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Maximum directed cuts in digraphs with degree

restriction

Jenő Lehel ∗ Frédéric Maffray † Myriam Preissmann ‡

November 26, 2007

Abstract

For integers m, k ≥ 1, we investigate the maximum size of a directed

cut in directed graphs in which there are m edges and each vertex has

either indegree at most k or outdegree at most k.

1 Introduction

We deal with directed graphs, called here digraphs, without loops and parallel
edges. An edge xy of a digraph is interpreted as an arc or an arrow going from
the starting vertex or tail x to the end vertex or head y. The indegree and
the outdegree of a vertex v ∈ V (D) is respectively defined as d−D(v) = |{zv ∈
E(D)|z ∈ V (D)}| and d+

D(v) = |{vw ∈ E(D)|w ∈ V (D)}|.
Let X, Y be a partition of the vertex set V (D) of a digraph D. The edge

set {xy ∈ E(D)|x ∈ X, y ∈ Y } is called a directed cut. Clearly a directed cut
of a digraph D does not contain a directed path on three vertices (a P3). On
the other hand every directed P3-free subgraph of D is the subgraph of some
directed cut. Thus when estimating the size of maximum directed cuts we must
find directed P3-free subgraphs as large as possible. The size of a cut is its
cardinality, the size of a digraph is the cardinality of its edge set.

Discussions in [1] show that a digraph D of size m has a cut of size 1

4
m +

Θ(m1/2). Furthermore, if the outdegree of each vertex of D is at most k, then
D has a cut of size at least (1

4
+ 1

8k+4
)m. In [6], lower bounds for the largest

directed cuts were asked for a family of digraphs with constrained indegree or
outdegree. Let D(k, ℓ) be the family of all digraphs in which every vertex has
either indegree at most k or outdegree at most ℓ (that is d−(v) ≤ k or d+(v) ≤ ℓ,
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for all v ∈ V (D)). Note that a directed cut (or any directed P3-free graph) forms
a graph that belongs to D(0, 0).

In Section 2 we consider the case k = ℓ = 1 and discuss the size of the
maximum directed cut of digraphs in D(1, 1). It was proved in [1] that every
acyclic digraph of size m in D(1, 1) has a directed cut of at least 2m/5 edges.
From a result of Bondy and Locke [4] it is easy to see that the same lower
bound holds for maximum directed cuts in triangle-free subcubic digraphs (a
graph is subcubic if it has maximum degree at most three). Our main result in
Theorem 1 is the extension of this bound for all digraphs in D(1, 1) as follows: if
D contains at most t pairwise disjoint directed triangles, then D has a directed
cut of size at least (2m − t)/5. The proof yields a polynomial algorithm which
actually finds a directed cut of that size (Corollary 2).

Theorem 1 implies that every digraph of size m in D(1, 1) has a directed
cut with at least m/3 edges (a result first proved in [1]). Furthermore, every
connected digraph of size m in D(1, 1) has a directed cut with at least 7m/20
edges (see Theorem 5).

In Section 3 we consider digraphs in D(k, k) for any k. First we prove a
decomposition property in Theorem 8: the edge set of every digraph in D(p1 +
p2, p1 + p2) can be partitioned into two subgraphs one in D(p1, p1) and the
other in D(p2, p2). In Theorem 10 we prove the lower bound (2k−1)m/(2k+1)
on the maximum size of a subgraph of D belonging to D(k − 1, k − 1). It is
worth noting that the regular tournament on 2k + 1 vertices has no subgraph
in D(k − 1, k − 1) with more than (2k − 1/k)m/(2k + 1) edges.

In Section 4 we show that if D ∈ D(k, k) is acyclic and has m edges, then
it contains a directed cut of size at least (1

4
+ 1

8k+4
)m (see Theorem 12). It is

worth noting that in a digraph D ∈ D(k, k) one cannot guarantee a directed cut
of size larger than that proportion. This is shown by the regular tournament on
2k + 1 vertices, which has no directed cut of size more than (1

4
+ 1

8k+4
)
(

2k+1

2

)

(see in [1]). For k = 2 this ratio is 3m/10. In Theorem 13 we can show that
actually every digraph D ∈ D(2, 2) with m edges has a directed cut of size at
least 3m/10. In the proof of Theorems 12 and 13 we use an elementary counting
method similar to those applied in [1].

Section 5 concludes with open problems for further consideration. A chal-
lenging question whose answer we would like to see the most is whether Theo-
rem 12 remains true for all digraphs in D(k, k), and for every k ≥ 3.

2 Maximum directed cut of digraphs in D(1, 1)

It was proved in [1] that every acyclic digraph of size m in D(1, 1) has a directed
cut of at least 2m/5 edges. This is not true for all digraphs in D(1, 1). For
example the directed triangle, which is a member of D(1, 1), has no directed cut
with two edges. Hence there are digraphs of size m with maximum directed cut
not larger than m/3. On the other hand, it was shown in [1] that the edge set
of every digraph D ∈ D(1, 1) has a decomposition into three directed cuts (see
Theorem 7 below), hence D always contains a directed cut of size m/3.
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One might conclude that the ratio m/3 cannot be improved to 2m/5 in
general, and the graph that consists of disjoint directed triangles is an obvious
example showing that. Actually the following example shows that, for infinitely
many values of m, there are even connected digraphs in D(1, 1) of size m, that
contain no cut of size 3m/8.

Example 1. For i = 1, . . . , k let Hi be a directed path with five vertices
(ui, vi, wi, xi, yi) plus the chord vixi, such that the Hi’s are pairwise disjoint.
Add k + 1 directed triangles (yi, ui+1, zi), for i = 0, . . . , k, where y0, uk+1 and
z0, z1, . . . , zk are distinct new vertices. The obtained graph H has m = 8k + 3
edges and its maximum directed cut has size 3k + 1 = (3m − 1)/8.

In spite of the evidence that the maximum directed cut size to edge count
ratio 2/5 cannot be achieved, we show in the next theorem that 1/3 improves
to 2/5, in some sense, for all digraphs in D(1, 1).

Theorem 1. Let D be a digraph in D(1, 1) with m edges, and let t be the
maximum number of pairwise disjoint directed triangles in D. Then D has a
directed cut of size at least (2m − t)/5.

Proof. The claim is clearly true for m ≤ 3 and t = 0. If m = 3 and t = 1, then
D is the directed triangle and any edge of the triangle forms a directed cut of
size 1 = (2m − t)/5. Now let D be a counterexample with m ≥ 4 edges, and
assume that the theorem is true for all digraphs in D(1, 1) with at most m − 1
edges. Clearly D is connected.

