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Abstract: In this paper, we study the one-level Friedrichs model with using the quantum

time super-operator that predicts the excited state decay inside the continuum. Its survival

probability in long time limit is an algebraically decreasing function and an exponentially

decreasing multiplied by the oscillating functions.

1 Introduction

In this paper we shall study the concept of survival probability of an unstable
quantum system introduced in [1] and we shall test it in the Friedrichs model [2].
The survival probability should be a monotonically decreasing time function and
this property could not exist in the framework of the usual Weisskopf-Wigner
approach [3, 4, 5, 6]. It could only be properly treated if it is defined through
an observable time operator T whose eigenprojections provide the probability
distribution of the time of decay. The equation defining time operator is the
following:

U−tTUt = T + tI (1.1)

where Ut is the unitary group of states evolution. It is known that such an op-
erator cannot exist when the evolution is governed by the Schrödinger equation,
since the Hamiltonian has a bounded spectrum from below, and this contradicts
the equation:

[H,T ] = iI (1.2)

in the Hilbert space of pure states H. However, a time operator can exist under
some conditions, for mixed states. They can be embedded [1, 7, 8] in The
“Liouville space”, denoted L, that is the space of Hilbert-Schmidt operators ρ
on H such that Tr(ρ∗ρ) < ∞, equipped with the scalar product: < ρ, ρ′ >=
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Tr(ρ∗ρ′). The time evolution of these operators is given by the Liouville von-
Neumann group of operators:

Utρ = e−itHρeitH (1.3)

The infinitesimal self-adjoint generator of this group is the Liouville von-Neumann
operator L given by:

Lρ = Hρ− ρH (1.4)

That is, Ut = e−itL. The states of a quantum system are defined by normalized
elements ρ ∈ L with respect to the scalar product, the expectation of T in the
state ρ is given by:

< T >ρ=< ρ, Tρ > (1.5)

and the “uncertainty” of the observable T as its fluctuation in the state ρ:

(∆T )ρ =
√
< T 2 >ρ −(< T >ρ)2 (1.6)

Let Pτ denote the family of spectral projection operators of T defined by:

T =

∫

R

τdPτ (1.7)

It is shown that [1] the unstable states are those states verifying ρ = P0ρ. Let
△E be the usual energy uncertainty in the state M given by:

△E =
√

Tr(M.H2) − (Tr(M.H))2 (1.8)

and △T = (△T )M1/2 be the uncertainty of T in the state M defined as in (1.6).
It has been shown that:

△E △ T ≥ 1

2
√

2
(1.9)

This uncertainty relation leads to the interpretation of T as the time occurrence
of specified random events. The time of occurrence of such events fluctuates and
we speak of the probability of its occurrence in a time interval I =]t1, t2]. The
observable T ′ associated to such event in the initial state ρ0 has to be related
to the time parameter t by:

〈T ′〉ρt = 〈T ′〉ρ0
− t (1.10)

where ρt = e−itLρ0. Comparing this condition with the above Weyl relation we
see that we have to define T ′ as: T ′ = −T . Let Qτ be the family of spectral
projections of T ′, then, in the state ρ, the probability of occurrence of the event
in a time interval I is given, as in the usual von Neumann formulation, by:

P(I, ρ) = ‖Qt2ρ‖2 − ‖Qt1ρ‖2 = ‖(Qt2 −Qt1)ρ‖2 := ‖Q(I)ρ‖2 (1.11)

The unstable “undecayed” states prepared at t0 = 0 are the states ρ such that
P(I, ρ) = 0 for any negative time interval I, that is:

‖Qτρ‖2 = 0, ∀τ ≤ 0 (1.12)
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In other words, these are the states verifying Q0ρ = 0. It is straightforwardly
checked that the spectral projections Qτ are related to the spectral projections
Pτ by the following relation:

Qτ = 1 − P−τ (1.13)

Thus, the unstable states are those states verifying: ρ = Po0ρ and they coincide
with our subspace F0

