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Abstract

We discuss the properties of two Bose-Einstein condensates in different spin states, represented
quantum mechanically by a double Fock state. Individual measurements of the spins of the particles
are performed in transverse directions (perpendicular to the spin quantization axis), giving access to
the relative phase of the two macroscopically occupied states. Before the first spin measurement, the
phase is completely undetermined; after a few measurements, a more and more precise knowledge of
its value emerges under the effect of the quantum measurement process. This naturally leads to the
usual notion of a quasi-classical phase (Anderson phase) and to an interesting transposition of the
EPR (Einstein-Podolsky-Rosen) argument to macroscopic physical quantities. The purpose of this
article is to discuss this transposition, as well as situations where the notion of a quasi-classical phase
is no longer sufficient to account for the quantum results, and where significant violations of Bell type
inequalities are predicted.

Quantum mechanically, the problem can be treated exactly: the probability for all sequences of
results can be expressed in the form of a double integral, depending on all parameters that define the
experiment (number of particles, number and angles of measurements). We discuss the differences
between this case and the usual two-spin case. An important difference is that the EPR element of
reality is macroscopic, giving even more stength to the EPR argument. Another difference is that,
with spin condensates, several measurements are necessary to determine the relative phase, instead
of one with two spins; moreover, the value that appears spontaneously takes a random value, instead
of being fixed by the choice of measurement angles. No perfect correlations are therefore obtained,
even for parallel spin measurements, but Bell inequalities remain valid within stochastic local realist
theories. We then discuss the effect of the many parameters that the experimenters can adjust
for their measurements, starting with a discussion of the effect of the angles of measurement (the
“settings”), and then envisaging various choices of the functions that are used to obtain violation of
BCHSH inequalities: depending on what information the experimenters extract from the results of
their measurements, strong, weak, or no violation of the inequalities are obtained. In some cases,
they are comparable (or even equal) to those obtained with two spins, even if a very large number
of spins is involved in the measurements. We then discuss how the “sample bias loophole” (often
also called “efficiency loophole”) can be closed in this case, by introducing a preliminary sequence of
measurements to localize the particles into “measurement boxes”. We finally show how that the same
non-local effects can be observed with distinguishable spins, and derive an adequate distinguishable
spin state that leads to the same violations of the Bell inequalities as the double Fock state. Since
this state belongs to the family of W-states, our analysis provides a method to create W-states from
spin double condensates.

1



1 Introduction

Two of Einstein’s many famous contributions to physics are the theoretical discovery in 1925 of the
Bose-Einstein condensation in a gas [1] and, ten years later, the celebrated Einstein-Podolsky-Rosen
(EPR) argument [2]. Both have had an enormous influence in the discipline and stimulated much work,
both theoretical and experimental. Although they are both fundamental, these contributions appear
almost completely disconnected: the former is more “standard” physics, initiating the domain of quantum
statistical physics, with many applications in gas and condensed matter physics; the latter belongs to
the foundations of quantum mechanics and has indeed attracted the attention of philosophers. It is
therefore interesting to realize that both contributions are connected logically, and that the study of
interfering Bose-Einstein condensates may shed a new light on the fundamental debate initiated by EPR.
The basic reason is that, while the original EPR argument applies to two microscopic particles, its
transposition to Bose-Einstein condensates introduces systems that can be macroscopic. The “elements
of reality”, introduced by EPR as attached to microscopic particles, then characterize the relative phase
between the two condensates which, in the case of spin condensates, may determine a macroscopic spin
orientation. This is an important difference: while one can argue as Bohr [3] that elements of reality
for microscopic particles do not exist independently of the measurement apparatuses, it is more difficult
to deny that macroscopic physical systems possess an independent physical reality. As a consequence,
the EPR argument then becomes more compelling [4]. Another interesting feature is that, while in the
original example the EPR element of reality (and therefore an additional, or “hidden” variable) appears
as completely foreign to standard quantum mechanics, with condensates the relative phase emerges rather
naturally within its formalism of standard quantum mechanics, simply as a consequence of particle number
conservation [4].

A natural question then is whether condensates can lead to violations of local realism, as systems of two
particles do, in other words whether violations of Bell-type inequalities [5, 6] also occur with macroscopic
condensates. In view of this macroscopic character, one could expect that the answer to this question
is no. Actually, it turns out that it is yes: as shown in a letter [7] recently, strong violations do occur
when measuring the individual transverse spin orientation of particles in a double spin condensate with
equal populations, even for arbitrarily large condensates, provided the spins of all particles are measured.
The relative phase that emerges under the effect of the first few quantum measurements behaves like a
quasi-classical variable, so that violations are impossible in this regime; nevertheless, if one continues the
sequence of measurements until its maximum, one reaches situations that can no longer be understood
with this classical phase, but recover an intrinsic quantum character.

The purpose of the present article is to discuss in more detail several aspects of the questions treated
in [7] as well as those that were not be treated there. In § 2, we define the physical system under consid-
eration and recall the notation, as well as previous results. In § 3, we come back to the EPR argument in
the context of the relative phase of two condensates, and in § 4 to violations of Bell inequalities obtained
within stochastic local realist theories (as opposed to the usual two-spin case where deterministic local
realist theories are more natural). Generally speaking, a useful feature of transverse spin measurements
in condensates is that one can calculate exactly the effect of many parameters defining the measurements:
angles at which the spins are measured, number of particles and number of measurements, various func-
tions used to obtain violations of the inequalities, etc.; the discussion of the effect of these parameters it
given in § 5 with numerical analysis. The next section, § 6, deals with the well-known “sample bias loop-
hole” (often also called “detection, or efficiency, loophole”), which can be closed (in thought experiments)
with the help of preliminary measurements, exactly in the perspective proposed by Bell [8] to handle such
situations. In § 7, we show that the violations of local realism are not related to boson statistics, but
that the same violations can be obtained with distinguishable spins, provided they are in an appropriate
initial state. We then draw conclusions in § 8.
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2 Summary of previous results

We recall in this section the results already obtained in [4, 7], starting with the equations that show how
a phase naturally emerges from the predictions of standard quantum mechanics in a series of transverse
spin measurements. We then discuss in what conditions this phase behaves as a quasi-classical quantity,
or retains a strong quantum character; in the latter case, we briefly introduce the violation of Bell
inequalities and local realism that can be obtained, keeping a more detailed discussion for §§ 4 and 5.

2.1 Quantum predictions

Consider an ensemble of N+ particles in a state characterized by an orbital state u(r) and a spin state +,
and N− particles in the same orbital state u(r) with spin orientation −. This physical system is described
quantum mechanically by a double Fock state:

| Φ > ∼
[

(au,+)†
]N+

[

(au,−)†
]N−

| vac. > (1)

where au,+ and au,− are the destruction operators associated with the two populated single-particle states
and |vac. > is the vacuum state. The total number of particles is:

N = N+ + N− (2)

The operators associated with the local density and the local density of spins can be expressed as function
of the two fields operators Ψ±(r) associated with the two internal states ± as:

n(r) = Ψ†
+(r)Ψ+(r) + Ψ†

−(r)Ψ−(r)

σz(r) = Ψ†
+(r)Ψ+(r) − Ψ†

−(r)Ψ−(r)

σx(r) = Ψ†
+(r)Ψ−(r) + Ψ†

−(r)Ψ+(r)

σy(r) = i
[

Ψ†
−(r)Ψ+(r) − Ψ†

+(r)Ψ−(r)
]

(3)

while the spin component in the direction of plane xOy making an angle ϕ with Ox is:

σϕ(r) = e−iϕΨ†
+(r)Ψ−(r) + eiϕΨ†

−(r)Ψ+(r) (4)

When a measurement of this component performed at point r provides the result η = ±1, the corre-
sponding projector is:

Pη=±1(r, ϕ) =
1

2
[n(r) + η σϕ(r)] (5)

For a series of N measurements that are performed at different points ri (ensuring that the projectors
all commute) along directions ϕi, the probability for obtaining a series of results ηi ±1 can be written as:

P(η1, η2, ...ηN ) = < Φ | Pη1(r1, ϕ1) × Pη2(r2, ϕ2) × ....PηN
(rN , ϕN ) | Φ > (6)

Strictly speaking, this expression is not a probability but a density of probability, which has to be
integrated in a finite volume ∆r to provide a probability; for instance, the probability for finding a
particle in volume ∆r is:

P (∆r) =

∫

∆r

d3r
′

n(r
′

) =

∫

∆r

d3r
′

[

Ψ†
+(r

′

)Ψ+(r
′

) + Ψ†
−(r

′

)Ψ−(r
′

)
]

(7)

A similar expressions for finding its spin along any direction φ is obtained by integrating (5) over space.
Here, for convenience we do not write the integrals explicitly, but it must be understood that expression
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(6) as well as those we write below are in fact integrated over all position variables r1, r2, etc. in spatially
disconnected1 volumes ∆1, ∆2, etc. As in the second ref [4] , we call ∆1, ∆2, .. the “detection boxes”
and refer the reader to this reference for a more detailed discussion, including the case where no particle
at all is detected in the detection box; we also come back to this point in § 6.

