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RÉSUMÉ.

ABSTRACT.In this paper is presented a finite volume (DDFV) scheme for solving elliptic equa-
tions with heterogeneous anisotropic conductivity tensor. That method is based on the definition
of a discrete divergence and a discrete gradient operator. These discrete operators have close
relationships with the continuous ones, in particular theyfulfil a duality property related with
the Green formula. The operators are defined in dimension 2 and 3, their duality property is
stated and used to establish the well posedness of the approximation scheme as well as its sym-
metry/positiveness. In the last part, the method is used forthe resolution of a problem arising
in bio-mathematics: the ECG (electrocardiogram) simulation. This is done on a 2D slice of a
realistic torso defined from segmented MRI medical images.
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1. Introduction

The aim of this paper is to define a finite volume discretisation (calledDDFV
discretisation) for the following elliptic equation on a bounded domainΩ ⊂ R

d,
d = 2, 3. For a conductivity tensorG = G(x) (symmetric positive definite and uni-
formly elliptic onΩ) that is anisotropic and also heterogeneous. and for a mixedNeu-
mann/Dirichlet homogeneous boundary condition on∂Ω = ∂ΩN ∪ ∂ΩD, we search
ϕ such that (n is a unit normal on the boundary) :

div(G∇ϕ) = f, G∇ϕ · n = 0 on∂ΩN , ϕ|∂Ω = 0 on∂ΩD, f ∈ L2(Ω). (1)

Precisely, one assumes that there exists one (or more) crackΓ in the domain that
splitsΩ in Ω1, Ω2 and such thatG has a discontinuity acrossΓ. One thus imposes the
transmission condition (n is a normal toΓ), in the trace sense onΓ :

ϕ|Ω1
= ϕ|Ω2

, G|Ω1
∇ϕ|Ω1

· n = G|Ω2
∇ϕ|Ω2

· n onΓ. (2)

WhenG|Ωi
is smooth enough, the classical theory (seee.g.[LAD 68]) tells us that (1)

has a unique variational solutionϕ ∈ H1(Ω) such thatϕ|Ωi
∈ H2(Ωi) and such that

the boundary condition in (1) and the transmission conditions in (2) hold in the trace
sense. Whenever∂ΩN = ∂Ω, uniqueness doesn’t hold anymore and there is then a
solutioniff f has zero mean value, all solution then differ up to a constant.

2. DDFV discretisation of the problem

2.1. Mesh definition and discrete data

We consider a Delaunay triangulation/tetrahedrisationC of a bounded polygo-
nal/polyhedral subsetΩ ⊂ R

d, d = 2, 3. We denote byV andI the associated sets
of vertices and interfaces (elements edges/faces). The elementsC ∈ C will be called
primal cells. For equation (1) to be correctly discretised, we naturallyassume that the
internal interfaces ”follow” cracks inG and that the boundary interfacesσ ⊂ ∂Ω are
dealt into two subsetsID, IN such thatΩN = ∪σ∈INσ, ΩD = ∪σ∈IDσ. The set of
vertices of the interfacesσ ∈ ID is denoted byVD ⊂ V .
To every primal cellC is associated a centreK ∈ C (its iso-barycentre in practice).
By CK one denotes the primal cellC of centreK. To any interfaceσ ∈ I is associa-
ted a centreYσ ∈ σ (also its iso-barycentre in practice), also simply denotedY . Every
internal interfaceσ ∈ I is the boundary between two primal cellsC1 andC2. This
is denoted byσ = C1|C2. For more simplicity one shall denote by the same symbol
any geometrical element and its measure : ifσ ∈ I, σ also denotes its length/area ; if
C ∈ C, C also denotes its area/volume,Ω both denotes the domain and its measure...