Let D+ be the subgraph of D induced by V + = {v ∈ V (D)|d+(v) ≥ 2}; and
let D− be the subgraph of D induced by V − = {v ∈ V (D)|d−(v) ≥ 2}. Notice
that v ∈ V + implies that d−(v) ≤ 1 and v ∈ V − implies d+(v) ≤ 1.

Because D ∈ D(1, 1), if two directed triangles of D have a common vertex,
then they must share a common edge. Moreover, if a triangle intersects with
at least two other triangles, then they all share the same common edge. The
following property of triangles will be useful.

Claim 1.1. Every directed triangle of D is contained in D+ or in D−.

Assume that T = (x, y, z) is a directed triangle with d−(x) = 1 and d+(y) =
1. Remove the edges of T from D. The graph D′ that remains has m′ = m− 3
edges, and the maximum number t′ of disjoint triangles in D′ satisfies t′ ≤ t−1.
By induction, D′ contains a directed cut K of size at least (2m′ − t′)/5 ≥
(2m − t)/5 − 1. Obviously, K ∪ {xy} is still a directed P3-free subgraph of D
containing (2m − t)/5 edges, a contradiction. Therefore, either d+(w) ≥ 2 for
all w ∈ {x, y, z} or d−(w) ≥ 2 for all w ∈ {x, y, z}. In the first case T ⊂ D+

and in the second case T ⊂ D−. Thus Claim 1.1 holds.

Let A, B ⊂ E(D) be a pair of disjoint edge sets such that every directed P3

in D that has one edge in A has its second edge in B. Note that this implies
that A contains no directed P3. We call any such pair A, B ⊂ E(D) a reducing
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pair. It is clear that if K is any directed cut in the digraph D \ (A ∪ B), then
K ∪ A is a directed P3-free subgraph of D. The following claim will be used
several times in the induction step.

Claim 1.2. D has no reducing pair A, B ⊂ E(D) with |B| ≤ 3

2
|A|.

Suppose that A, B ⊂ E(D) is a reducing pair with |B| ≤ 3

2
|A|. Let K be a

largest directed cut in the digraph D′ = D \ (A ∪B). Then K ∪A is a directed
P3-free subgraph of D. Digraph D′ has m′ = m−|A∪B| edges, hence it follows
by induction that |K| ≥ (2m′ − t)/5. We obtain

|K ∪ A| ≥
2m′ − t

5
+ |A| ≥

2m− t

5
−

2

5
(|A| + |B|) + |A| ≥

2m− t

5
,

which contradicts the assumption that D is a counterexample to the theorem.
Thus Claim 1.2 holds.

Claim 1.3. Each of D+ and D− is a disjoint union of directed cycles. Fur-
thermore, every vertex in D+ or D− is incident with exactly one edge of D \
(D+ ∪ D−).

Let C be any connected component of D−. We show that C is a directed
cycle. By the definition of D−, C is either a rooted tree with all edges directed
towards the root, or a function graph which is a rooted tree plus an edge from
the root to some vertex of the tree.

If C is not a directed cycle, then it is either a singleton vertex v0 or it
has a leaf v0. In each case, because v0 is in V −, there exist distinct edges
e1 = v1v0, e2 = v2v0 of D. Furthermore, d+(v0) ≤ 1, thus at most one edge
f0 leaves v0. Since v1, v2 are not in C, they are not in V −, hence at most one
edge enters each, say f1 and f2, respectively. Note that both edges exist in
A = {e1, e2}, but any edge from the set B = {f0, f1, f2} might actually not
exist. In either case, A, B form a reducing pair with |B| ≤ 3

2
|A|, contradicting

Claim 1.2. Thus every component of D− is a directed cycle. Furthermore, if
there are two edges e1, e2 of D \ (D+ ∪ D−) at some vertex v0 ∈ V −, then one
obtains a contradiction using the same reducing pair.

An analogous argument shows that every connected component C of D+ is
a directed cycle with exactly one edge of D \ (D+ ∪ D−) at each vertex of C.
Thus Claim 1.3 holds.

Note that, due to Claims 1.1 and 1.3, all directed triangles of D are among
the cycles of D+ and D−.

Claim 1.4. All directed cycles in D+ and D− have odd length.

Suppose the contrary, and let C = (x1, x2, . . . , x2p) be a directed cycle, say
in D+. For every i = 1, . . . , p let e2i−1, e2i be the two edges going out from x2i,
such that e2i = x2ix2i+1, and call yi the end vertex of e2i−1. Then yi ∈ V \V +,
therefore there is at most one edge gi going out from yi. For every i = 1, . . . , p,
let f2i−1, f2i be the two edges going out from x2i−1, such that f2i−1 = x2i−1x2i.
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Let A = {e1, . . . , e2p} and B = {f1, . . . , f2p} ∪ {g1, . . . , gp}. Observe that A, B
are disjoint and that B contains one edge of each directed P3 of D that has an
edge in A. Therefore A, B is a reducing pair, with |B| ≤ 3

2
|A|, contradicting

Claim 1.2. Thus Claim 1.4 holds.

Claim 1.5. D+ and D− have the same number of vertices, say this number is
k, and D \ (D+ ∪ D−) is the union of k disjoint edges going from D+ to D−.

We shall prove that V 0 = V (D) \ (V − ∪ V +) = ∅. Assume on the contrary
that V 0 6= ∅. By the connectivity of D, there is a vertex y ∈ V 0 adjacent to
some vertex of D+ ∪ D−. By symmetry, we may assume that yz is an edge for
some z ∈ V −. Let C ⊆ D− be the directed cycle containing z, let C have length
2ℓ+ 1, with ℓ ≥ 1. We call (ℓ + 1)-set any subset L ⊂ V (C) such that V (C) \L
is a maximum independent set of C. Note that for any two vertices x, y of C
there exists an (ℓ + 1)-set that contains both x, y.

If d−(y) 6= 0, then let e0 = xy, and let g0 be an edge going into x if it exists.
(Note that y /∈ V − implies x /∈ V −.) Let L ⊂ V (C) be an (ℓ + 1)-set of C not
containing z and define:

B1 = {f ∈ E(C) | f = ww′ for some w ∈ L},

A = {e0} ∪ (E(C) \ B1) ∪ {e /∈ E(C) | e = vw for some w ∈ L},

B2 = {g ∈ (E(D) \ B1) | g = uw such that wv ∈ A}.