1. For these states, the probability that a system prepared
in the undecayed state ρ is found to decay sometime during the interval I =
]0, t] is ‖Qtρ‖2 = 1 − ‖P−tρ‖2 a monotonically nondecreasing quantity which
converges to 1 as t → ∞ for ‖P−tρ‖2 tends monotonically to zero. As noticed
by Misra and Sudarshan [3], such quantity could not exist in the usual quantum
mechanical treatment of the decay processes and could not be related to the
“survival probability” for it is not a monotonically decreasing quantity in the
Hilbert space formulation. In the Liouville space, given any initial state ρ, its
survival probability in the unstable space is given by:

pρ(t) = ‖P0e
−iLtρ‖2 (1.14)

Hence, in the Liouville space, given any initial state ρ, its survival probability
in the unstable space is given by:

pρ(t) = ‖P0e
−itLρ‖2

= ‖U−tP0Utρ‖2

= ‖P−tρ‖2 (1.15)

Then, the survival probability is monotonically decreasing to 0 as t → ∞. As
Pt is a spectral family of projections pρ(t) → 1 when t → −∞. This survival
probability and the probability of finding the system to decay sometime during
the interval I =]0, t], qρ(t) = ‖Qρ(t)‖2 are related by:

qρ(t) = 1 − pρ(t) (1.16)

2 Spectral projections of time operator

The expression of time operator is given in a spectral representation of H . As
shown in [1], H should have an unbounded absolutely continuous spectrum. In
the simplest case, we shall suppose that H is represented as the multiplication
operator on H = L2(R+) :

Hψ(λ) = λψ(λ) (2.17)

the Hilbert-Schmidt operators on L2(R+) correspond to the square-integrable
functions ρ(λ, λ

′

) ∈ L2(R+ × R+) and the Liouville-Von Neumann operator L
is given by :

Lρ(λ, λ
′

) = (λ− λ
′

)ρ(λ, λ
′

) (2.18)
1We define the subspace Ft0

to the set of decaying states prepared at time t0
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Then we obtain a spectral representation of L via the change of variables:

ν = λ− λ
′

(2.19)

and
E = min(λ, λ

′

) (2.20)

This gives a spectral representation of L:

Lρ(ν,E) = νρ(ν,E), (2.21)

where Lρ(ν,E) ∈ L2(R × R+). In this representation Tρ(ν,E) = i d
dν
ρ(ν,E) so

that the spectral representation of T is obtained by the inverse Fourier trans-
form:

ρ̂(τ, E) =
1√
2π

∫ +∞

−∞
eiτνρ(ν,E)dν = (F∗ρ)(τ, E) (2.22)

and
T ρ̂(τ, E) = τ ρ̂(τ, E). (2.23)

The spectral projection operators Ps of T are given in the (τ, E)-representation
by:

Psρ̂(τ, E) = χ]−∞,s](τ)ρ̂(τ, E) (2.24)

where χ]−∞,s] is the characteristic function of ] − ∞, s]. So that we obtain in
the (ν,E)-representation the following expression of these spectral projection
operators:

Psρ̂(ν,E) =
1√
2π

∫ s

−∞
e−iντ ρ̂(τ, E) dτ

= e−iνs

∫ 0

−∞
e−iντ ρ̂(τ + s, E) dτ. (2.25)

Let us denote the Fourier transform Ff(ν) = 1√
2π

∫ ∞
−∞ e−iντf(τ) dτ and re-

mind the Paley-Wiener theorem which says that a function f(ν) belongs to the
Hardy class H+(i.e. the limit as y → 0+ of an analytic function Φ(ν + iy)
such that

∫ ∞
−∞ | Φ(ν + iy) |2 dy < ∞) if and only if it is of the form f(ν) =

1√
2π

∫ 0

−∞ e−iντ f̂(τ) dτ where f̂ ∈ L2(R+) [9]. Using the Hilbert transformation:

Hf(x) =
1

π
P

∫ ∞

−∞

f(t)

t− x
dt (2.26)

for f ∈ L2(R) we can write the decomposition:

f(x) =
1

2
[f(x) − iHf(x)] +

1

2
[f(x) + iHf(x)]

= f+(x) + f−(x) (2.27)

4



According to the theorem, f+(x) (resp.f−(x)) belongs to the Hardy class H+(
resp.H−). This decomposition is unique as a result of Paley-Wiener theorem.
Thus taking the Fourier transformation of f we obtain :

F(f)(ν) =
1√
2π

∫ 0

−∞
e−iντ f̂(τ) dτ +

1√
2π

∫ ∞

0

e−iντ f̂(τ) dτ.

