A key element in the paper is the estimate (4.4) on the Green function for the Stokes operator
above an oscillating boundary. This estimate relies itself on the Hölder regularity result (5.4).
In fact, with some more calculations in the same spirit, one could show a refined bound:
for a C1,α boundary ω and a source term f ∈ C0,µ(Dε(0, 1)) (α, µ > 0), the solution uε of
(5.3)satisfies

‖∇uε‖L∞(Dε(0,1/2)) ≤ C
(

‖u‖L2(Dε(0,1)) + ‖f‖C0,µ(Dε(0,1))

)

,

with C independent of ε. This yields an optimal bound on the Green function, that is

∑

|β|≤2

|∂β
yGω(z, y)| + |∇yPω(z, y)| ≤ C

δ(z) (1 + δ(y))

|z − y|2 . (6.2)

Estimate (4.1) can in turn be improved as

|v(ω1, 0, 0) − v(ω2, 0, 0)| ≤ C n−1.

Such bound is far easier to prove when (1.4) is replaced by the scalar system (6.1). In this
case, one may use a representation in terms of the standard two-dimensional Brownian motion
B(m, t) = (B1(m, t), B2(m, t)). If we denote (M,M, µ) the probability space on which this
Brownian motion is defined,

v(ω, 0, 0) =

∫

M
(−ω, 0)

(

B1(m, τ(m))
)

dµ

where τ is the exit time from Ωbl(ω) (see [25]). We now want to bound

v(ω1, 0, 0) − v(ω2, 0, 0) =

∫

M

(

ω1

(

B1(m, τ1(m))
)

− ω2

(

B1(m, τ2(m))
)

)

dµ

where τi is the exit time from Ωbl(ωi). We remind that ω1 = ω2 over [−n, n], so the exit times
are the same for brownian particles leaving in the region y1 ∈ [−n, n]. Hence,

|v(ω1, 0, 0) − v(ω2, 0, 0)| ≤ 2 max
i=1,2

‖ωi‖L∞ µ (|B1(·, τi)| ≥ n)

≤ 2
(

µ (T−n ≤ T−1) + µ (Tn ≤ T−1)
)

where we denote by T±n the first time for which B1 = ±n/2, and T−1 the first time for which
B2 = −1. It is well-known that the distributions of these hitting times are

dT±n (µ) =
n

4
√

2πt3
exp

(−n2

8t

)

1t>0 dt, dT−1 (µ) =
1√
2πt3

exp

(−1

2t

)

1t>0 dt
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A straightforward calculation provides

µ (T±n ≤ T−1) =

∫

0≤t1≤t2

dT±n (µ) (t1) dT−1 (µ) (t2) ≤ C(n2 + 1)−1/2

which gives the result.

6.3 Optimality of the decay rate

Theorem 4 shows that the boundary layer solution v converges at least as y
−1/2
2 . One may

wonder if this result is optimal, that is if we can find roughness distributions for which the

speed of convergence is exactly given by y
−1/2
2 . In other words, is the constant σ(0,0) of the

theorem positive for some random distribution of roughness ? We have not so far been able
to show optimality in this setting, but it can be established for the easier Dirichlet problem

{

∆u = 0, y2 > 0

u = ω, y2 = 0

where ω is a given boundary data. Although simpler, this system shares many features with
the original system (1.4):

• If ω = ω(y1) is say L-periodic, the solution u(y) converges exponentially fast to the

constant α := L−1
∫ L
0 ω(y1)dy1, as y2 goes to infinity.

• If ω belongs as before to the probability space (P, C, π), one can show under assumption
(H2) that

y2 E|u(ω, 0, y2) − α|2 −−−−−→
y2→+∞

σ2 ≥ 0, α := E(ω 7→ ω(0)).

Along the lines of [24, pages 21-22], we will exhibit a stationary measure π for which σ > 0.
Of course, π is the law of the random process ϕ(ω, y1) := ω(y1), so that we just need to
characterize the random initial data. Let G(ω, y1) a gaussian random process, of zero mean
and covariance ρ(z1−y1), where ρ ≥ 0 is a smooth even function with compact support. Note
that such process exists: take ρ = f ∗ f , with f ≥ 0 an even smooth function with compact
support. Then, its Fourier transform satisfies ρ̂ = |f̂ |2 ≥ 0, which ensures the required
positivity property

∑

z1,y1

c(z1) c(y1)ρ(z1 − y1) = :

∫

R

|
∑

z1

c(z1)e
iξz1 |2ρ̂(ξ) dξ ≥ 0.

for any family c with compact support. Note moreover that this process defines almost surely
smooth functions of y1: indeed, a simple calculation yields

E

(

∫

[−R,R]
|∂k

y1
X(·, y1)|2 dy1

)

= 2R (−1)k ρ(2k)(0) < ∞

so that X(ω, ·) is almost surely in the space Hk
loc(R) and therefore smooth. Finally, we

introduce
ϕ(ω, y1) = F (X(ω, y1))
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for a smooth increasing function F with values in (0, 1). We stress that ϕ satisfies (H2) as ρ
has compact support. We will show that the corresponding σ is positive. Suppose a contrario
that σ = 0. For y2 ≥ 1, we introduce the measure πy2 associated to the gaussian process with
variance ρ(z1 − y1) but mean

m(z1, y2) =

∫

ρ(z1 − y1)g(y1, y2) dy1

where g will be given later. Note that πy2 is associated to the random initial data

ϕy2(ω, y1) := F (X(ω, y1) +m(y1, y2)).