Observe that A contains no directed P3 and that every directed P3 with one
edge in A has its other edge in B = B1 ∪ B2. So A, B is a reducing pair. Since
|A| = 2ℓ + 2, |B1| = ℓ + 1, and |B2| ≤ 2ℓ + 2, we have |B| ≤ 3

2
|A|, contradicting

Claim 1.2.
If d−(y) = 0, then let L ⊂ V (C) be an (ℓ + 1)-set of C containing z, and

define:

B1 = {f ∈ E(C) | f = ww′ for some w ∈ L},

A = (E(C) \ B1) ∪ {e /∈ E(C) | e = vw for some w ∈ L},

B2 = {g ∈ (E(D) \ B1) | g = uw such that wv ∈ A}.

Again, A and B = B1 ∪ B2 form a reducing pair. We have |A| = 2ℓ + 1, |B1| =
ℓ+1 and |B2| = 2ℓ since no edge enters into y. Hence |B| < 3

2
|A|, contradicting

Claim 1.2. Then Claim 1.5 follows from the second part of Claim 1.3.

Call M the (loopless) bipartite multigraph obtained by contracting of every
directed cycle into one vertex.

Claim 1.6. M is a simple graph.

Suppose on the contrary that there are at least two edges from the cycle
C+ ⊆ D+ to the cycle C− ⊆ D−. By Claim 1.5, C+ is an odd cycle, thus
there exist edges ux, vy ∈ E(D) with u, v ∈ V (C+), x, y ∈ V (C−) such that
(u, b1, . . . , b2q, v) is a directed subpath of C+, and no vertex bi has an edge to
C− (q = 0 means that uv is an edge of C+).
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Let C− have length 2ℓ+1 (it is an odd cycle by Claim 1.5). Obviously there
exists an (ℓ + 1)-set L ⊂ V (C−) including x and excluding y. Define:

B1 = {f ∈ E(C−) | f = wz for some w ∈ L},

A0 = (E(C−) \ B1) ∪ {e /∈ E(C−) | e = zw for some w ∈ L},

B2 = {g ∈ (E(D) \ B1) | g = wz such that zw′ ∈ A0}.

Let e′0 = ub1, f ′

0 = vw where w ∈ V (C+), g′0 = vy, and define:

A′

0 = {e′0} ∪ {e′ ∈ E(D) | e′ = b2iz, 1 ≤ i ≤ q},

B′

1 = {f ′

0} ∪ {f ′ ∈ E(D) | f ′ = b2i−1z, 1 ≤ i ≤ q},

B′

2 = {g′ ∈ (E(D) \ B′

1) | g′ = zw′ such that bz ∈ A′

0} \ {g
′

0}.

Observe that the set A = A0 ∪ A′

0 contains no directed P3, and every directed
P3 with an edge in A has its other edge in B = B1 ∪ B2 ∪ B′

1 ∪ B′

2 from
D. Hence A, B form a reducing pair. We have |A0| = 2ℓ + 1, |B1| = ℓ + 1,
|B2| = 2ℓ + 1, |A′

0| = 2q + 1, |B′

1| = 2q + 1, |B′

2| = q, so |A| = 2(ℓ + q + 1) and
|B| = 3(ℓ + q + 1) = 3

2
|A|, contradicting Claim 1.2. Thus Claim 1.6 holds.

Because every vertex of the contraction graph M has degree at least three,
M has a cycle. To conclude the proof of the theorem we show that this leads
to a contradiction.

Consider a shortest cycle γ ⊂ M , and let γ = (C+
1 , C−

1 , C+
2 , C−

2 , . . . , C+
p , C−

p ),

where, for each i ∈ {1, . . . , p}, C+

i ⊆ D+ and C−

i ⊆ D− are cycles of D of odd
length. The edges of γ correspond to a matching of D from the set ∪q

i=1{u
i, vi},

to the set ∪q
i=1{x

i, yi}, where ui, vi ∈ C+

i and xi, yi ∈ C−

i . Furthermore, by
Claim 1.6 and since γ has no chords in M , no more edges of D are induced
between these cycles. We may assume, so we do, that (ui, bi

1, . . . , b
i
2qi−1, v

i),

where qi ≥ 1, is a directed subpath of C+

i .
Let 2ℓi + 1 be the length of C−

i . For every i = 1, . . . , p select an (ℓi + 1)-set
Li ⊂ V (C−

i ) of C− such that xi, yi ∈ Li, and define the following sets:

B1
i = {f ∈ E(C−

i ) | f = wz for some w ∈ Li},

A1
i = (E(C−

i ) \ B1
i ) ∪ {e /∈ E(C−

i ) | e = zw for some w ∈ Li},

B2
i = {g ∈ (E(D) \ B1

i ) | g = uz such that zw ∈ A1
i }.

Let A1 = ∪p
i=1A

1
i and B1 = ∪p

i=1(B
1
i ∪ B2

i ). We have |A1| =
∑p

i=1
|A1

i | =
∑p

i=1
(2ℓi + 1), and because |B1

i | = ℓi + 1, |B2
i | = 2ℓi + 1, we obtain |B1| =

∑p
i=1

(3ℓi + 2).
For every i = 1, . . . , p, let ei = uibi

1, fi = bi
2qi−1v

i, and define sets:

A2
i = {ei} ∪ {e ∈ (E(D) | e = b2jw, 1 ≤ j ≤ qi − 1},

B3
i = {f ∈ E(D) | f = b2j−1w, 1 ≤ j ≤ qi} \ {fi},

B4
i = {g ∈ (E(D) \ B3

i ) | g = wz such that bw ∈ A2
i } \ {fi}.

6



Let A2 = ∪p
i=1A

2
i and B3 = ∪p

i=1(B
3
i ∪ B4

i ). We have |A2| =
∑p

i=1
|A2

i | =
∑p

i=1
(2qi − 1), and because |B3

i | = 2qi − 1 and |B4
i | = qi − 1, we obtain |B3| =

∑p
i=1

(3qi − 2). Observe that the sets A = A1 ∪ A2 and B = B1 ∪ B3 form a
reducing pair. Furthermore, |A| =

∑p
i=1

(2ℓi +1+2qi−1) = 2
∑p

i=1
(ℓi +qi) and

|B| =
∑p

i=1
(3ℓi +2+3qi−2) = 3

∑p
i=1

(ℓi +qi) = 3

2
|A|, contradicting Claim 1.2.

This concludes the proof of the theorem.