To every vertexA ∈ V is associated adual cell PA. Let us first introduce the sub-
setIA ⊂ I of all the interfaces havingA as a vertex. To everyσ ∈ IA is associated a
geometrical elementPA,σ. PA is given byPA = ∪σ∈IA

PA,σ.
The elementsPA,σ are defined as follows (see figure 2.1). Letσ = CK1

|CK2
be an
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Figure 1. (a) Two dimensional case, definition ofPA,σ (hatched dark grey) andPA

(dark grey).(b) Three dimensional case, definition ofPA,σ for an internal interface
σ = CK |CL = ABC. (c) Three dimensional diamond cellDσ (dark grey).Dσ =
Dσ,K ∪Dσ,L,Dσ,K is the part aboveσ whereasDσ,L is the part underneathσ.

internal interface and letY beσ’s centre. In dimension 2,PA,σ is the quadrilateral
AK1Y K2. In dimension 3, letB andC be the two other vertices ofσ (σ = ABC).
ThenPA,σ is the reunion of the two pyramids having the same quadrilateral base
ABY C andK1,K2 for apex :PA,σ = ABY CK1 ∪ ABY CK2. That definition has
obvious extension to the caseσ ⊂ ∂Ω.
Remark that in dimension 2 the (interiors of the) dual cells are disjoints and reco-
ver the whole domain, therefore

∑

A∈V PA = Ω. Whereas in dimension 3 the dual
cells are no more disjoints, ifA andB are two vertices of the same interfaceσ,
PA,σ∩PB,σ 6= ∅. Actually the dual cells now recover exactly twice the wholedomain,
so that

∑

A∈V PA = 2Ω.
To every interfaceσ ∈ I is associated onediamond cellDσ. For an internal inter-

faceσ = CK |CL, it is defined asDσ = Dσ,K ∪Dσ,L whereDσ,K ,Dσ,L are the two
triangles/pyramids with baseσ and apexK andL respectively, as depicted on figure
2.1. In the case of a boundary interfaceσ ⊂ ∂Ω, Dσ is a simple triangle/pyramid,
Dσ = Dσ,K . TheDσ,K will be called sub-diamond cells.
To this different types of cells are associated the following types of data :

A discrete vector fieldXh (resp.discrete tensorGh) is a vector (resp.matrix)
function, piecewise constant on each sub-diamond cellDσ,K . To each internal inter-
faceσ = CK |CL are associated two vectorsXσ,K andXσ,L (resp.matricesGσ,K

andGσ,L) on each side ofσ.Gσ,K is always assumed symmetric positive definite. We
shall say thatXh is conservative relatively toGh if (nσ being a normal toσ) :

∀σ ∈ I such thatσ = CK |CL : Gσ,K Xσ,K · nσ = Gσ,L Xσ,L · nσ , (3)

A discrete scalarϕh is the data of two sets of scalars(ϕA)A∈V , (ϕK)CK∈C asso-
ciated to the vertices and primal cells centres respectively.

A DDFV function is a scalar functioñϕh, piecewise affine onAYσK (resp.
ABYσK) wheneverσ ∈ I, A ∈ V (resp.A,B ∈ V ) is (are) vertex(es) ofσ in
dimension 2 (resp.3) andσ ⊂ CK , CK ∈ C.
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2.2. The discrete operators and the problem discretisation

Thediscrete divergence divh of a discrete vector fieldXh is the discrete scalar :

(divhXh)A =
1

PA

∫

∂PA

Xh · n∂PA
ds , (divhXh)K =

1

CK

∫

∂CK

Xh · n∂CK
ds, (4)

wheren∂E is the outward unit normal on the boundary of the polygonal/polyhedral
element E. That definition makes sense because there are no discontinuities ofXh on
the edges/faces of primal and dual cells.

Thediscrete gradientof a DDFV functionϕ̃h is the discrete vector field :

(∇hϕ̃h)σ,K =
1

Dσ,K

∫

Dσ,K

∇ϕh dx . (5)

The discrete gradient for a discrete scalar is defined below,for implementation, a
practical formulation is given in appendix A.