Standard computation yields

R(ω, y2) :=
dπy2

dπ
(ω) = exp

(

∫

g(y1, y2)ϕ(ω, y1)dy1

− 1

2

∫ ∫

ρ(z1 − y1)g(z1, y2) g(y1, y2)dz1 dy1

)

.

and
∫

|R(ω, y2)|2dπ = eH(y2), H(y2) :=

∫ ∫

ρ(z1 − y1)g(z1, y2) g(y1, y2)dz1 dy1.

If σ = 0, then a simple Cauchy-Schwartz inequality
∫ √

y2|u(ω, 0, y2) − α|dπy2 ≤ e
1

2
H(y2)

∫

y2|u(ω, 0, y2) − α|2dπ

and goes to zero as y2 → +∞ if H is bounded from above.

Let u and v solutions associated to the initial data ϕ(ω, y1) and ϕy2(ω, y1). As m ≥ 0, by
monotonicity, v ≥ u. We can express u and v in terms of the Poisson Kernel, so that

(v − u)(ω, 0, y2) =
2

π

∫

R

y2

y2
1 + y2

2

(ϕy2(ω, y1) − ϕ(ω, y1)) dy1.

Now, we define for y2 ≥ 1

g(y1, y2) =
1√
y2
G

(

y1

y2

)

,

where G ≥ 0 has compact support, G = 1 over (−1, 1). On one hand, with this definition of
g, one can check that

sup
y2≥1

H(y2) = sup
y2≥1

y−1
2

∫ ∫

ρ(z1 − y1)G

(

z1
y2

)

G

(

y1

y2

)

dz1dy1 < +∞

On the other hand, one has
∫ √

y2(v − u)(ω, 0, y2)dπ ≥ C

∫

R

(
∫

F ′(X(ω, 0))dπ

)

y2

y2
1 + y2

2

√
y2m(y1, y2) dy1

≥ C ′

∫

R

(
∫

F ′(X(ω, 0))dπ

) (

inf
y2≥1

inf
|y1|≤y2

∫

ρ(y1 − s)G

(

s

y2

)

ds

)(
∫ y2

−y2

y2

y2
1 + y2

2

dy1

)

≥ C ′′

∫

R

ρ(s)ds > 0.

This implies that the quantity
∫ √

y2 (v(ω, 0, y2) − α) dπ does not go to zero, leading to a
contradiction.
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Appendix: Measurability of w̃

We want to show here that

w̃(ω, z) :=

∫

y2=0
Gω(z, y) e1 dy, z in Ωbl(ω), w̃(ω, z) := 0 otherwise

defines a measurable function from P to H1
loc(R

2). Let 0 ≤ ϕn ≤ 1 a sequence of smooth
functions with compact support, ϕn|(−n,n) = 1. We define

wn :=

∫

y2=0
Gω(z, y) (ϕne1) dy, z in Ωbl(ω), wn(ω, z) := 0 otherwise.

Note that wn is the (unique) solution of






















− ∆wn + ∇qn = 0, x ∈ Ωbl \ {y2 = 0},
div wn = 0, x ∈ Ωbl,

wn|∂Ωbl = 0,

[wn]|y2=0 = 0, [∂2wn − (0, qn)]|y2=0 = (−ϕn, 0),

(6.3)

satisfying
∫

Ωbl(ω) |∇wn|2 < +∞. By the dominated convergence theorem applied to the

integral formula, we get that wn → w̃ in L2
loc. By the Cacciopoli inequality, the convergence

is also true in H1
loc. Thus, we just have to show measurability of wn.

Let us define

V :=
{

v ∈ Ḣ1(R2), div v = 0
}

, Vω :=
{

v ∈ V, v|R2\Ωbl(ω) = 0
}

.
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Following the lines of [8, pages 15-16] it can be shown that the application ω 7→ π(ω), where
π(ω) ∈ L(V, V ) is the orthogonal projection from V to Vω, is measurable. Now, wn is the
unique fixed point of the contraction

w 7→ 1

2
π(ω) (w − vn)

where vn is the unique function of H1(R2) satisfying

∫

R2

∇vn · ∇φ = 6

∫

y2=0
ϕn φ1.

The measurability of wn follows.
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