The proof of the theorem can be formulated as an algorithm which, given
any digraph D ∈ D(1, 1) with m edges and at most t disjoint directed triangles,
constructs a directed cut K of size at least (2m − t)/5. We sketch such an
algorithm here. Start from K := ∅. Then apply the following general step. Find
the subgraphs D+ and D−. If there is a directed triangle that is not included in
D+ or D−, with the notation of Claim 1.1, then set K := K ∪ {xy} and iterate
with the subgraph D \ {xy, yz, zx}. (When iterating, the subgraphs D+, D−

must be updated.) If there is no such directed triangle, then either D violates
one of Claims 1.3–1.6, or D satisfies the conditions described after the proof
of Claim 1.6; and in either case, the proof of the theorem shows how to find a
reducing pair (A, B). Then set K := K∪A and iterate the general step with the
subgraph D\(A∪B). The algorithm terminates when D becomes edgeless. Then
at termination K is a directed cut of size at least (2m−t)/5. It is easy to see that
all the operations (updating D+ and D−, finding a directed triangle, checking
whether D violates one of the claims, determining the structure described after
the proof of Claim 1.6) can be done in polynomial time, and there are at most
m iterations. Thus we obtain:

Corollary 2. There is a polynomial time algorithm which, given any digraph
D ∈ D(1, 1) with m edges and at most t disjoint directed triangles, finds a
directed cut in D of size at least (2m − t)/5. �

Corollary 3. If D ∈ D(1, 1) has m edges, then it contains a directed cut of size
at least m/3. Moreover D has no directed cut of size larger than m/3 if and
only if D is the union of disjoint directed triangles.

Proof. The number of pairwise disjoint directed triangles satisfies t ≤ m/3, with
equality if and only if D is a union of disjoint directed triangles. Now the claim
follows by Theorem 1, because (2m − t)/5 ≥ (2m − m/3)/5 = m/3.

Corollary 4. If D ∈ D(1, 1) has m edges and no directed triangle, then it
contains a directed cut of size at least 2m/5. �

Results by Bondy and Locke [4] on the bipartite density of (undirected)
subcubic graphs are reminescent of our investigations concerning D(1, 1). They
proved in [4] that a triangle-free subcubic graph has a bipartite subgraph of
size at least 4m/5. Observe that any triangle-free digraph of maximum degree
at most three belongs to D(1, 1), and it is obtained from a subcubic graph by
orienting its edges. Hence their result implies that such a D has a directed
cut of size at least 2m/5, the half of 4m/5. Corollary 4 shows that this bound
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is valid for the much larger class of digraphs in D(1, 1) containing no directed
triangle.

Now we show that the lower bound m/3 in Corollary 3 can be surpassed for
connected digraphs of D(1, 1).

Theorem 5. If D ∈ D(1, 1) is a connected digraph with m edges, and D is not
a triangle, then it contains a directed cut of size at least 7m/20.

Proof. The proof works by induction on m. Let t be the maximum number of
pairwise disjoint directed triangles of D. By the hypothesis, we have t = 0 if
m ≤ 3 and t ≤ 1 if m = 4, 5, 6. Thus by Theorem 1, there is a cut of size at least
1, 1, 2, 2, 2, 3, respectively, for m = 1, . . . , 6, which matches the corresponding
value of ⌈7m/20⌉. Now let m ≥ 7, and assume that the claim is true for
connected graphs with strictly less than m edges. Observe that any t disjoint
directed triangles of D have a total of 3t edges, furthermore, by the connectivity
of D, there are at least t−1 more edges between these triangles. Hence we have
m ≥ 4t − 1.

If m > 4t − 1, or equivalently, if t ≤ m/4, then by Theorem 1, D has a cut
of size at least (2m − t)/5 ≥ (2m − m/4)/5 = 7m/20 edges as stated.

Assume now that m = 4t − 1. So D consists of t disjoint directed triangles
connected by t − 1 edges in a tree-like manner. Since we cannot have t = 1
and m = 3, we have t ≥ 2. So there is a directed triangle T = (x, y, z) that
is adjacent to exactly one edge, say xx′, which is adjacent to another directed
triangle T ′ = (x′, y′, z′). (The symmetric argument applies if the orientation of
the edge between T and T ′ is x′x.) Removing from D the vertices and edges of
T together with the two edges xx′, x′y′, we obtain a connected digraph D′ with
m′ = m − 5 ≥ 2 edges. By the induction hypothesis, D′ has a cut H ′ of size at
least 7m′/20 = (7m− 35)/20 > 7m/20− 2 edges. Clearly H ′ ∪ {xx′, yz} has no
directed P3, which yields a cut of size at least 7m/20 in D.

Just like with Theorem 1, the proof of Theorem 5 can be formulated easily
as a polynomial time algorithm (we omit the details). So we have:

Corollary 6. There is a polynomial time algorithm which, given any digraph
D ∈ D(1, 1) with m edges, such that no component of D is a directed triangle,
finds a directed cut in D of size at least 7m/20. �

3 Decompositions of D(k, k)

The problem of covering the edges of a digraph with cuts was proposed in [1].
Upper bounds were given for digraphs in D(k, ℓ), and the only exact value was
determined for k = ℓ = 1.

Theorem 7 ([1]). The edge set of any digraph D ∈ D(1, 1) can be decomposed
into at most three cuts. �
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Theorem 8. For integers p1, p2 ≥ 0, the edge set of every digraph D ∈ D(p1 +
p2, p1 + p2) can be decomposed into two subgraphs D1 ∈ D(p1, p1) and D2 ∈
D(p2, p2).

Proof. Since D is in D(p1 + p2, p1 + p2), its vertex set V (D) can be partitioned
into two sets X, Y such that every vertex x ∈ X satisfies d−(x) ≤ p1 + p2

and every vertex y ∈ Y satisfies d+(y) ≤ p1 + p2. Consider the set of edges
B = {yx ∈ E(D)|y ∈ Y, x ∈ X}. By the definition of X and Y , in the bipartite
graph (X, Y ; B) every vertex has degree at most p1+p2. By a classical corollary
of the Kőnig-Hall theorem (see e.g., [7, Prop. 5.3.1]), the edges of B can be
colored with p1 + p2 colors so that any two adjacent edges have different colors.
Let B1 be the set of edges of B with the first p1 colors and B2 be the set of
edges of B with the remaining colors.