As in ref. [7] we now substitute the expression for σϕ(r) into (5) and (6). In the product of projectors
appearing in (6), all r’s are different and commutation allows us to push all the field operators to the
right, all their conjugates to the left; so that each Ψ±(r) acting on | Φ > can be replaced by u(r)× au,± ,
and similarly for the Hermitian conjugates. With our initial state, a non-zero result can be obtained only
if exactly N+ operators au,+ appear in the term considered, and N− operators au,−; a similar condition
exists for the Hermitian conjugate operators. To express these conditions, we introduce two additional
variables. The first variable λ ensures an equal number of creation and destruction operators in the
internal states ± ; each Ψ+ (or au,+) is multiplied by eiλ, and each Ψ†

+ (or a†
u,+) by e−iλ (operators

related to the − spin state remain unchanged), and the conservation of the number of particles in spin
+ states is then obtained by the following integration:

∫ π

−π

dλ

2π
einλ = δn,0 (8)

(since the total number of particles is unchanged, the number of − particles is then also automatically con-
served). The second variable Λ expresses that the difference between the number of destruction operators
in states + and − is exactly N+ − N−, through the integral:

∫ π

−π

dΛ

2π
e−inΛ ei(N+−N−)Λ = δn,N+−N−

(9)

This time, each Ψ+ (or au,+) is multiplied by e−iΛ and each Ψ− (or au,−) by eiΛ (but creation operators
remain unchanged). The introduction of all these exponentials into the product of projectors (5) in (6)
then provides the expression (c.c. means complex conjugate):

N+!N−!

N
∏

j=1

|u(rj)|2
1

2

[

eiΛ + e−iΛ + ηj

(

ei(λ−ϕj+Λ) + c.c.
)]

(10)

where the field operators are been replaced by a constant number N+!N−! because, after integration over
λ and Λ, the only surviving terms are all associated with the same matrix element, that of the product of
N+ operators a†

u,+ and N− operators a†
u,− followed by the same sequence of destruction operators inside

state | Φ >. We can thus write the probability as:

P(η1, η2, ...ηN ) ∼
∫ π

−π

dλ

2π

∫ +π

−π

dΛ

2π
ei(N+−N−)Λ

N
∏

j=1

{

|u(rj)|2
1

2

[

eiΛ + e−iΛ + ηj

(

ei(λ−ϕj+Λ) + c.c.
)]

}

(11)
By using Λ parity and changing one integration variable (λ′ = λ + Λ), we obtain:

P(η1, η2, ...ηN ) =
1

2NCN

∫ +π

−π

dΛ

2π
cos [(N+ − N−)Λ]

∫ +π

−π

dλ′

2π

N
∏

j=1

[cos (Λ) + ηj cos (λ′ − ϕj)] (12)

1If there was an overlap between the “detection boxes”, the projectors would no longer commute and equation (6) would
no longer be valid; it would then be necessary to use the complete “Wigner formula” with twice as many projectors ordered
in a symmetric way.

4



where the normalization coefficient CN is obtained by writing that the sum of probabilities of all possible
sequences of η’s is 1 (we come back to this point in § 6):

CN =

∫ +π

−π

dΛ

2π
cos [(N+ − N−)Λ] [cos (Λ)]

N
(13)

In the above equations, it is sometimes convenient to reduce the integration domain of Λ to the interval
between −π/2 and +π/2. This is possible, since (before variable λ is changed into λ′) changing Λ into
π − Λ introduces into (12) a factor (−1)N+−N−+N , or (−1)2N+ , which is 1.

Let us assume unequal populations, for instance N+ > N−. Then, in the product over j contained
in (12), only some terms provide a non-zero contribution in the integral over Λ; in fact, we must choose
at least N+ − N− factors contributing through cos (Λ), and therefore at most N − (N+ − N−) = 2N−
factors contributing through the ηj and φj dependent term. We see that 2N− is the maximum number
of spins that can provide a transverse spin measurement that depends on the result η and on the angle
of measurement; all the others have equal probabilities 1/2, whatever the angle of measurement is. This
is physically understandable, since (N+ − N−) spins + are unmatched with − spins, and can thus not
be found in a coherent superposition of the two spin states; they then provide 1/2 probabilities for any
direction of transverse spin measurement. We therefore see that all spins can contribute coherently to
the measurement only if N+ = N−.

The above equations are valid only when the number of measurements M is equal to N , but can
still be used when it is smaller. The reason is that any sequence of M < N measurements can always
be completed by additional N − M measurements, leading to probability (12). We can therefore take
the sum of (12) over the results of the missing N − M measurements, which amounts to putting the
corresponding ηj equal to zero and doubling the remaining term. We then obtain:

P(η1, η2, ...ηM ) =
1

2MCN

∫ +π

−π

dΛ

2π
cos [(N+ − N−)Λ] [cosΛ]

N−M
∫ +π

−π

dλ

2π

M
∏

j=1

[cos (Λ) + ηj cos (λ − ϕj)]

(14)
Finally, what we will need below is the value of the quantum average of the product of results, i.e., the
sum P(η1, η2, ...ηM ) times this product over all possible values of the η’s. This sum, according to (12), is
given by:

E(ϕ1, ϕ2, ...ϕM ) = (CN )
−1

∫ +π

−π

dΛ

2π
cos [(N+ − N−)Λ] [cosΛ]

N−M
∫ +π

−π

dλ

2π

M
∏

j=1

cos (λ − ϕj) (15)

2.2 Classical or quantum regime of the phase

The relative phase λ is a priori completely absent from Fock states in standard quantum mechanics,
but nevertheless appears naturally in its formalism as a mere consequence of the conservation of the
number of particles2. The phase actually occurs in an integral; for the first measurement, the integral
merely expresses that the phase is initially completely undetermined, as one could expect; for a series
a measurements, the phase integral provides the relation between the successive results and introduces
their correlations. Depending on the measurements, this phase takes a classical or a quantum character.

If the number of experiments M is much less than a very large N , and if N+ = N−, because cosΛN−M

2More precisely, the conservation of the difference of the number of particles in the two internal states, which is the
conjugate variable of the relative phase.

5



peaks up sharply at Λ = 0 3, equation (14) becomes:

P(η1, η2, ...ηM ) ≃ 1

2M

∫ +π

−π

dλ

2π

M
∏

j=1

[1 + ηj cos (λ − ϕj)] (16)

We then recover the results of [4] as well as of previous work (refs [9] to [18]). For a given λ, the proba-
bilities can be obtained by considering that the sample is completely polarized in a transverse direction
determined by angle λ; the spin measurements then become independent processes with individual prob-
abilities given by {1 + ηj cos (λ − ϕj)}, exactly as for a single isolated spin; the additional ingredient is
the λ integral, which expresses that all values of λ are equally probable and introduces the correlations.
In this case, all predictions of quantum mechanics lead to predictions that are perfectly compatible with
the idea of a pre-existing phase, which takes a well-defined value before any measurement and remains
constant4; this value is initially completely unknown and changes from one realization of the experiment
to the next. This fits well with the concept of the Anderson phase, which originates from spontaneous
symmetry breaking at the phase transition (Bose-Einstein condensation): at this transition point, the
quantum system has to choose a phase, which takes a completely random value, but then plays the role
of a classical variable in the limit of very large systems.

On the other hand, if N − M is not a large number, the peaking effect of cosΛN−M does not occur
anymore and Λ can take values close to π/2, so that the terms in the product inside the integral are no
longer necessarily positive; an interpretation in terms of probabilities then becomes impossible - see §
4.2 for more details. In these cases, the phase does not behave as a semi-classical variable, but retains a
strong quantum character; the variable Λ controls the amount of quantum effects.

2.3 Violations of local realism in the quantum regime

Indeed, in the quantum regime where Λ is not limited to values around zero, equations (14) and (15)
may contain strong violations of Bell inequalities and therefore of local realism. Consider a thought
experiment with two condensates, each in a different spin state (two eigenstates of the spin component
along the quantization axis Oz). The two condensates extend into two remote regions of space DA and
DB where they overlap and have equal orbital wave functions, and where two experimentalists Alice and
Bob measure the spins of the particles in arbitrary transverse directions (any direction perpendicular
to Oz), see Fig. 1. We assume that all measurements performed by Alice are made along the same
direction ϕa, which plays here the usual role of the “setting” a, while all measurements performed by
Bob are made with another single angle ϕb. To complete the analogy with the usual situation with two
particles, we assume that Alice retains from all her measurements just their product A, while Bob retains
only the product B of his results (these numbers are both ±1, the parities resulting from all the local
measurements) - other possibilities than these simple products are considered in § 5.

We now assume that Alice, in successive realizations of the experiment, uses two possible orientations
ϕa and ϕ′

a, and that Bob does the same with two possible orientations ϕb and ϕ′
b. Within local realism,

for each realization of the experiment, it is possible to define two numbers A, A′, both equal to ±1,
and associated with the two possible products of results that Alice will observe, depending of her choice
of orientation; the same is obviously true for Bob, introducing B and B′. Since AB = ±A′B′, either
AB + AB′ or A′B −A′B′ vanishes, and the following inequality is straightforward:

−2 ≤ AB + AB′ ± (A′B −A′B′) ≤ 2 (17)

3Here we take the point of view where the Λ integration domain is between −π/2 and +π/2; otherwise, we should also
take into account a peak around Λ = π.