Definition 2.1. Let us consider a discrete scalarϕh such thatϕA = 0 for all A ∈ VD

and a discrete tensorGh. Then there exists a unique DDFV functionϕ̃h such that :

∀ A ∈ V : ϕ̃h(A) = ϕA , ∀ CK ∈ C : ϕ̃h(K) = ϕK ,

∀ σ ∈ ID : ϕ̃h(Yσ) = 0 , ∀ σ ∈ IN : Gσ (∇h ϕ̃h)σ · nσ = 0 ,

and such that∇hϕ̃h is conservative relatively toGh, as defined in(3).
Relatively toGh, the discrete gradient ofϕh is defined as∇hϕh = ∇hϕ̃h.

The previously defined discrete operators fulfil a duality property calleddiscrete
Green formula by analogy with the continuous case :

Proposition 2.2. Let Gh a discrete tensor,ϕh a discrete scalar and consider the
DDFV functionϕ̃h associated toϕh relatively toGh. If Xh is a discrete vector field
that satisfyXσ,K · nσ = Xσ,L · nσ on every internal interfaceσ = CK |CL, then :
∫

Ω

(∇hϕh) · Xhdx = −
1

d

∑

CK∈C

ϕK(divhXh)KCK −
d− 1

d

∑

A∈V

ϕA(divhXh)APA

+

∫

∂Ω

ϕ̃h|∂ΩXh|∂Ω · n∂Ωds (6)

The consequence is the following :

Proposition 2.3. The right hand sidef in (1) being discretised in some discrete scalar
fh, we look for a discrete scalarϕh such that :

∀A ∈ VD : ϕA = 0 , ∀σ ∈ IN : Gσ(∇hϕh)σ · nσ = 0 , (7)

∀A ∈ V − VD : (divh(Gh∇hϕh))A = fA , ∀CK ∈ C : (divh(Gh∇hϕh))K = fK
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Figure 2. (left) Simulation ofv : isochrons (ms )for the excitation wave on a 2D ven-
tricles slice mesh coming from MRI segmented images, 485000degrees of freedom.
(middle) Computation ofϕ at timet = 50ms. The four domain are separated with
black lines (ventricles, ventricles cavities, lungs and torso remaining). (right) Simula-
ted ECG for two leads (V 1 andV 2) located on the body surface.

Such aϕh satisfies the transmission conditions(2) in a discrete sense by construction.
If ID 6= ∅, (7) has a unique solution. The resulting numerical linear problem to
invert is moreover symmetric positive definite. The Neumannproblem (ID = ∅) has a

solution iff
1

d

∑

CK∈C fKCK +
d− 1

d

∑

A∈V fAPA = 0. The linear problem to invert

is now symmetric positive, its kernel is composed of the discrete scalarψh such that
ψA = C1, ψK = C2.

3. Application

The bidomain model (seee.g. [KEE 98]) describes the electrical activity of the
heart. It involves two compartments : the intra/extra cellular mediums, and models
a trans-membrane potentialv = ϕi − ϕ, difference between the intra/extra cellular
potentials respectively. We use here themodified monodomainmodel (see [CLE 04]),
v(x, t) is given through a reaction diffusion system involving a second variablew(x, t) ∈
R

N that describes the cells membrane activity (N is up to 20). It is used to simulate
the normal propagation of excitation potential wave fronts(v passing from a rest value
to a plateau value) and de-excitation, see figure 3. It reads :

AmCm

∂v

∂t
+AmIiOn(v,w) = div(G1∇v) + Iapp(x, t) ,

∂m

∂t
= g(v,w). (8)

Am, Cm are constants,G1 is a non constant anisotropy tensor described below,Iion,
g are reaction terms andIapp a source term (applied current) that activates the sys-
tem. The electrocardiograms (ECG) is the body surface potential resulting from that
cardiac electrical activity. It is the trace on the torsoT boundary∂T of the extracel-
lular potentialϕ. In the extra cardiacT − H , ϕ(x, t) is given by a Poisson equation
div(GT∇ϕ) = 0, whereGT is isotropic heterogeneous between the different tissue
layers conductivities (lungs, blood...). In the heartH , current balance between the in-
tra and extra cellular compartments gives div(G2∇ϕ) = −div(G3∇v). The tensors
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Figure 3. Notations for the gradient definition.(a) Two dimensional case : interface
σ = AB = CK |CL of centreY , the three vectorsn, mK , mL have unit length
and are respectively orthogonal toσ, Y K, Y L. Three dimensional case.(b) Interface
σ = ABC = CK |CL of centreY , n its unit normal fromCK towardsCL. (c) Same
interfaceσ view from above, all vectors have unit length,mA,K , mB,K andmC,K

are orthogonal toAYK,BYK andCY K respectively ; same thing formA,L, mB,L

andmC,L by turningK intoL.