For every vertex x ∈ X , the set E−(x) of edges with end x has size at most
p1 + p2, so it can be partitioned into two sets E1(x) and E2(x) such that, for
j = 1, 2, |Ej(x)| ≤ pj and E−(x) ∩ Bj ⊆ Ej(x). Likewise, for every vertex
y ∈ Y , the set E+(y) of edges with origin y has size at most p1 +p2, so it can be
partitioned into two sets E1(y) and E2(y) such that, for j = 1, 2, |Ej(y)| ≤ pj

and E+(y) ∩ Bj ⊆ Ej(y).
Finally let the set {xy ∈ E(D)|x ∈ X, y ∈ Y } be partitioned arbitrarily into

two sets F1, F2. Now, for j = 1, 2, let Dj be the subgraph of D whose edge set
is Bj ∪ Fj ∪

⋃

x∈V Ej(x). The definition of these sets implies that each edge
of D lies in exactly one of D1, D2 and that Dj ∈ D(pj , pj) for j = 1, 2. More
precisely, for j = 1, 2, in Dj every vertex x ∈ X satisfies d−(x) ≤ pj and every
vertex y ∈ Y satisfies d+(y) ≤ pj .

Corollary 9. The edges of every digraph D ∈ D(2, 2) can be decomposed into
two subgraphs D1, D2 ∈ D(1, 1). �

From Corollary 9 and Theorem 7 it follows that every digraph D ∈ D(2, 2)
can be covered with six directed cuts. If there was a decomposition of D into
a cut and a digraph in D(1, 1), then D would have a cut cover only with four
cuts, by Theorem 7 again. Our next example shows that such a decomposition
is not always possible.

Example 2. Take two disjoint copies of a regular tournament on five vertices,
G1, G2, and include all 25 edges directed from G1 to G2. Thus we obtain a
digraph H ∈ D(2, 2). Assume that K ⊂ E(H) is a cut such that H ′ = H \ K
is in D(1, 1). The regular tournament has no cut with more than three edges,
hence G1 has a vertex v0 such that every edge going into v0 is in E(H) \ K
and at least one edge going out of v0 is in E(H) \ K. Thus d−H′ (v0) = 2, which
implies that v0z ∈ K for all z ∈ V (G2) in order to obtain d+

H′(v0) ≤ 1. Then it
follows that no edge of G2 belongs to K, thus d+

H′(z) = 2 and d−H′(z) ≥ 2 for all
z ∈ V (G2), a contradiction.

How large a subgraph belonging to D(1, 1) can be found in a digraph D ∈
D(2, 2)? Corollary 9 implies that D with m edges contains a subgraph in D(1, 1)
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with at least m/2 edges. A larger bound will follow from our more general result.

Theorem 10. Every digraph D ∈ D(k, k) with m edges has a subgraph belonging
to D(k − 1, k − 1) with at least (2k − 1)m/(2k + 1) edges.

Proof. Let W = {v ∈ V (D)|d−D(v) ≤ k} and B = {v ∈ V (D)|d+

D(v) ≤ k}.
Because D ∈ D(k, k), we have V (D) = W ∪B. We say that v ∈ W is white, and
v ∈ B is black ; note that a vertex may have both colors. An edge xy ∈ E(D) is
called a black tail arrow if x ∈ B, and it is called a white head arrow if y ∈ W .
Note that an edge can be both a black tail and a white head arrow. Observe
the symmetry of the colors with respect to reversing all arrows in D. Due to
this symmetry, if a property is verified for white vertices, then the analogous
property is true for black vertices with directions reversed.

Let R ⊂ E(D) be a set of edges such that (a) the graph D′ = D \ R is in
D(k − 1, k − 1), (b) R is minimum among all sets with property (a), and (c)
R has the maximum number of black tail arrows and white head arrows (each
arrow counted once) among all sets that satisfy (a) and (b). Clearly such a set
R exists.

For each edge e = xy ∈ R, we define a critical vertex of e as follows:
x is a critical vertex for e = xy ∈ R if d+

D′(x) = k − 1 and d−D′(x) ≥ k;
y is a critical vertex for e = xy ∈ R if d−D′(y) = k − 1 and d+

D′(y) ≥ k.
The minimality of R means that at least one of x, y is critical for each edge
e = xy of R. Note that both x, y may be critical for e. For each e ∈ R, let
Crit(e) ⊆ {x, y} be the set of critical vertices of e. For any subset X ⊆ R, define
Crit(X) = ∪e∈XCrit(e). From here on, the word critical vertex refers to ele-
ments of Crit(R). All critical vertices are in the set {v ∈ V (D)|d−D(v), d+

D(v) ≥
k}, however not every vertex in that set is critical for some edge of R. The main
point of the proof is to establish that:

Claim 10.1. |Crit(R)| ≥ |R|.

Assume we already know that |Crit(R)| ≥ |R|. Then the definition of critical
vertices implies that, for every v ∈ Crit(R), there are at least 2k − 1 edges
not in R and incident with v. Thus for the size of D we have the bound
m ≥ |R|+(2k−1)|R|/2, hence |R| ≤ 2m/(2k+1). So D′ has at least m−|R| ≥
(2k − 1)m/(2k + 1) edges, and the theorem follows. Therefore the rest of the
proof consists in proving Claim 10.1.

The definition of critical vertices implies easily the following two claims,
whose proof is omitted.

Claim 10.2. If x ∈ B and d+

R(x) ≥ 2, then x /∈ Crit(R). By symmetry, If
x ∈ W and d−R(x) ≥ 2, then x /∈ Crit(R).

Claim 10.3. If e = xy ∈ R, y ∈ B, and yz ∈ R, then Crit(e) = {x}. By
symmetry, if e = xy ∈ R, x ∈ W , and ux ∈ R, then Crit(e) = {y}.
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Now we examine the subgraph formed by R. Let A ⊆ R be any connected
component of R (we use A and R to denote the digraphs defined by the edges
in A and R, respectively). Note that Crit(R) = Crit(A) ∪ Crit(R \ A).

Claim 10.4. If A has no cycle, then |Crit(A)| ≥ |V (A)| − 1 = |A|.

In this case A is a tree with |A| + 1 vertices. We show that at most one
non critical vertex may exist in A. Suppose on the contrary that u, v are two
non-critical vertices in A, and let P = (u, . . . , v) be the (unique) shortest chain
between them in A. Observe that P has length at least 2 (for otherwise its
unique edge uv would satisfy Crit(uv) = ∅), and that the inclusion into D′ of
the two edges of P incident to u and v does not increase their corresponding
indegree or outdegree above k − 1.