4In our calculations, we have assumed that the measurements are all made in a very short period of time, so that the
evolution of the system between them can be ignored.
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Figure 1: Two condensates with fixed number of particles, one having up spins and the other down spins,
overlap in two remote regions of space DA and DB where measurements of transverse spin orientations
are made by Alice and Bob. In the upper part of the figure, we assume that each of the orbital wave
functions associated with the two condensates are simply connected, and extend continuously between
the two remote measurement sites. This is not a necessary condition, nevertheless. For instance, as shown
schematically in the lower part of the figure, we can assume that the wave function of each condensate is
coherently split into two parts and separates into two disconnected components (each of which will then
contain a fluctuating number of particles), and that each of which propagates to one measurement region
separately.

As a consequence, the average of the products in (17), obtained by repeating the experiment and the
measurements many times, has to be between −2 and +2; this is the famous BCHSH (Bell, Clauser,
Horne, Shimony and Holt) inequality [19, 20], a consequence of local realism.

Within standard quantum mechanics, the above reasoning no longer holds. As emphasized by Peres
[21], “unperformed experiments have no results”, so that several of the numbers appearing in (17) are
undefined5; in fact, only two of them are defined after the experiment has been performed with a given
choice of the orientations. Consequently, while one can calculate from (15) the quantum average 〈Q〉 of
the sum of products of results appearing in the middle of (17), there is no special reason why 〈Q〉 should
be limited between +2 and −2. Situations where the inequality:

−2 ≤ 〈Q〉 ≤ 2 (18)

is violated are sometimes called “quantum non-local situations”.
Situation in which (16) holds can not lead to such violations, since this equation contains positive

probabilities inside the integral and has precisely the form from which Bell inequalities can be derived (we
come back to this point in more detail in § 4.1). So, here we no longer assume that M ≪ N but consider
the other extreme, M = N . The simplest case occurs when N+ = N− = 1 and when Alice and Bob make
one measurement each; it is then easy to see that (1) defines a triplet spin state | S = 1, MS = 0 >. In

5A more precise statement would be: “for a given realization of the experiments, unperformed experiments have no
results; or, if they do, each result depends not only on the local setting but also (and non-locally) on the other remote
setting”.
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this case, it is well-known6 that a violation of (18) occurs, by a factor
√

2 when the angles form a “fan”7

spaced by χ = π/4; this saturates the Cirel’son bound [22]. But the violations also occur for arbitrarily
large values of N+ and N−: for instance, consider the case M = N, Na = 1 (Alice makes one measurement
only) and Nb = N − 1 (Bob makes the maximum number of remaining possible measurements). Then
equation (15) becomes:

E(ϕa, ϕb) =

∫ π

−π

dλ

2π

[

cos1 (λ − ϕa) cosN−1 (λ − ϕa)
]

[
∫ π

−π

dλ

2π
cosN λ

]−1

=

∫ π

−π

dλ′

2π

[

cos1 (λ′ − ϕa + ϕb) cosN−1 λ′]
[
∫ π

−π

dλ

2π
cosN λ

]−1

=

∫ π

−π

dλ′

2π

[

(cosλ′ cos(ϕa − ϕb) cosN−1 λ′]
[
∫ π

−π

dλ

2π
cosN λ

]−1

= cos(ϕa − ϕb)

(19)

This result is precisely the same as that for the two-particle case, so that the Cirel’son bound is saturated
again. For other values of Na and Nb, substantial violations of (18) continue to occur [7]; we refer to § 5
for more details.

3 A macroscopic element of reality

We begin this section with a brief discussion of the Leggett-Sols argument which, from a different point of
view, leads to the same conclusions as the EPR argument; we then discuss in more detail the transposition
of the EPR argument to spin condensates.

3.1 The Leggett-Sols argument

Leggett and Sols [23] discuss a situation that has strong similarities with double spin condensates: two
superconductors, initially in Fock (number) states, are coupled by a Josephson junction, which creates a
current flow between them; the phase of this time oscillating current corresponds to the relative phase of
the two superconductors. In standard quantum mechanics, initially this phase is completely undetermined
but, as soon as the time dependence of the current is measured, the phase is created by the very act of
measurement; it takes some random, but well-defined, value. The authors ask “Does the act of looking to
see whether a Josephson current flows force the system into an eigenstate of current, and hence of relative
phase?”. The answer of standard quantum mechanics to this question is “yes”, but the authors point
out that “if one thinks about it seriously, this answer is bizarre in the extreme”. To illustrate why, they
suppose that the current is of order of, say, kiloamps, and that it is measured through the observation
of a small magnet needle. They then ask: “Can it really be that by placing a minuscule compass needle
next to the system, with a weak light beam to read off its position, we can force the system to realize
a definite macroscopic value of the current? Common sense certainly rebels against this conclusion, and
we believe that in this case common sense is right”. In other words, because the current is arbitrarily
large, its phase can not be created by a tiny measurement apparatus; it must already have existed before
the measurement. Since this “element of reality” is not contained in standard quantum mechanics, this
theory is incomplete. Here the argument is not locality, as in the EPR argument, but simply that a very
small system can not completely modify an arbitrarily large system through a quasi instantaneous and
mysterious measurement process, without any precise physical mechanism to explain why and how.

Double condensates undergoing transverse spin measurements, with a number of measurements M ≪
N , are very similar to the case discussed by Leggett and Sols. From (16), we can obtain that the probability

6When one measures the components of the spins along directions that are perpendicular to the quantization axis, the
predictions of quantum mechanics are the same for this triplet case and the singlet state | S = 0, MS = 0 >, provided one
just reverses the direction of one measurement.

7The term “fan” refers to the angles arranged as ϕab = ϕba′ = ϕb′a = χ and ϕb′a′ = 3χ where ϕab ≡ ϕa − ϕb.
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of finding ηM in the M -th measurement along ϕk, having found η1, · · · ηM−1 in the previous measurements
along ϕ1, · · ·ϕM−1:

P(ηM ) =
1

2M

∫ +π

−π

dλ

2π
{1 + ηM cos (λ − ϕk)} gM (λ) (20)

where:

gM (λ) =

M−1
∏

j=1

{1 + ηj cos (λ − ϕj)} (21)

(these equations are valid only if M ≪ N). The evolution of this “probability function” was studied in
ref. [24] where it was shown that it peaks up sharply after only a few measurements. A typical result
is shown in Fig. 2 where the measurements are done at a single angle ϕa = 0. Two peaks arise because,
with a single angle of measurement, the sign of the relative phase is not determined, but a very small
number of additional measurements at a new angle causes the collapse to a single peak.

1.0

0.8

0.6

0.4

0.2

0.0

g(
Φ

)

2.01.51.00.50.0-0.5-1.0-1.5

Φ

Figure 2: The angular distribution g(Φ) as a function of angle for three different numbers of measurements
of transverse spin, 10 measurements (dashed line), 150 measurements (dottted line), and 300 measure-
ments (solid line). For a single measuring angle this always has two equal peaks, corresponding to the
ambiguity of the spin direction with respect to the transverse plane; but making measurements along
another direction rapidly removes one of the peaks. The peaks narrow when the number of measurements
increases.

The transposition of the question of Leggett and Sols would then be “Can it really be that, by
measuring the transverse direction of a few microscopic spins, we can force the macroscopic polarization
of 1023 atoms (or more) to take a definite value?” The analysis of double spin condensates in the present
paper shows that, within standard quantum mechanics, one can obtain detailed and exact predictions of
the effect of an arbitrary number of measurements in any direction on the macroscopic polarization; the
paradox can then be studied in more detail [4].

3.2 Transposition of the EPR argument to double condensates

One usually discusses the standard EPR argument in the form proposed by Bohm, with two spin 1/2 par-
ticles entangled in the singlet spin state |S = 0, MS = 0〉, or equivalently in the triplet |S = 1, MS = 0〉8.

8For spin measurements made in the plane perpendicular to the quantization axis, the quantum prediction relative to
these two states are the same, provided one adds π to the direction of measurement chosen by one of the experimenters.
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In these situations, the measurement of the spin of the first particle in any direction determines the value
of the second spin along the same direction. As soon as the first result is known, the second is also known
with certainty when the two directions of measurement are parallel: perfect correlations are predicted by
quantum mechanics. This leads EPR to their famous statement : “If, without in any way disturbing a
system, we can predict with certainty the value of a physical quantity, then there exists an element of
physical reality corresponding to this physical quantity.”

With condensates, what emerges from the measurements (still assuming M ≪ N) is a relative phase
(Anderson phase) of the condensates, through the process discussed above. Initially, this phase is com-
pletely undetermined, and the first spin measurement provides a completely random result. But the
phase rapidly emerges under the effect of a few measurements, and then remains constant9; it takes a
different value for each realization of the experiment, as if the experiment was revealing the pre-existing
value of a classical quantity.