Gi take into account the fibrous organisation of the heart. Theyread the same aniso-
tropic/non constant form :Gi(x) = P−1(x)G̃iP (x), whereG̃i = Diag(gl

i, g
t
i) is a

reference matrix :gl
i, g

t
i being the longitudinal/transverse conductivities along/across

the cardiac fibres.P (x) then is a change of basis matrix from the Frenet basis atta-
ched to the fibre direction at pointx. On the whole domainT , this results in one global
elliptic equation per time instantt :

div(G∇ϕ(t)) = f(v(t)) , f(v(t)) =

{

0 in H

−div(G3∇v(t)) in T −H
, (9)

completed with the transmission conditions (2) on the heart/torso boundary and also
on the interface between different tissue layers, and also with a Neumann boundary
condition on∂T (no current flow out of the body). In that problem,v(x, t) is an entry
coming from a first computation on the heart previously described.
We then discretised (9) using the DDFV scheme. Our domainT is a torso slice mesh
coming from MRI segmented data and counting 600 000 degrees of freedom. The do-
main is divided in four parts : the heart, the ventricles cavities (filled in with blood),
the lungs and the remaining torso. each part having the different previously described
conductivity properties.ϕ is computed onT at eachms, the ECG body surface po-
tential is recorded at 6 leads located on the torso boundary,see figure 3. On a whole
cardiac cycle (≃ 600ms), 600 computation are thus performed. That computation ne-
cessitates the inversion of an ill-conditioned symmetric positive linear system at each
ms. For this a Gm-Res solver combined with a basic SSOR preconditioning has been
used.
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A. Discrete gradient implementation

With the notations ofdef.2.1 and of figure A, the expression of∇hϕhis :

d = 2 : 2Dσ,K (∇hϕh)σ,K = (ϕ̃(Y ) − ϕK)σn + (ϕB − ϕA)KYmK

d = 3 : 3Dσ,K (∇hϕh)σ,K = (ϕ̃(Y ) − ϕK) σn + (ϕB − ϕC)AYKmA,K

+ (ϕC − ϕA)BYKmB,K + (ϕA − ϕB)CY KmC,K

It involves the DDFV functioñϕh in def.2.1, whose definition is completed by :

d = 2 : ϕ̃h(Y ) = αϕK + (1 − α)ϕL + k(ϕB − ϕA)

d = 3 : ϕ̃h(Y ) = αϕK + (1 − α)ϕL + kA(ϕB − ϕC) + kB(ϕC − ϕA) + kC(ϕA − ϕB) .

with :

α−1 = 1 +
Dσ,K

Dσ,L

nGσ,Ln

nGσ,Kn

k =
LY

σ

mLGσ,Ln

Dσ,L

Dσ,K

nGσ,Kn + nGσ,Ln

−
KY

σ

mKGσ,Kn

Dσ,K

Dσ,L

nGσ,Ln + nGσ,Kn

kZ =
ZY L

σ

mZ,LGσ,Ln

Dσ,L

Dσ,K

nGσ,Kn + nGσ,Ln

−
ZYK

σ

mZ,KGσ,Kn

Dσ,K

Dσ,L

nGσ,Ln + nGσ,Kn

, Z = A, B, C.

For boundary interfaces this expression is adapted as follows. Forσ ∈ ID, ϕ̃h(Y ) =
0. Forσ ∈ IN , one suppressesDσ,L by statingL = Y andGσ,L = 0.
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