For every white vertex w of V (P )\ {u, v} select a white head arrow xw, and
for every black vertex z of V (P ) \ {u, v} select a black tail arrow zx (for two-
colored vertices take one such arrow arbitrarily). Let F be the set of selected
arrows. So |F | ≤ |P | − 1. Define R∗ = (R \ P ) ∪ F . The graph D∗ = D \ R∗

belongs to D(k−1, k−1), because the outdegree of every black vertex of V (P )\
{u, v}, and the indegree of every white vertex of V (P ) \ {u, v} is at most k − 1,
furthermore the corresponding degrees of u and v do not increase above k − 1.
The set R∗ satisfies |R∗| ≤ |R| − 1, contradicting the minimality of R. Thus A
has at most one non-critical vertex, and Claim 10.4 holds.

Now we consider an arbitrary cycle C in R (if any).

Claim 10.5. C has no edge e = xy with x ∈ W \ B and y ∈ B \ W .

Suppose that there is such an edge e = xy. Note that e is neither a white
head arrow nor a black tail arrow in C. Hence C has at most |C| − 1 white
head and black tail arrows. For every white vertex w ∈ V (C) select a white
head arrow zw, and for every black vertex v ∈ V (C) select a black tail arrow
vu (for two-colored vertices select one arrow arbitrarily). Let F be the set of
|C| selected edges, and define R∗ = (R\C)∪F . The set R∗ satisfies |R∗| ≤ |R|,
and contains more white head and black tail arrows than R. Furthermore, the
graph D∗ = D \ R∗ belongs to D(k − 1, k − 1), because the outdegree of every
black vertex of C, and the indegree of every white vertex of C is at most k − 1.
This contradicts the choice of R. Thus Claim 10.5 holds.

Claim 10.6. Let u, x, y, v be four consecutive vertices of C.
(1) If xu, xy, vy ∈ C and x is black, then y is not white.
(2) If ux, xy, vy ∈ C, then either x or y is not white.
(3) If ux, xy, yv ∈ C and y is black, then x is not white.

Suppose on the contrary that any of (1), (2), (3) fails. Then, in either case,
the edge e = xy satisfies Crit(e) = ∅, which contradicts the minimality of R.
Thus Claim 10.6 holds.

Claim 10.7. C is a directed cycle and it is monochromatic, i.e., its vertices are
either all in W \ B or all in B \ W .
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Suppose first that C is not a directed cycle, and consider a longest directed
subpath (x1, . . . , xq) of C, where q ≥ 2.

Suppose that q = 2, i.e., the directions of the edges alternate on C. Let
z1w1, z1w2, z2w2 ∈ C. If z1 ∈ W \ B, then by Claim 10.5 we have w1, w2 ∈ W .
If z1 ∈ B, then Claim 10.6 (1) implies that w2 ∈ B \ W , and z2 ∈ B follows
by Claim 10.5. Thus we obtain that either w1, z1, w2 ∈ W or (symmetrically)
z1, w2, z2 ∈ B. We show a contradiction in the first case, then, by symmetry,
the second case is impossible as well. So assume that w1, z1, w2 ∈ W and set
ei = z1wi, i = 1, 2. Select an arbitrary white head arrow f = xz1 ∈ E(D). The
set R∗ = (R\{e1, e2})∪{f} satisfies |R∗| ≤ |R|−1, and the graph D∗ = D \R∗

belongs to D(k − 1, k − 1), because d−D∗(wi) = d−D′(wi) ≤ k − 1 for i = 1, 2, and
d−D∗(z1) ≤ k − 1. This contradicts the minimality of R. Therefore q ≥ 3.

By Claim 10.6 (2), either xq or xq−1 is not white on the directed path
(x1, x2, . . . , xq), for q ≥ 3. If xq ∈ B \ W , then xq−1 ∈ B by Claim 10.5. Thus
that in each case xq−1 is black.

Suppose that q = 3. Let e1 = x1x2, e2 = x1y2 ∈ C, with e1 6= e2, and let y3

be the second neighbor of y2 on C different from x1.
Assume first that y2y3 ∈ E(D). Then, by the argument above, x2 and y2 are

both black. Observe that x1 ∈ W \B, since otherwise the edges e1 and e2 have
no critical vertices. Now select an arbitrary white head arrow f = zx1 ∈ E(D).
The set R∗ = (R \ {e1, e2}) ∪ {f} satisfies |R∗| = |R| − 1, and the graph
D∗ = D \ R∗ belongs to D(k − 1, k − 1), contradicting the minimality of R.

Assume now that y3y2 ∈ E(D) (where y3y2 might coincide with x2x3, if
C is a triangle). As before, we have x2 ∈ B and x1 ∈ W \ B. Then, by
Claim 10.5, y2 ∈ W . Selecting a white head arrow f at x1 and defining the set
R∗ = (R \ {e1, e2}) ∪ {f} we obtain a contradiction in the same way as before.
Therefore q ≥ 4.

We already know that xq−1 is black. Hence xq−2 ∈ B \W by Claim 10.6 (3).
Applying Claim 10.6 (3) repeatedly, we obtain that xq−2, . . . , x2 are in B \ W .
Then we have x1 ∈ B by Claim 10.5. Hence the edge x1x2 has no critical vertex,
because d+

D′(x1) ≤ k − 2 and d+

D′(x2) ≤ k − 1, contradicting the minimality of
R. So we have established that C is a directed cycle.

Now assume without loss of generality that some vertex y of C is black. By
Claim 10.6 (3), the predecessor x ∈ V (C) of y is not white, i.e., it is in B \ W .
Applying Claim 10.6 (3) repeatedly we obtain that every vertex of C is in B\W .
So C is monochromatic. Thus Claim 10.7 holds.

Claim 10.8. If a component A of R contains a cycle, then A is unicyclic and
|Crit(A)| = |V (A)| = |A|.

Let A contain a cycle C. By Claim 10.7 and by symmetry, C is a black
directed cycle.

For every edge e = xy ∈ C, by Claim 10.3, we have x ∈ Crit(e), and by
Claim 10.2, we have d+

R(x) = 1. Let A0 be a subgraph of A that is maximal
with the following property: A0 contains C, for every x ∈ V (A0) there is a
directed path in A0 from x to some vertex of C, and every vertex x ∈ V (A0) is
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black and satisfies d+

R(x) = 1. Let us prove that A0 = A. Note that A0 exists,
because C itself satisfies all the required properties.