Assume now, as in [4], that the double condensate extends over a very large region of space, covering
both Alice’s laboratory and Bob’s very remote laboratory, as shown in Fig. 1. We then have a situation
where, without in any way disturbing Bob’s system, we can predict from Alice’s results the direction
of the macroscopic orientation that Bob will observe in his remote laboratory; then there must exist in
Bob’s laboratory an element of reality associated with this prediction - at this stage, standard quantum
mechanics still agrees, provided one uses the postulate of wave packet reduction, which accounts for
this element of reality. In addition, since Bob’s laboratory is far away and therefore protected from
any influence of Alice’s operations, the element of reality also necessarily existed before Alice made any
measurement - then standard quantum mechanics cannot agree anymore. In fact, it does not only ignore
this initial element of reality, but even says that the phase is completely undetermined before the first
measurement; the EPR argument then concludes that quantum mechanics is incomplete. We have already
emphasized in the introduction that the major difference between this case and the usual two spin case
it that, here, the EPR element of reality can be macroscopic; this weakens Bohr’s rebuttal of the EPR
argument, which hinges on the ambiguity of physical reality for isolated microscopic systems (considered
independently of the macroscopic measurement apparatuses), and seems more difficult to transpose to
macroscopic systems.

There are also a few other differences. First, with double condensates, a single measurement of the
spin of one particle is not sufficient to determine the relative phase; Alice and Bob, have to measure the
spin of at least a few particles to obtain a reasonable determination of this phase, with better and better
accuracy when the number of measurements increases. This is not a problem, since the total number
of available particles may be macroscopic, while a few tens of measurements are already sufficient to
obtain an excellent determination; see [24] for a discussion of the strategies that Alice and Bob may
use to optimize their knowledge of the phase. We remark in passing that, with condensates, the usual
discussion of incompatible measurements, counterfactuality, etc. is not relevant: Alice and Bob can
use exactly the same experimental procedures in all realizations of the experiment, and obtain a good
knowledge of the phase.

The second difference is that, while for two particles the quantization axis along which both spins
polarize is fixed by the direction of first measurement, here the system “chooses for itself” its phase and
therefore its quantization axis; the emerging transverse orientation can have any direction with respect
to the direction of measurements. Moreover, this direction is only known with an accuracy that is limited
by a quantum uncertainty, which decreases when the number of measurements increases (phase/number
quantum uncertainty relation). Even if Alice and Bob choose parallel directions for their measurements
(or any relative direction), perfect correlations are not predicted in general by quantum mechanics, but
only equal probabilities for obtaining result +1 for instance; individual measurements therefore remain
stochastic processes so that, strictly speaking, the words “with certainty” used by EPR therefore do not
apply with double condensates.

9As already mentioned, we ignore any evolution of the system between measurements.
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Fortunately, this does not ruin the EPR reasoning: if Alice makes appropriate measurements to
determine the phase with good accuracy, and if Bob chooses a direction of measurement that is parallel
to the spontaneous transverse magnetization that Alice has observed, the certainty is just replaced by a
high probability, 99% for instance. Alternatively, one can also consider that Alice and Bob use sequences of
individual spin measurements to measure the angle of the transverse spin polarization; if these sequences
are sufficiently long, there is a high probability that their determinations of the phase will agree within
a small error bar. Therefore strong correlations are still obtained in this case, even if no longer at the
level of individual measurements. Local realism then ascribes their origin to correlated elements of reality
belonging to these remote regions of space, and the essence of the EPR reasoning still applies. We note,
nevertheless, that here only one additional element of reality emerges from the EPR reasoning, that
associated with the direction that the system has chosen, while in the usual situation with two spins
all components of Bob’s single spin are predictable from Alice’s result (provided she chooses a parallel
direction of measurement). But, if one accepts local realism, one missing element of reality is already
sufficient to prove that quantum mechanics is incomplete ! One can summarize all this discussion by
saying that the usual EPR microscopic elements of reality, associated with all components of a single
spin, collapse here into one single, macroscopic, element of reality.

4 Microscopic violations of local realism

We now continue the EPR reasoning to derive Bell inequalities; we then show that the quantum predic-
tions violate these inequalities; we complete this section with a comparison between violations obtained
with GHZ or double Fock states.

4.1 Bell inequalities within stochastic local realist theories

The derivation of Bell inequalities from the EPR conclusions involves different reasonings in the usual
case (two spins) and for two condensates. We first recall the situation in the usual case.

4.1.1 Two spins

With two spins, the derivation of the Bell theorem starts from the existence of well defined functions
A(λ, ϕa) and B(λ, ϕb) giving the results of the measurements; these functions depend on the fluctuating
elements of reality λ that each particle carries with it, and of the local orientation ϕa or ϕb of the
measurement apparatus. Within local realism, their existence is proved by the fact that, for any direction
chosen by Alice (or Bob), it is always possible that Bob (or Alice) will chose a parallel direction; one can
then predict with certainty the second observed result from another measurement made very far away.
The results of spin measurements are therefore deterministic functions of the additional variable λ and
of the local setting; the original Bell reasoning [5, 6] then leads to the usual Bell inequalities.

The result can be generalized to a stochastic point of view; the inequalities do not require determinism,
but can also be proved within stochastic realist theories, provided they are local [20]. We call P a

+(λ, ϕa)
the probability that Alice will obtain a result +1 when the relative phase is λ and when she has chosen a
direction ϕa for her measurements, P a

−(λ, ϕa) the probability for the opposite result; a similar notation
P b
±(λ, ϕb) is used for Bob. For a given realization of the experiment, with a given phase λ, the expectation

of the product of the results is:

P a
+(λ, ϕa)P b

+(λ, ϕb) + P a
−(λ, ϕa)P b

−(λ, ϕb) − P a
+(λ, ϕa)P b

−(λ, ϕb) − P a
−(λ, ϕa)P b

+(λ, ϕb) (22)

The average of the product of the results observed by Alice and Bob in many realizations of the experiment
is then:

〈

A B
〉

=

∫ +π

−π

dλ

2π

[

P a
+(λ, ϕa) − P a

−(λ, ϕa)
] [

P b
+(λ, ϕb) − P b

−(λ, ϕb)
]

; (23)
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that is, the average over the possible values of the relative phase λ of the product of the two quantities:

A(λ, ϕa) = P a
+(λ, ϕa) − P a

−(λ, ϕa) = 2P a
+(λ, ϕa) − 1

B(λ, ϕb) = P b
+(λ, ϕb) − P b

−(λ, ϕb) = 2P b
+(λ, ϕb) − 1

(24)

In the second equation of each line, we have taken into account that the sum of probabilities P+ and P−,
for given λ and angle of measurement, is 1; because all probabilities are numbers between 0 and 1, for
any value of λ and the angle ϕ both A and B are numbers between −1 and +1.

If now we form the combination of the average that appear in (17), we obtain the average over the
phase λ of the expression:

A B + A B′ ± (A′ B − A′ B′) (25)

where the primes indicate that the angle ϕa has been replaced by ϕ′
a (or ϕb by ϕ′

b). The only difference
with the deterministic case is that the numbers that appear in (25) are no longer equal to ±1, but
have some value between −1 and +1. But expression (25) is linear with respect to all of these numbers
separately. Therefore, if we replace one of the numbers, A for instance, by ±1, we change the expression
to new values that provide upper and lower bounds of the initial value. Doing the same thing for all four
variables in succession therefore provides new lower and upper bounds which, since now all numbers are
±1, are ±2. At the end of the process, we see that (25) is still bound between −2 and +2; its average
value over the phase λ must have the same property, so that the BCHSH equations remain valid.

4.1.2 Two condensates

With two condensates, the situation is different: when N+ and N− are more than 1, equation (14)
does not contain situations with full correlations. When individual spin results observed by one of the
experimenters cannot be predicted with certainty (for any direction of measurement) from the result
already obtained by the other, local realism can no longer be used to derive the existence of functions
A(λ, ϕa) and B(λ, ϕb). There is no way to force the axis of quantization, as already discussed in § 3.1;
the relative phase that emerges from the measurements is independent of the directions of measurements.
If, for instance, Alice and Bob choose a common direction that happens to be perpendicular to the
transverse direction that has spontaneously appeared, he will have 50% probabilities for the two results,
and the EPR element of reality provides him with no information at all. The connection between the
EPR reasoning and the Bell theorem can therefore not be directly transposed from the two spin case.

A way to proceed is to extend the analysis of § 2.2 by a reasoning that we will call the quasi-classical
treatment of the relative phase (Anderson phase). We have seen that the local realist EPR argument,
applied to sequence of measurements where M remains smaller than the number of particles N , leads
us to conclude that the sample is fully polarized in some unknown direction. This full polarization has
no reason to disappear when more measurements are performed: for instance, if Bob’s sample is initially
fully polarized, it will keep this full polarization if Alice accumulates more measurements on her side,
and even completes the sequence of measurements so that M becomes equal to N : arbitrarily remote
experiments can not influence the local physical properties of Bob’s sample. So we can consider, within
local realism, that both Alice and Bob actually do experiments on fully polarized samples with unknown
transverse directions. In this case, for each realization of the experiment, all spins are in the same
individual quantum state, and the spin measurements are actually independent processes. We can then
write the simple formula:

P(η1, η2, ...ηM ) =

∫ +π

−π

dλ

2π

N
∏

j=1

P (j)
ηj

(λ, ϕj) (26)

where P
(j)
ηj (λ, ϕj) are the individual spin probabilities, which obey:

P
(j)
+1 (λ, ϕj) + P

(j)
−1 (λ, ϕj) = 1 ; P (j)

ηj
(λ, ϕj) ≥ 0 (27)
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and where the correlations between the measurements are introduced by the λ integral in (26). Of course
the simplest idea is to choose for all of them the same probability, for instance that given by quantum
mechanics for the measurement on a single spin:

P (j)
η (λ, ϕ) =

1

2
[1 + η cos (λ − ϕ)] (28)

but we can also take for this probability an arbitrary function of its variables, provided conditions (27)
are fulfilled. In any case, we arrive at a situation where the EPR reasoning leads to probabilities instead
of certainties.