It follows that:

1√
2π

∫ 0

−∞
e−iντ f̂(τ) dτ =

1

2
(F(f) − iHF(f)). (2.28)

Now, using the well known property of the translated Fourier transformation
σsf̂(τ) = f̂(τ + s) we have :

F(σsf̂)(ν) = eiνsF .f̂(ν) = eiνsf(ν), (2.29)

this and (2.26) yields:

Psρ(ν,E) =
1

2
e−iνs[eiνsρ(ν,E) − iH(eiνsρ(ν,E))]. (2.30)

Thus:

Psρ(ν,E) =
1

2
[ρ(ν,E) − ie−iνsH(eiνsρ(ν,E))]. (2.31)

It is clear from (1.15) that Psρ(ν,E) is in the Hardy class H+ .

3 Computation of spectral projections of T in a

Friedrichs model

The one-level Friedrichs model is a simple model Hamiltonian in which a discrete
eigenvalue the free Hamiltonian H0. It has been often used as a simple model
of decay of unstable states illustrating the Weisskopf-Wigner theory of decaying
quantum systems. The Hamilton operatorH is an operator on the Hilbert space
of the wave functions of the form | ψ >= {f0, g(ω)}, f0 ∈ C, g ∈ L2(R+),

H = H0 + λV, (3.32)

where λ is a positive coupling constant, and

H0 | ψ >= {ω1f0, ωg(ω)}, (ω1 > 0). (3.33)

We shall denote the eigenfunction of H0 by χ = {1, 0}. The operator V is given
by:

V {f, g(ω)} = {< v(ω), g(ω) >, f0.v(ω)}. (3.34)

Thus H can be represented as a matrix :

H =

(
ω1 λv∗(ω)

λv(ω) ω

)
, (3.35)
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where v(ω) ∈ L2(R+) and it is called a factor form. It has been shown than for
λ small enough, H has no eigenvalues and that the spectrum of H is continuous
extending over R+. It is also shown that in the outgoing spectral representation
of H , the vector χ is represented by:

f1(ω) =
λv(ω)

η+(ω + iǫ)
, (3.36)

where

η+(ω + iǫ) = ω − ω1 + λ2 lim
ǫ→0

∫ ∞

0

|v(ω)|2
ω

′ − ω − iǫ
dω

′

(3.37)

and Hχ is represented ωf1(ω). The quantity < χ, e−iHtχ > is usually called the
decay law and | < χ, e−iHtχ > |2 =

∫ ∞
0 |f1(ω)|2e−iωtdω is called the survival

probability at time t. It is however clear that this is not a true probability, since
it is not a mononically decreasing quantity, although it tends to zero as a result
of the Riemann-Lebesgue lemma. Let us now identify the state χ with element
ρ = |χ >< χ| of the Liouville space, that is, to the kernel operator:

ρ11(ω, ω
′

) = f1(ω)f1(ω
′). (3.38)

We shall compute first the unstable component P0ρ11 and show that P0ρ11 6=
ρ11. Then we shall compute the survival probability in the state ρ.

lim
s→∞

‖P−sρ‖2 → 0. (3.39)

4 Computation of Psρ11

As explained above the Liouville operator is given by:

Lρ(ω, ω
′

) = (ω − ω
′

)ρ(ω, ω
′

) (4.40)

and that the spectral representation of L is given by the change of variables:

ν = ω − ω
′

(4.41)

and
E = min(ω, ω

′

). (4.42)

Thus we obtain for ρ11(ν,E) :

ρ11(ν,E) =






λ2 v(E)
η−(E)

v∗(E+ν)
η+(E+ν) ν > 0

λ2 v∗(E)
η+(E)

v(E−ν)
η−(E−ν) ν < 0.

(4.43)

where η− is the complex conjugate of η+.