Suppose that A0 6= A. Then, since A is connected, there is a vertex x ∈
V (A) \ V (A0) that is adjacent to some y ∈ V (A0). Because d+

R(y) = 1 and
d+

A0
(y) = 1, we have e = xy ∈ A. Since y is black, Claim 10.3 implies Crit(e) =

{x}. Observe that A0 contains a directed P3 from y containing black vertices.
Hence by Claim 10.6 (3), we have y ∈ B \ W . If x ∈ W \ B, then let f =
ux ∈ R be any white head arrow. Define R∗ = (R \ {e}) ∪ {f}. The digraph
D∗ = D \R∗ belongs to D(k − 1, k − 1), because d+

D∗(y) = d+

D′(y) ≤ k − 1, and
d−D∗(x) ≤ k − 1. This contradicts the choice of R. So x is black. Because x is
black and x ∈ Crit(e), Claim 10.2 implies d+

R(x) = 1. Hence one could include
x to A0, contradicting the maximality of A0. Therefore A0 = A.

Since A = A0, C is the only cycle in A and every vertex x of A is black and
satisfies d+

R(x) = 1. Claim 10.3 implies that every vertex of A is a critical vertex
of its outgoing edge. So |Crit(A)| = |V (A)| = |A|, and Claim 10.8 holds.

Claims 10.4 and 10.8 show that |Crit(A)| ≥ |A| is true for every con-
nected component A. If A1, . . . , At are the components of R, we have clearly
Crit(R) = Crit(A1) ∪ · · · ∪ Crit(At). Thus we obtain |Crit(R)| ≥ |R|, which
proves Claim 10.1. This concludes the proof of the theorem.

The regular tournament on 2k + 1 vertices has indegree equal to outdegree
for every vertex, hence it is in D(k, k). To obtain a subgraph belonging to
D(k−1, k−1) one has to remove at least k+1 from its m =

(

2k+1

2

)

edges. This
shows that the tournament has no subgraph in D(k − 1, k− 1) containing more
than

(

2k+1

2

)

− k + 1 = m− (1 + 1/k)m/(2k + 1) = (2k − 1/k)m/(2k + 1) edges.

Corollary 11. Every digraph D ∈ D(2, 2) with m edges contains a subgraph
belonging to D(1, 1) with at least 3m/5 edges. �

We note that for k = 1, Theorem 10 yields another proof that every digraph
D ∈ D(1, 1) with m edges contains a directed cut of size at least m/3 (cf.
Corollary 3).

4 Cuts in D(k, k)

In [1] it was observed that the k-regular orientation of the complete graph
on 2k + 1 vertices has no directed cut of size more than (1

4
+ 1

8k+4
)
(

2k+1

2

)

.
Consequently, in a digraph D ∈ D(k, k) with m edges one cannot guarantee a
directed cut of size larger than (1

4
+ 1

8k+4
)m. It was proved in [1] that every

digraph with outdegree at most k does contain a directed cut of that size. Using
the same methods we show that it is also true for the acyclic members of D(k, k).

The basic tool is a lemma in [10] that is proved there by elementary counting.

Lemma 1 ([10]). If a γ-colorable graph G has m edges, then it has a bipartite
partial graph with at least (⌊γ2/4⌋/

(

γ
2

)

)m edges. �
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Theorem 12. If D ∈ D(k, k) is acyclic and has m edges, then D contains a
directed cut of size at least (1

4
+ 1

8k+4
)m.

Proof. Let D+ be the subgraph of D induced by the set X = {v ∈ V (D)|d+(v) ≤
k} and let D− be the subgraph of D induced by V (D) \ X . Because D is
acyclic, every subgraph of D+ has a source, thus its underlying graph G+ is
k-degenerate. Similarly, every subgraph of D− has a sink, thus its underlying
graph G− is k-degenerate. Consequently, both graphs G+ and G− are (k + 1)-
colorable, therefore the underlying graph G of D is (2k + 2)-colorable.

Applying Lemma 1 with γ = 2k+2, we obtain a bipartite partial graph of G
with k+1

2k+1
m edges. In D at least half of the edges of that bipartite graph form

a directed cut of size at least k+1

4k+2
m = (1

4
+ 1

8k+4
)m.

We do not know whether Theorem 12 remains true for all digraphs in D(k, k),
and for every k. The coefficients are 1/3, 3/10 and 2/7 for k = 1, 2, and 3,
respectively. By Theorem 7, a digraph D ∈ D(1, 1) of size m has a cut with
at least m/3 edges. The theorem below answers the question affirmatively for
D(2, 2).

Theorem 13. Every digraph D ∈ D(2, 2) with m edges has a directed cut of
size at least 3m/10.

Proof. We prove the theorem by induction on m. For m = 1 the theorem is true.
Now suppose that m ≥ 2 and that the theorem holds for every digraph with at
most m − 1 edges. Since D is in D(2, 2), its vertex set can be partitioned into
two sets X, Y such that every vertex x ∈ X satisfies d−(x) ≤ 2 and every vertex
y ∈ Y satisfies d+(y) ≤ 2. Consider the set of edges F = {xy ∈ E|x ∈ X, y ∈ Y }.

First suppose that the underlying bipartite graph (X, Y ; F ) contains a cycle.
Let C be any such cycle, say with length 2k, let XC and YC be the set of vertices
of C that lie in X and Y respectively, and let FC be the set of edges of C. So
|FC | = 2k. Let EC be the set of edges such that either their end is in XC

or their origin is in YC . By the definition of X, Y and the fact that D is in
D(2, 2), we have |EC | ≤ 4k. Consider the digraph D′ = D \ (EC ∪FC). Clearly,
D′ ∈ D(2, 2), and the number m′ of edges of D′ satisfies m′ ≥ m − 6k. By the
induction hypothesis, D′ has a directed cut of size at least 3m′/10. If the edges
of FC are added to such a directed cut, we obtain a directed cut of D, because
D′ does not contain any edge of EC . This directed cut of D has size at least
3m′/10 + |FC | ≥ 3(m − 6k)/10 + 2k ≥ 3m/10. So the theorem holds for D.

Now suppose that the bipartite graph (X, Y ; F ) does not contain any cycle.
Thus |F | ≤ n − 1, where n is the number of vertices of D. By the definition
of X and Y , we have m ≤ 2|X | + 2|Y | + |F | ≤ 2n + n − 1 = 3n − 1, which
implies that D has a vertex v of degree at most 5. Actually the same argument
can be repeated with D \ {v}, and so on. Thus the underlying graph of D is
5-degenerate and therefore has chromatic number at most 6. Applying Lemma 1
with γ = 6 we obtain a bipartite subgraph with 3/5 edges, thus D has a directed
cut of size at least 3m/10.
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5 Problems

Let cmax be the ratio of the maximum directed cut size to the edge count
m of a digraph. For connected digraphs of D(1, 1), Theorem 5 improves the
basic estimation cmax ≥ 1/3 to cmax ≥ 7/20 provided m > 3. On the other
hand, Example 1 before Theorem 1 shows infinitely many connected digraphs
of D(1, 1) with cmax < 3/8. We conjecture that the bound cmax ≥ 7/20 can be
improved to 3/8 in the limit in the following sense.