Assume now that Alice makes Na measurements and Bob Nb; formula (26) gives the probability of
any series of results they observe. For using the BCHSH formula, both have to choose functions A and B
that depend on their local results, and take values that remain between ±1. There is a large flexibility
at this stage: Alice decides to attribute value A = +1 to some some chains of her results η1, η2, .. ηNa

,
value A = −1 to all the others; Bob makes a similar choice. Now, to obtain the probability that the
product AB is 1, we can sum of probabilities of two exclusive events (either A = B = 1, or A = B = −1)
and use (26). Let us for instance calculate the probability of the first event which, according to (26), is
the product of two local probabilities, P a

+(λ; ϕ1, ..ϕNa
) and P b

+(λ; ϕNa+1, ..ϕNa+Nb
), defined as:

P a
+(λ; ϕ1, ..ϕNa

) =
∑

A=+1

Na
∏

j=1

P (j)
ηj

(λ, ϕj) ; P b
+(λ; ϕ1, ..ϕNa

) =
∑

B=+1

Na+Nb
∏

j=Na+1

P (j)
ηj

(λ, ϕj) (29)

where the two sums are taken over the sequences of η’s that realize A = 1 for Alice, B = 1 for Bob;
similar reasonings apply to the other values of A and B. At this point, we see that we have made the
connection with the previous calculation: we can define functions A and B by replacing in (24) A by A
and B by B, and the rest of the reasoning goes unchanged; the only difference is that each local angle
ϕa and ϕb is replaced by a series of angles. The essential property remains: each function A or B still
depends only on the local angles chosen by its experimenter, and the BCHSH inequality is still valid.

We conclude that the quasi-classical treatment of the relative phase leads to the BCHSH inequalities;

each time we can write the probability of combined measurements in the form (26), where the P
(j)
ηj (ϕj)

are numbers between 0 and 1, these inequalities hold.

4.2 Comparison with the quantum predictions

The quantum predictions of equation (14) are not exactly of the form (26), but they are similar. Are the
differences sufficient to introduce violations of local realism? We already know that they are, since we
have seen in § 2.3 that the BCHSH inequalities can be violated by the quantum results; here we study in
more detail the mechanism of these violations.

First, we have already noted that, if N is large and if M ≪ N , the peaking effect [cosΛ]
N−M

selects
only the values of Λ around zero, so that a good approximation is to take Λ = 0 inside all the brackets
contained in the product over j; then the Λ integral disappears and one exactly recovers (16), so that no
violation is possible. For large violations of local realism, the most interesting cases occur when M has
its maximal value N ; so, while in the preceding section we discussed mostly the situation where M ≪ N ,
here we are mostly interested in the opposite case.

If Λ does not vanish, (14) remains similar to (26), while not identical. The first difference is that (14)
contains a double integral, but this is not essential: clearly the results of § 4.1 can easily be generalized to
more than one additional variable λ, for instance two λ and Λ, and to situations where the distribution
ρ(λ, Λ) is not uniform; any positive normalized distribution is possible. If we attempt to bring (13) to a
form that is compatible with local realist theories, we must satisfy conditions (27); for this purpose, in
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the product over j, we factorize [cosΛ]M so that each term in the product becomes:

[

1 + ηj
cos (λ − ϕj)

cosΛ

]

(30)

Then the sum of probabilities associated with the two η = ±1 results is indeed 1, as requested. But,
at the same time, we see that the “probabilities” introduced in this way may become negative for some
values of the variables, which opens the way to violations of the BCHSH inequalities, by a mechanism
that we now discuss. First, if we define A and B as equal to 1 for any value of the variables η, because the
quantum probabilities are normalized to 1 by summing over the results η’s, each of the 4 terms contained
in < Q > is then exactly 1, so that < Q >= 2. Now suppose that, for some values of the variables, the
product of “probabilities” is negative; if we redefine A and B in such a way that makes their product
negative for these values, this will automatically increase the value of < Q > beyond 2 and violate the
BCHSH inequalities. In fact, since A and B depend only of the η’s and not of the other variables λ and Λ,
this operation may affect at the same time domains of the variables where the product of “probabilities”
is negative, and positive; the net effect is then a balance between positive and negative contributions,
and the violations do occur when the contribution of the former outweighs those of the latter. In any
case, negative probabilities are a necessary conditions for violations of the inequalities; in § 5, we discuss
in detail several examples of these situations.

4.3 GHZ states versus double Fock states for violations of local realism

Mermin [25] has proposed a thought experiment involving many particles and leading to exponential
violations of local realism; we now briefly compare his scheme with ours. He uses a maximally entangled
spin state (GHZ, or NOON state), which is sometimes considered as the “most quantum state” accessible
to an N particle system. The GHZ states are also sometimes called “Schrödinger cat states”, since they
involve a coherent superposition of states that are macroscopically distinct if N is very large; they are
not easy to produce experimentally with many particles - to our knowledge, the world record [26] for
the number of particles is N = 5 - and very sensitive to decoherence [27].

Our double Fock state (1) is the simplest possible state that is compatible with Bose statistics.
Conceptually, there is no simpler way to put together identical particles in two different spin states; at
first sight, it does not even look entangled but, still, strong violations of the BCHSH inequalities do
occur. Reference [28] shows how double Fock states with equal populations can be used in interferometers
to measure the relative quantum phase at the Heisenberg limit. Such states also undergo decoherence
by coupling to the environment, although more slowly than GHZ states [27]; the “natural basis” for
decoherence is given by phase states (corresponding to different macroscopic spin orientations), and its
effect on our conclusions are minor, since nothing in the calculations requires coherence between various
phase states. With present experimental techniques, there seem to be no enormous difficulty in producing
double Bose-Einstein condensates. Nevertheless, to observe the quantum non-local effect we study here, it
is essential to obtain the equality N+ = N−. This means for instance that it is necessary to carefully avoid
atom losses in both condensates: values of N+ and N− of the order of 10 seem accessible experimentally,
but probably not orders of magnitude more.

A striking feature of Mermin’s thought experiment is the exponential violation that is predicted; we
obtain nothing similar here, just a violation comparable to Cirelson’s limit. Nevertheless it should be
realized that, for N particles, the observable that Mermin introduces is the sum of 2N−1 commuting
products of operators. It seems difficult to imagine how to measure this sum without measuring the 2N−1

commuting components. Seen in this way, the Mermin scheme amounts to accumulating 2N−1 measure-
ments, and taking a sum of results in a way that accumulates the violation and makes it proportional to
the square root of the number of measurements; this procedure can of course be implemented in other
schemes, including two-particle experiments, or our scheme, and leads to violations that are even linear
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in the number of measurements. But the price to pay in all cases is a big increase of the number of
measurements.

Finally - and this is probably the most important difference that we have already emphasized — there
is an important conceptual difference, since with the GHZ state the EPR “elements of reality” remain
microscopic, while with double Fock states they may be macroscopic.

5 Types of measurements; numerical results

Here we consider various types of measurement and the quantitative values of violations that occur with
Bose-Einstein condensates. While up to this point we have considered only the usual form of inequality
shown in (17), other forms are possible as we see here. Moreover, the quantities A, B, etc. can take on
forms other than a simple product of η’s. Values of the inequality violations will be given in this section
but angles for the spin measurements will be presented in an Appendix.

5.1 Products of η’s

We return to (15) in which we computed the average of a product of experimental results for the ηi. Such
a product is ±1 and so qualifies to be an A or B. We consider the case where the number of experiments
is equal to the total number of particles, M = N and the numbers of up and down spin particles are the
same, N+ = N− . Then we have the simple result:

E(ϕ1, ϕ2, ..ϕN ) =

∫ +π

−π
dλ
2π

N
∏

j=1

cos (λ − ϕj)

∫ +π

−π
dΛ
2π [cosΛ]N

(31)

We assume Alice makes P measurements, all at the same angle ϕa, and Bob makes N − P at angle ϕb,
corresponding to products of results A and B; A′ and B′ correspond to two other values of the angles ϕ′

a

and ϕ′
b. Equation (31) then reduces to:

E(ϕa, ϕb) =

∫ +π

−π
dλ
2π cosP (λ − ϕa) cosN−P (λ − ϕb)

∫ +π

−π
dΛ
2π [cosΛ]

N
(32)

Then the quantum average for the Bell test of the inequality (17) is:

〈Q〉 = E(ϕa, ϕb) + E(ϕ′
a, ϕb) + E(ϕa, ϕ′

b) − E(ϕ′
a, ϕ′

b) (33)

In the numerator of (32) we change variables to λ′ = λ − ϕb; if we define:

χ = ϕa − ϕb (34)

we get:

E(ϕa, ϕb) ∼
∫ +π

−π

dλ′

2π
cosP (λ′ − χ) cosN−P (λ′) =

∫ +π

−π

dλ′

2π
cosN−P (λ′) [cosλ cosχ + sinλ sin χ]

P

=

q
∑

k=0

(

P

k

)

sink χ cosP−k χ

∫ +π

−π

dλ′

2π
cosN−k λ′ sink λ′ (35)

The integral is known and we find:

E(χ) =
(N/2)!