η+(ω) ≃ ω − z1, z1 = ω̃1 − i
γ

2
(4.44)
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where z1 is called the resonance with energy ω̃1 and a lifetime γ [10]. It is
believed that this form results from weak coupling approximations. It can be
shown ρ11(ν,E) in the following form:

ρ11(ν,E) =
γ

2
f(ν), (4.45)

where

f(ν) =






1
ν∗

0
(ν+ν0) ν > 0

1
ν0(ν∗

0
−ν) ν < 0.

(4.46)

where ν0 = a + ib = (E − ω̃1) + iγ
2 . For obtaining Ps(f)(ν), we shall use the

formula (2.31) and we obtain

Psf(ν) = ie−isν [
−1

2πν0(ν∗0 − ν)
(

∫ 0

−∞

e−sy

y + iν∗0
dy −

∫ 0

−∞

e−sy

y + iν
dy)

+
1

2πν∗0(ν + ν0)
(

∫ 0

−∞

e−sy

y − iν0
dy −

∫ 0

−∞

e−sy

y + iν
dy)]

+






e−isν [ eisν∗

0

ν0(ν∗

0
−ν) − e−isν0

ν∗

0
(ν0+ν) ], E < ω̃1

0, E > ω̃1.

(4.47)

In this equation the non integrals terms yield a poles and lead to the resonance
shown in equation (4.53), and the integral terms yield an algebraical term analog
to the background in the Hamiltonian theories [6, 11, 12]. We can also compute
the same result for the case ν < 0.

4.1 Case s = 0

In this case (4.47) can be obtained as:

P0f(ν) =
i

ν0(ν∗0 − ν)
log+(

ν

ν∗0
) − i

ν∗0 (ν + ν0)
log+(− ν

ν0
)

+






[ 1
ν0(ν∗

0
−ν) − 1

ν∗

0
(ν0+ν) ], E < ω̃1

0, E > ω̃1.

(4.48)

where log+ z is the complex analytic function with cut-line along the negative
axis:

log+ z = log |z| + i arg(z), arg(z) ∈] − π
2 ,

3π
2 [ . (4.49)

Also, we used limR→∞ log+( iν−R
iν∗

0
−R

) → 0 and limR→∞ log+( iν−R
−iν0−R

) → 0.

We see that P0f(ν) is an upper Hardy class function. This verified the
general theorem about the properties of the unstable states associated to time
operator, as being in the upper Hardy class.
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4.2 Asymptotical behavior of the survival probability

First, using the following approximation, for s→ −∞
∫ 0

−∞

e−sz

y + z
dy = esx

∫ z

−∞

e−su

u
du

= esz

{[
e−su

−su

]z

−∞

−
∫ z

−∞

e−su

su2
du

}

=
1

(−zs)

[
1 +

1

(−zs) +
2!

(−zs)2 + · · · + n!

(−zs)n
+ rn(−zs)

]

(4.50)

where the last result was obtained by integral part by part repetitions, z can be
a complex number, and

rn(z) = (n+ 1)!ze−z

∫ z

−∞

et

tn+2
dt. (4.51)

and we have [13]

|rn(z)| ≤ (n+ 1)!

|z|n+1
. (4.52)

Thus, by using the above approximation in the equations (4.47) and (4.45) for
s→ −∞ we obtain an estimate of the survival probability:

∫ ∞

0

∫ +∞

−∞
|Psρ11(ν,E)|2dνdE ≤ γ2

4
[
h(γ, ω̃1)

γ4s4
+ eγsh1(s, γ, ω̃1)]. (4.53)

where:

h(γ, ω̃1) = (
256

πγ2
)[

7π

64
+

7

32
arctan

2ω̃1

γ
− 1

12
sin3(2 arctan

2ω̃1

γ
) +

1

4
sin(2 arctan

2ω̃1

γ
)

− 1

16
sin(4 arctan

2ω̃1

γ
) +

1

256
sin(8 arctan

2ω̃1

γ
)] (4.54)

and

h1(s, γ, ω̃1) = 2[
π

γ
arctan

2ω̃1

γ
+
γ sin(2ω̃1s) − 2ω̃1 cos(2ω̃1s)

s(ω̃2
1 + γ2

4 )
] (4.55)

Here we have an algebraically decreasing function and an exponentially decreas-
ing multiplied by the oscillating functions.