Problem 1. For every ε > 0, there exists a constant mε such that cmax >
3/8 − ε holds for every connected digraph of D(1, 1) with m > mε edges.

At some point of the investigation in D(1, 1) we observed that the presence
of source or sink vertices of the digraph increases the size of a maximum directed
cut. Corollary 4 might have the following sharpening.

Problem 2. If a connected digraph D ∈ D(1, 1) with m edges contains no
directed triangle and has s vertices with indegree or outdegree zero, then D has
a directed cut of size at least (2m + s)/5.

Bondy and Locke [4] proved that a triangle-free subcubic graph has a cut
(a bipartite subgraph) of size at least 4m/5. A characterization of all extremal
graphs for that bound was given by Xu and Yu in [11]. The problem of charac-
terizing the extremal graphs for the bound of Corollary 4 remains open:

Problem 3. Determine the list of all digraphs D ∈ D(1, 1) of size m that
contain no directed triangle and have no directed cut with more than 2m/5
edges.

Bondy and Locke’s result in [4] consists of a polynomial time algorithm that
finds a cut with at least 4m/5 edges in a triangle-free subcubic graph. It is
known that finding a maximum cut is NP-hard even in the restricted family
of triangle-free cubic graphs (see Yannakakis [12]). Even the approximation of
the max cut problem in cubic graphs within the ratio of 0.997 is NP-hard (see
Berman and Karpinski [3]). On the other hand, Halperin, Livnat and Zwick [9]
give a polynomial time approximation algorithm with ratio 0.9326.

Concerning digraphs in D(1, 1), Corollary 6 gives a polynomial time algo-
rithm that produces a cut of size at least 7m/20 in every digraph in D(1, 1)
of which no component is a directed triangle; and so this is an approximation
algorithm with ratio 0.35. Can a better ratio be obtained? Actually, as far as
we know, none of the known results implies that computing the exact value of
a maximum directed cut is NP-hard in D(1, 1). So we ask:

Problem 4. What is the complexity status of computing the size of a maximum
directed cut in a digraph of D(1, 1)? If it is NP-hard, what is the best value of
ε for which there is a polynomial time approximation algorithm with ratio 1− ε
for this problem?
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The same problem can be posed for digraphs of D(1, 1) with no directed
triangle, or with no triangle at all.

How large a subgraph belonging to D(1, 1) can be found in a digraph D ∈
D(2, 2)? Corollary 11 says that D with m edges contains a subgraph in D(1, 1)
with at least 3m/5 edges. This lower bound is probably not sharp.

Problem 5. Determine the largest constant λ such that in every digraph D ∈
D(2, 2) with m edges there exists a subgraph D′ ∈ D(1, 1) of size at least λm.

If D is the regular tournament on five vertices, then D ∈ D(2, 2) and one
needs to remove at least three edges to obtain a subgraph D′ ∈ D(1, 1). This
shows that in the problem above λ ≤ 7/10.

From a result in [1] it follows that the edges of every graph D ∈ D(2, 2)
can be decomposed into at most five directed cuts. Furthermore, four cuts are
sufficient if D is acyclic. The regular tournament on five vertices shows that
four cuts might be necessary. Indeed, it has 10 edges, and the size of a directed
cut is at most 3. No example has been found to show that five directed cuts are
necessary.

Problem 6. The edges of every digraph D ∈ D(2, 2) can be decomposed into at
most four directed cuts.

Several problems remain open in D(2, 2) pertaining to the ratio cmax.

Problem 7. If D ∈ D(2, 2) has m edges and contains no copy of the regular
tournament on five vertices, then D has a directed cut of size at least m/3.

We do not know whether Theorem 12 pertaining to acyclic digraphs remains
true for all digraphs in D(k, k), and for every k. The coefficients 1

4
+ 1

8k+4
are

equal to 1/3, 3/10, and 2/7 for k = 1, 2, and 3, respectively. By Corollary 3, and
by Theorem 13, a digraph D of size m has a cut with m/3 and 3m/10 edges,
respectively for D ∈ D(1, 1) and D ∈ D(2, 2). The next case k = 3 is proposed
here as a question. It is quite possible that the answer is negative. Even if it is
not the case we conjecture that Theorem 12 does not extend for every k.

Problem 8. Is it true that every digraph of D(3, 3) with m edges contains a
directed cut of size at least 2m/7?

Digraphs with maximum outdegree k satisfy cmax ≥ 1

4
+ 1

8k+4
, and this is

the best bound, as shown in [1]. It is worth noting that the same bound was
obtained here in Theorem 12 for acyclic members of D(k, k). Furthermore, the
regular tournament on 2k+1 vertices is an example of a digraph with no directed
cut larger than (1

4
+ 1

8k+4
)m. We believe that in the larger family D(k, k) there

are more examples showing that this bound cannot be achieved, provided k is
large enough.

Problem 9. There exists a k0 such that for every k ≥ k0 there are digraphs in
D(k, k) with cmax < 1

4
+ 1

8k+4
.
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In Theorem 10 we are dealing with the largest subgraph of D ∈ D(k, k) that
belongs to the “lower” class D(k− 1, k− 1). This leads naturally to the investi-
gation of the minimum sets R ⊂ E(D) to be removed from D in order to lower
its class. The proof of Theorem 10 suggests that such minimum sets considered
as digraphs have a particular structure reminiscent of forests. Repeating the
procedure, one obtains a decomposition of the original digraph D ∈ D(k, k)
into at most k of these structures.

Practical applications motivate the study of decompositions of digraphs into
directed stars (see [5]). The directed star arboricity (dst) introduced in [8] is
defined as the minimum number of outstar forests (also called galaxy) the edge
set of a digraph can be partitioned. For instance it is proved in [2] that a
digraph D with indegree at most k has a decomposition into k outforests plus
one galaxy. This result implies dst(D) ≤ 2k+1, and it is conjectured in [2] that
2k is the tight bound, for k ≥ 2.

As a general problem we propose here a similar decomposition theory of the
digraphs of D(k, k) into appropriate forest-like structures.
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