N !

{P/2}
∑

k=0,1

P !(N − 2k)!

k!(P − 2k)!(N
2 − k)!

sin2k χ cosP−2k χ (36)
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where {P/2} is the integral part of P/2. This result is efficiently evaluated in numerical maximizations
of 〈Q〉, so that rather large N values can be treated. We always find a fan arrangement with ϕa − ϕb =
ϕb − ϕa′ = ϕb′ − ϕa = χ and ϕb′ − ϕa′ = 3χ, although the value of χ at maximum decreases with
increasing N - see Appendix.

For arbitrary N and P = 1, we again see that E(χ) = cosχ as noted above in (19), yielding 〈Q〉max =

2
√

2. For P = 2, the result is:

E(χ) =
1

2

[

1 +
1

N − 1
+

(

1 − 1

N − 1

)

cos 2χ

]

(37)

so that 〈Q〉max will depend on N. For N = 4 the value is 2.28, but for very large N we obtain 〈Q〉max =
2.414; surprisingly it increases with N. In Fig. 3 we plot 〈Q〉max versus N for various P values; even in
the case P = N/2, we still get violations for all N.
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Figure 3: The maximum of the quantum average 〈Q〉 for Alice doing P experiments and Bob N − P , as
a function of the total number of particles N . Local realist theories predict an upper limit of 2; large
violations of this limit are obtained, even with macroscopic systems (N → ∞). Not shown is the case
P = 1 for which the Cirel’son limit of 2

√
2 is obtained for all N .

In the case in which both P and N −P are very large, a simple approximation for E is available. By
expanding the logarithm of cosL χ to second order in χ we get the approximate form:

cosL y ∼= e−
L
2 y2

(38)

from which we find:

E(ϕa, ϕb) ∼=
∫ +∞
−∞ dλe−

P
2 (λ−ϕa)2e−

N−P
2 (λ−ϕb)

2

∫ +∞
−∞ dλe−

N
2 (λ)2

= e−
P (N−P)

2N
χ2

(39)

In the case P = N/2 we maximize a sum of Gaussians, and again find a fan arrangement, with a maximum
of 8/(3 × 31/8) = 2.32 at χ =

√

ln 3/N. So the fan opening decreases as 1/
√

N ; this approximate result
is valid for N as small as 12.
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We have also relaxed the constraint that all the angles within a set of measurements providing A,
or those providing B, etc. be identical. Thus we might introduce ϕa1,ϕa2, etc. and ϕb1,ϕb2, etc. We
have numerically examined such generalizations for N up to 10, and found that the maximization in this
larger space collapses to the one we discuss above, ϕa1 = ϕa2 = · · · = ϕa, with a single angle for all A
measurements, and a single one for all B measurements, etc.

Experiments with M < N do not result in violations of the Bell inequalities. To see this write equation
(15) in the form:

E(ϕ1, ϕ2, ..ϕM ) =

∫ +π

−π
dλ
2π

M
∏

j=1

cos (λ − ϕj)

∫ +π

−π
dλ
2π cosM λ

G(M, N+, N−) (40)

where:

G(M, N+, N−) =

∫ +π

−π
dΛ
2π cos [(N+ − N−)Λ] cosN−M Λ

∫ +π

−π
dλ
2π cosM λ

∫ +π

−π
dΛ
2π cos [(N+ − N−)Λ] cosN Λ

(41)

=
(N − M)!M !N+!N−!

(

N+ − M
2

)

!
(

N− − M
2

)

!
(

M
2 !

)2
N !

Meven; (42)

and G = 0 if M is odd. The first factor in equation (40) is the expectation value for M experiments with
M particles and can lead to a violation of the Bell inequality. But the correction term G can be shown,
for fixed M, to be largest for N+ = N− = N/2; then an analysis of G(M, N/2, N/2) shows that this
quantity is always less than or equal to 2/3 unless M = N. Since (2/3)2

√
2 < 2, we have the remarkable

result that one must measure every particle’s spin in order to see a violation of the Bell inequality. Even
missing the measurement of one or two particles ruins the observations of the quantum effect.

5.2 Other definitions of A and B
In the above analysis, we have used only a product of all the η′s as the A or B quantity. Other possibilities
are available. For example, if Alice and Bob each make N/2 measurements, we might take A and a B in
the form:

η1 + η2 + · · · ηN/2
∣

∣η1 + η2 + · · · ηN/2

∣

∣

(43)

which, if both Alice and Bob choose one single angle of measurement, would be a macroscopic polarization
of the spins measured by each; more precisely, the numerator of this expression is the macroscopic
polarization (in dimensionless units), and the denominator ensures a “binning” operation that retains
only the sign ±1. Averaging the product of the two polarizations for 〈AB〉, we found that this procedure
does not lead to a Bell violation for any set of angles, except of course for N = 2 where the violation is
2
√

2. For N = 4, we find 〈Q〉max = 1.88; for N = 8, we find 1.78; for N = 10, we find 1.970; for N = 14,
we find 1.966; the value seems to converge asymptotically to 2, that is, the upper limit of local realism.

On the other hand, if Alice makes N − 1 measurements and Bob just one, the average of the product
of her polarization and his single value:

η1 + η2 + · · · ηN−1

|η1 + η2 + · · · ηN−1|
ηN (44)

does lead to violations for one value of N only. The values for N = 4, 6, 8, 19 are respectively, 〈Q〉max =
1.41, 2.121, 1.59, 1.99. There is a violation for N = 6 with higher values again possibly tending to 2.
This violation is a remarkable result since, here, Alice makes a measurement that is almost mesoscopic;
the quantum character of Bob’s measurement is nevertheless sufficient to maintain a significant violation
of local realism. Nevertheless, if the number of measurements made by Alice increases beyond N = 6, the

17



violations disappear. Other cases where Bob makes 2 or more measurements, and Alice the complement
to N , do not lead to violations.

We have also tried considering averages of sums of two measurements in the form of products of
(η1 + η2)/2. Such a quantity has possible values 1,0,-1 but the Bell inequality still holds. We found no
cases where the quantum average of such pair averages lead to a violation.

5.3 Other inequalities

Other inequalities besides that of (17) are possible. For example, consider the inequality:

−2 ≤ 1

2
(AB + A′B + AB′ −A′B′)(CD + C′D + CD′ − C′D′) ≤ 2 (45)

where each of the letters represents an η or a product of any number of η’s. We assume that the angles
of measurement corresponding to the η’s in each letter are all the same (but releasing this constraint
in the corresponding quantum average does not increase the violation found.). For N = 4 each letter
represents just one η, while for N = 8 each letter corresponds to the product of two η’s. For N = 6,
A would represents one η and B two, etc. We find the violations shown in Table I when maximizing
the corresponding quantum averages (the N = ∞ result in Table I comes from making a Gaussian
approximation, as in equation (38), for the powers of cosines in the integrals).

Table I. Results for the 〈Q〉max corresponding to the inequality of (45)
N 〈Q〉
4 2.66
6 2.33
8 2.18
12 2.17
∞ 2.15

An extension of the idea in (45) is the inequality:

−2 ≤ 1

4
(AB + A′B + AB′ −A′B′)(CD + C′D + CD′ − C′D′)(EF + E ′F + EF ′ − E ′F ′) ≤ 2 (46)

The quantum counterpart of this yields 2.66 for N = 6; we therefore obtain a large quantum violation of
this particular inequality, which therefore provides an interesting generalization of the BCHSH inequality.
We have been able to treat larger N values in this case only by use of the Gaussian approximation discussed
earlier. The violation continues for larger N with a limit of 〈Q〉max = 2.09.

6 Sample bias (efficiency) loophole

Our quantum calculations are consistent only if the ”measurement boxes” are spatially disconnected (to
ensure commutation of the quantum field operators) and if their volume ∆ is sufficiently small to limit
the number of particles in each of them to 0 or 1; otherwise, the expressions of the projectors we use are
not valid10. This means that the average number of particle in each box is much less than one, so that
most measurements detect no spin at all. But, if one counts 0 for all these non-detection events, clearly
the quantum average of the product of results becomes very close to zero, and no violation of the Bell
inequalities remains possible!

10The expression we use is actually the total amount of spin orientation within the volume (in ~/2 units). If two particles
are found inside the same volume ∆, then the two possible values of this orientation are ±2 (instead of ±1 for one particle),
leading to eigenvalues 2 or 0 of the (space integrated) operator (5). This is in contradiction with the eigenvalues 1 or 0 of a
projector; moreover, values exceeding 1 are in contradiction with the assumptions leading to the Bell inequalities.
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This is not an unusual situation in Bell-type experiments. When detecting pairs of photons for instance,
most photons are lost because of the finite solid angle that is captured by the detectors and of their limited
quantum efficiency. This is known as the “sample bias loophole”, “efficiency loophole”, “pair selection
loophole”, etc. To avoid the problem, what is done in practice by experimentalists is to redefine the sample
of events in the calculation of the averages: instead of the sample of all emitted pairs, they consider the
sample of pairs for which particles in coincidence are indeed detected. This restores the possibility of
a violation of the inequalities, but at the same time destroys the validity of the BCHSH inequalities
themselves, since local realism stricto sensu is then no longer sufficient to derive them. The reason is
that there is no way to ensure that the sample remains independent of the settings of the apparatuses,
while this assumption is crucial for the proof of the Bell theorem: if the “settings” introduce a bias in
the sample, the distribution of variables λ may depend on them, and the proof of the theorem becomes
impossible 11. One then has to introduce extra assumptions, for instance that the measured probability is
the product of a probability of detection (independent of the settings) by a spin (and setting) dependent
probability that is relevant to the Bell inequality violation. This experimental loophole has been pointed
out many times, and some authors (a minority) have even refuted all locality experiments for this reason;
there is a large literature on the subject.