5 Conclusion

We have shown that the pure initial state ρ(t) = |ψt >< ψt|, decomposes into
decaying state and a background, ρ(t) → P0ρ(t) + (1 − P0ρ(t)). In the other
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hand, our result shows that the survival probability is decreasing for long time
exponentially and algebraically, i.e. we do not have a Zeno effect [14, 15] for
our survival probability.

Recently, we have studied 2-level Friedrichs model with weak coupling inter-
action constants for a decay phenomena in the Hilbert space for kaonic system
[16, 17]. In future, we shall consider 2-level or n-level Friedrichs by using time
super-operator in the Liouville space to study in order an irreversible decay
description.

References

[1] M. Courbage,“Semi-groups and time operators for quantum unstable sys-
tems”, International Journal of Theoretical Physics, DOI: 10.1007/s10773-
006-9324-8.

[2] K.O. Friedrichs, “On the perturbation of continuous spectra”, Communi-
cations in Pure and Applied Mathematics, 1 361, 1948.

[3] B. Misra and E.C.G. Sudarshan,“The Zeno’s paradox in quantum theory”,
J. Math. Phys., 18, 756-763, 1977.

[4] L.P. Horwitz, and J.P. Marchand,“The decay-scattering system”, Rocky
Mountain J. Math., 1, 225-253, 1971.

[5] C.B. Chiu, E.C.G. Sudarshan and B.Misra. “Time evolution of unstable
quantum states and a resolution of Zeno’s paradox”, Phys. Rev. D, 16,
520-529, 1977.

[6] A. Bohm and M. Gadella, Dirac kets, Gamov vectors and Gelfand Triplets,
Lecture notes in physics 348, (Springer-Verlag, Berlin) 1989.

[7] M. Courbage,“On necessary and sufficient conditions for the existence of
time and entropy operators”, Lett. Math. Phys. 4, 425-432, 1980.

[8] B.Misra, I.Prigogine and M.Courbage.“Liapounov Variable, Entropy and
Measurement in Quantum Mechanics”, Proc. Natl. Acad. Sci.U.S.A., 76

4768-4772, 1979.

[9] E. C. Titchmarsh, Introduction To The Theory Of Fourier Integrals,, (Ox-
ford University Press, Amen House, London) 1962.

[10] J.P. Marchand,“Rigorous results in scattering theory”, 1968 Lectures in
Theoretical Physics, Vol. XA: Quantum Theory and Statistical Physics
(Proceedings Tenth Boulder Summer Institute for Theoretical Physics,
Univ. Colorado, Boulder, Colo., 1967) pp. 49–90 Gordon and Breach, New
York.

[11] A. Bohm, Quantum Mechanics: Foundations and Applications, (Springer,
N.Y.) 2001.

9



[12] A. Bohm, N. L. Harshman, “Quantum theory in the Rigged Hilbert Space–
Irreversibilty from Causality”; A. Bohm, H.D. Doebner, P. Kielanoswski,
eds; Lectuure Notes in Physics, 504, ((Springer, N.Y.) 1996.

[13] N. N. Lebedev, R. A. Silverman, Special Function And Thier Applications,
(Printice Hall, Englewood Clifs, N.J.) 1965.

[14] I. Antoniou, E. Karpov, G. Pronko, and E. Yarevsky, “Quantum Zeno and
anti-Zeno effects in the Friedrichs model”, Physical Review A, 63, 062110,
(2001).

[15] I. Antoniou, E. Karpov, G. Pronko, and E. Yarevsky, “Oscillating decay
of an unstable system”, International Journal of Theoretical Physics, 42,
2403-2421, (2003).

[16] M. Courbage, T. Durt, S.M. Saberi Fathi; “Two-level Friedrichs model and
Kaonic phenomenology,” Physics letters A 362 100-104, 2007.

[17] M. Courbage, T. Durt, S.M. Saberi Fathi; “Quantum-mechanical decay
laws in the neutral Kaons”, Journal of Physics A : Math. Theor. 40 2773-
2785, 2007.

10