Fortunately, at least for thought experiments, the loophole can be closed; it is therefore not a
fundamental obstacle, but only contingent and related to our present technologies. John Bell had a
elegant way to solve the problem [8], with the introduction of either “veto detectors” or “spin independent
preliminary detectors”; the purpose of these detectors was to properly define a sample of systems that is
independent of the settings and ensures that a spin signal is always obtained at each detector. Similarly,
Clauser and Shimony [20] introduce “event ready detectors” that have the same function. In our case
with Bose-Einstein condensates, we need something similar. The simplest idea is to assume that, before
any spin measurement, spin-independent detectors are used to ensure that one particle (and one exactly)
is found in each measurement box. It may be necessary to repeat the preparation procedure many times
before this result is obtained, since in most cases no particle is found in at least one of the measurement
boxes, but in theory this is not a problem: it is sufficient to ignore these cases, and to repeat the
preparation stage as many times as needed until the desired result is observed. Only after this sample
preparation stage has been successful will the spin measurements be performed. Alternatively, one can
decide to replace the initial quantum state, the double Fock state, by the new state obtained after wave
packet reduction is applied after a positive preparation stage. Here we study the explicit form of this
new initial quantum state.

6.1 Calculating a new quantum state

The initial double Fock state is given by (1); we now assume that M “measurement boxes” are defined
in the volume occupied by the orbital wave function, and decompose this wave function as:

u(r) =
M+1
∑

m=1

xm um(r) (47)

where for m ≤ M the function um(r) is the normalized “projection”12 of the wave function u(r) into the
measurement box number m; uM+1(r) is defined as the complementary projection of u(r) outside all the
measurement boxes. The xm are the components of the linear decomposition of u(r) onto the contents of

11It is even possible to show that a selection of detected pairs that is dependent on φa and φb makes it possible to
reproduce any correlation of results within local realist models. In other words, local realism does not introduce inequalities
anymore.

12This projection is equal to u(r) within the box, zero outside, and then normalized to 1.
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the various boxes, with:
M+1
∑

m=1

|xm|2 = 1 (48)

For m ≤ M , the smaller the measurement boxes, the larger the values of the normalized um(r)’s inside
their boxes, and the smaller the coefficients xm; for m = M + 1, xM+1 then remains close to 1. The
creation operators for the states | u, + > and | u,− > can be expressed as functions of the creation

operators a†
um,+ and a†

um,− for the the states | um, + > and | um,− >:

a†
u,+ =

M+1
∑

m=1

xm a†
um,+ ; a†

u,− =

M+1
∑

m=1

xm a†
um,− (49)

so that:

|Φ〉 =

[

M+1
∑

m=1

xm a†
um,+

]N+




M+1
∑

m′=1

xm′ a†
u

m
′ ,−





N−

|vac〉 . (50)

All operators in this expression commute, so that usual algebraic expansions of the powers of sums can
be used without special care.

We see in (50) that the double condensate state vector contains components on states where the
number of particles in each box varies substantially. If, for instance, one selects inside both sums only
the terms m = M + 1, all particles go to the complementary box, while all measurement boxes remain
empty; no particle can be detected at all by any of the apparatuses. If, on the other hand, one selects
only terms corresponding to a given measurement box, all particles accumulate into this particular box,
while all the others remain empty. Of course, one can also spread the particles among all measurement
boxes, and what we wish is to consider situations where they are equally filled.

We then decide to introduce a new initial state by retaining from (50) only the components where each
measurement box contains one particle exactly. In other words, we project | Φ > onto the subspace where
each measurement box contains one particle, and obtain a new state vector | Φ >. Mathematically, this
vector could be written with the introduction of exponentials and integrations into (50), but for simplicity
we do not write this expression; what is important here is not so much the mathematical form of new
initial state | Φ > , but the fact that it exists and can be built, without changing the relative probabilities
calculated with | Φ > for detecting single spins in each measurement box. This is true by construction:
one can easily see that that all components of | Φ > that have been eliminated from | Φ > play no
role whatsoever in the calculation of the probability for single particle detection; they just eliminate
no-detection and multiple detection events. The only difference is the normalization of the ket, which is
changed by the removal of all these useless components; the remaining components must be increased to
restore normalization. Physically, since we are now sure that one particle, and one particle only, will be
detected in each box, we know that the probabilities for all possible results ηm = ±1 add to 1, which is
exactly what we wish for a violation of the inequalities.

6.2 Discussion

Expression (50) is nothing but the product of N+ sums associated with internal state + by N− sums
associated with the other with internal state −. One can see the physical system as the juxtaposition
of two entangled subsystems, one corresponding to the content of the measurement boxes (system I),
the other to the content of the complementary box (system II). But, if we limit the discussion to the
case where M has its maximal value N+ + N− (we have seen in § 5 that this corresponds to maximal
violations of the BCHSH inequalities), then system II becomes empty; its quantum state is independent
of that of the M measurement boxes and factorizes out. System I is then in a pure state, with components

20



that depend on how the two internal states are distributed among the measurement boxes; the number
of possibilities is:

N !

(N − N+)!N+!
=

N !

(N − N−)!N−!
(51)

In state | Φ >, by construction, both Alice and Bob perform local experiments on a fixed total number
of particles, but with a fluctuating number of spins + and spins −. This remark allows us to come
back to the situation shown in the lower part of figure 1. When the wave function of each condensate
is coherently split into two disconnected parts, each spin system remains a single condensate with an
orbital function that is the coherent sum of two distant components, and the number of particles in each
of these components has large fluctuations. Therefore, neither Alice nor Bob knows the number of spin
up, or spin down, that she/he receives; the corresponding fluctuations are essential for the interesting
quantum non-local effects to occur. The total number of particles contained in Alice’s sample also has
large fluctuations in state | Φ >, but since this state can be replaced by | Φ > without affecting our
results, we see that these fluctuations are not essential; in state | Φ >, the fluctuations between the
numbers of spins up and spins down in each region of space are correlated in a way that cancels the
fluctuations of the total number of particles in this region, without destroying the non-local effects.

Rather than writing the resulting state for system I in more detail with identical particles, it is simpler
to consider now distinguishable particles.

7 Violations of local realism with distinguishable particles

We now show that our results for violations of the Bell inequalities are not just limited to Bose-Einstein
condensates but also apply to distinguishable particles. When the number of measurements M has its
maximal value N = N+ + N−, state | Φ > corresponds to all particles localized in different boxes, with
no spatial overlap, so that they do behave as distinguishable particles; if we wish, we can number them
in the state vector by assigning them the number of the box they occupy; this operation does not affect
the physical predictions.

7.1 Quantum state

Using the numbering of the boxes in which the particles are contained, the state
∣

∣Φ
〉

can then be written
as a product:

∣

∣Φ
〉

= |Ψorb.(1, 2, ..N)〉 |Ψspin(1, 2, ..N)〉 (52)

with:
|Ψorb.(1, 2, ..N)〉 = |u1(1) u2(2)..uN (N))〉 (53)

(particle 1 is inside measurement box 1, particle 2 inside measurement box 2, etc.) and:

|Ψspin(1, 2, ..N)〉 = |1 : +; ...N+ : +; N+ + 1 : −.....N : −〉 + permutations (54)

In this spin state, the N+ spin up orientations and the N− spin down orientations are distributed in all
possible ways among the numbered particles.

If we wish, we can completely ignore the factorized orbital state and consider only the spins. For
instance, with N+ = 2 and N− = 1, the spin state reads:

|Ψspin(1, 2, 3)〉 =
1√
3

[|1 : +; 2 : +; 3 : −〉 + |1 : +; 2 : −; 3 : +〉 + |1 : −; 2 : +; 3 : +〉] (55)

or, in a more condensed notation:

|Ψspin(1, 2, 3)〉 =
1√
3

[|+, +,−〉+ |+,−, +〉+ |−, +, +〉] (56)
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On the other hand, if N+ = N− = 2, this spin state is, with the same notation:

|Ψspin(1, 2, 3, 4)〉 = 1√
6

[|+, +,−,−〉+ |+,−, +,−〉+ |−, +,−, +〉+
+ |−,−, +, +〉+ |+,−,−, +〉+ |−, +, +,−〉] (57)

etc. Such spin functions having equal amplitudes for all permutations belong to the category of W-states
[29, 30, 31].

Our study shows that W-states are directly related to double Fock states and suggests a method to
create them: start from a spin condensate and then perform a preliminary localization of the particles.

7.2 Recovering the results obtained with identical particles

We now check that a calculation with numbered spins allows us to recover our preceding results, without
having to worry about orbital variables and symmetrization. For spin numbered j, the projector over the
eigenstate corresponding to a result ηj = ±1 for a measurement along azimuthal direction ϕj is:

P spin
ηi

(ϕj) =
1

2

[

1j +
η1

2

(

e−iϕj σ+
j + eiϕj σ−

j

)

]

(58)

with the usual notation σ±
j for the angular momentum operator of spin j and 1j for the identity operator,

which is the sum of the projectors over the two spin states |+〉 and |−〉:

1j = |+〉 〈+|j + |−〉 〈−|j (59)

The probability of a sequence of a results η1, η2, ..ηN for measurements along polar directions ϕ1, ϕ2,
...ϕN is then proportional to:

〈Ψspin(1, N)|
N
∏

j=1

1

2

[

|+〉 〈+|j + |−〉 〈−|j +
η1

2

(

e−iϕjσ+
j + eiϕj σ−

j

)

]

|Ψspin(1, N)〉 (60)

In this expression, each factor of the product of N brackets contains four terms, each with an operator
that gives non zero only if it acts on one of the two states |+〉 and |−〉; if a given choice among these
four terms is made inside each bracket, a non-zero result is obtained for only one state for the N spins.
For instance, if |−〉 〈−|1, e−iϕ2σ+

2 , eiϕ3σ−
3 , and |+〉 〈+|4, etc. are selected, the spin state has to be

|−,−, +, +, ...〉. To obtain a non-zero result, a first condition is then that this state must have a non-zero
component in the ket |Ψspin〉. To ensure that this condition is satisfied, we can multiply all |+〉 〈+| ’s and
σ−’s by eiΛ, all |−〉 〈−|’s and σ+’s by e−iΛ, and calculate the integral of the function F (Λ) obtained in
this way by:

∫ +π

−π

dΛ

2π
ei(N+−N−)ΛF (Λ) (61)

But a second condition is that the product with the bra 〈Ψspin(1, .., N)| must not vanish either, which
is the case if the effect of the successive σ+ and σ− operators flips the same number of spins in each
direction. To ensure this, we multiply all σ+ ’s by eiλ, all the σ−’s by e−iλ, and introduce a second
integral over λ:

∫ +π

−π

dλ

2π
(62)

If these two conditions are satisfied, one always obtains a non-zero result, actually always the same number
since all non-zero components of the state vector are equal. Finally, the probability is proportional to13:

∼
∫ +π

−π

dΛ

2π
ei(N+−N−)λ

∫ +π

−π

dλ

2π

N
∏

j=1

1

2

[

eiΛ + e−iΛ + η1

(

ei(λ−Λ−ϕj) + c.c.
)]

(63)

13Factors 2 disappear because, for instance, σ− | + >= 2 | − >.
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or:

∼
∫ +π

−π

dΛ

2π
cos(N+ − N−)Λ

∫ +π

−π

dλ

2π

N
∏

j=1

[cosΛ + η1 cos (λ − Λ − ϕj)] (64)

which is identical to (12) with a trivial change of integration variable. We have therefore recovered the
results obtained previously with identical particles, but with numbered spins, as usual in calculations of
Bell inequalities violations. Our results are therefore not limited to Bose-Einstein condensates; we have
a systematic way to go from identical to distinguishable particles. When the number of measurements
M is less than the number of particles N , a summation over the results ηj of the N − M unperformed
measurements provides the probability, as in § 2.1.

7.3 Triplet state

In the case N = M = 2, the initial state is the triplet state:

| Ψspin(1, 2) >=
1√
2

[ |+,−〉 + |−, +〉 ] (65)

and we obtain:

∼
∫ +π

−π

dΛ

2π

∫ +π

−π

dλ′

2π
[cosΛ + η1 cos (λ′ − ϕ1)] [cosΛ + η2 cos (λ′ − ϕ2)] (66)

or:
∼ 1 + η1η2 cos (ϕ1 − ϕ2) (67)

or, after a normalization to 1 of the sum of the four different probabilities:

Pη1,η2 =
1

4
[1 + η1η2 cos (ϕ1 − ϕ2)] (68)

This is the usual result, which can also be written as:

Pη1,η2 =
1

4

∫ +π

−π

dλ′

2π

[

1 + η1

√
2 cos (ϕ1 − λ′)

] [

1 +
√

2η2 cos (ϕ2 − λ′)
]

(69)

In this expression, we see that the brackets inside the integral can indeed become negative, allowing a
possible violation of the Bell inequalities.

8 Conclusion

Transverse spins measurements on double Fock states provide an interesting case where one can calculate
exactly the predictions of quantum mechanics in all experimental situations, even if the measurements
depend on many parameters. Another interesting flexibility arises from the choice of the two functions
A and B, which can be defined in different ways; depending on this definition, the physical quantity on
which locality is tested is microscopic, macroscopic, or intermediate; one can in this way study in detail
the emergence of local classical properties of physical systems from microscopic non-locality, within the
formalism of quantum mechanics, as a function of all the parameters of the experiment.

One often rightly emphasizes that quantum entanglement is the essential ingredient of violations of
local realism by quantum mechanics; the best known example of strongly entangled quantum states are
the GHZ/NOON states, which indeed lead to strong violations. It is nevertheless interesting to note
that this maximal entanglement is not a necessary condition; in fact, the minimum correlations that are
compatible with Bose-Einstein statistics are already sufficient to lead to strong quantum non-local effects.
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Conversely, this does not mean that statistics is a necessary conditions for violations either; in fact, we
have shown that the same effects can be obtained with distinguishable spins in states belonging to the
family of W states. A common property of all our results is that, in all cases, it is essential to perform
the measurements on all particles; if a single one is missed, the violations disappear. When this condition
is fulfilled, one reaches situations where the quasi-classical image of the Anderson phase is not always
sufficient to reproduce the quantum results.

Acknowledgments: Laboratoire Kastler Brossel is “UMR 8552 du CNRS, de l’ENS, et de l’Université
Pierre et Marie Curie”.

24



Appendix: angles of measurement

To find the maximal violations of the Bell inequalities we used a numerical routine that produced the
angles at which the violation occurred as well as the value of the violation. In the cases shown in Fig. 3
where A (and B, A′, and B′ as well) is a product of results of measurements all at the same angle, we have
noted previously that the angles at maximum occur in a fan arrangement with b−a = a−b′ = a′−b = χ,
and a′ − b′ = 3χ (in this appendix we simplify the angle notation by writing, for example ϕa = a). In
Fig. 4 we give χ for the same cases as treated in Fig. 3. For the case of P = N/2 the angle χ drops off
as 1/

√
N as shown analytically with the Gaussian approximation of Eq. (39).

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

χ

10080604020

N

       P
 2
 4
 6
N/2

 

Figure 4: Angles of measurement corresponding to the violations shown in Fig. 3. The angle χ is defines
the fan described in the text.

In the treatment of the “semi-mesoscopic” measurement described by Eq. (44), the angles also make
a fan with χ = π/4 for the one case N = 6 that gives a violation. However, when we analyze the
inequality described in Eq. (45), the fan becomes distorted. We describe each of the situations of Table
I individually. For N = 4 all eight of the angles are distinct, but spread out in a pattern: Starting at a′

and moving in order of a′,d′,b,c,a,d,b′,c′ we proceed alternately in steps of ∆1 and ∆2 where ∆1 = 0.458
and ∆2 = 0.326 (with ∆1+ ∆2 = π/4). Thus the separation between any angle and its prime is π/2.
The pattern is shown in Fig. 5(a).

For N = 6, we use one measurement each for A and for A′, but the product of two measurements
for B and for B′; similarly for C and D and their primes. The two angles for B collapse to a single angle
with the same holding for B′, D, and D′. We find a = c; if we take these as the origin, then we have a′ at
−3∆; b and d′ at −∆; b′ and d at ∆; and c′ at 3∆ where ∆ = π/8. The spread of the whole fan is then
π. See Fig. 5(b)

For N = 8 and 12, the angles collapse to just four distinct values. For N = 8 we have each letter A,
B, A′, and B′ being a product of two experimental results at the same angle. If a′ = d′ is the origin, then
we move up in steps of ∆1, ∆2, and ∆1 to b = c, a = d, and b′ = c′, respectively, where ∆1 = 0.4533 and
∆2 = 0.1738. as seen in Fig. 5(c). With N = 12, each letter represents the product of three experimental
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Figure 5: Angles of measurement corresponding to the inequalities of Eqs. (45) and (46). Patterns (a)
through (d) show angles for N = 4, 6, 8, and 12, respectively, corresponding to the violations of Table I
for inequality (45). Part (e) shows the angle pattern for the violation of Eq. (46).

results at the same angle. The arrangement is the same as for N = 8, except that the separations are
reduced to ∆1 = 0.3741 and ∆2 = 0.0685, as shown in Fig. 5(d). The Gaussian approximation shows the
angle separations to be dropping as 1/

√
N .

Finally we have the inequality of Eq. (46). For N = 6, each letter represents just one measurement.
The angles resulting in a maximum are all distinct but come in four evenly spaced groups of three as
seen in Fig. 5(e). If the set {a′, e′, d′} is at {0, 0.159, 0.209}, then we move up by π/4 to the next triplet
of {b, f, c}; π/4 to the next set of {a, e, d}; and another π/4 to {b′, f ′, c′}.
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