N
N

N

HAL

open science

2D /3D Discrete Duality Finite Volume (DDFV) scheme
for anisotropic- heterogeneous elliptic equations,

application to the electrocardiogram simulation.

Yves Coudiere, Charles Pierre, Olivier Rousseau, Rodolphe Turpault

» To cite this version:

Yves Coudiere, Charles Pierre, Olivier Rousseau, Rodolphe Turpault. 2D /3D Discrete Duality Finite
Volume (DDFV) scheme for anisotropic- heterogeneous elliptic equations, application to the elec-
trocardiogram simulation.. Int. symposium on Finite Volumes for Complex Applications V, 2008,

Aussois, France. pp.313-320. hal-00189765

HAL Id: hal-00189765
https://hal.science/hal-00189765
Submitted on 22 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00189765
https://hal.archives-ouvertes.fr

2D/3D Discrete Duality Finite Volume Scheme
(DDFV) applied to ECG simulation.

DDFV scheme for anisotropic- heterogeneous elliptic equa-
tions, application to a bio-mathematics problem : electro-
cardiogram simulation.

Yves CoOUDIERE" — Charles PERRE™ — Olivier ROUSSEAU™ —
Rodolphe TURPAULT"

* Laboratoire de mathématiques et applications Jean LerdRUICNRS 6629. Uni-
versité de Nantes, France.

{yves.coudiere,rodolphe.turpault}@univ-nantes.fr

** Laboratoire de Mathématiques Appliquées de Pau, UMR CNR3.51
Université de Pau et des Pays de I’Adour, France.
charles.pierre@univ-pau.fr

*kk

Department of Mathematics and Statistics, University ad®a, Canada.
orous097 @uottawa.ca

RESUME.

ABSTRACTIN this paper is presented a finite volume (DDFV) scheme ftuirsg elliptic equa-
tions with heterogeneous anisotropic conductivity ten§bat method is based on the definition
of a discrete divergence and a discrete gradient operatbeskt discrete operators have close
relationships with the continuous ones, in particular tiielil a duality property related with
the Green formula. The operators are defined in dimensiond23rtheir duality property is
stated and used to establish the well posedness of the apyatian scheme as well as its sym-
metry/positiveness. In the last part, the method is usethf®resolution of a problem arising
in bio-mathematics: the ECG (electrocardiogram) simwati This is done on a 2D slice of a
realistic torso defined from segmented MRI medical images.
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1. Introduction

The aim of this paper is to define a finite volume discretisaticalled DDFV
discretisation) for the following elliptic equation on awualed domair? c R¢,
d = 2,3. For a conductivity tensof = G(x) (symmetric positive definite and uni-
formly elliptic on 2) that is anisotropic and also heterogeneous. and for a nNeed
mann/Dirichlet homogeneous boundary conditiordsh= 9Q U 9QP, we search
w such thatf is a unit normal on the boundary) :

div(GVy) = f, GV -n=00n9QY, paq=00n00", feL?Q). (1)

Precisely, one assumes that there exists one (or more) €rackthe domain that
splits2 in ©4, Q2 and such that7 has a discontinuity acrogs One thus imposes the
transmission conditionn(is a normal td), in the trace sense dn:

Pl = P, G|91Vg0‘91 ‘n = G|Q2VSD‘QQ -n onI. (2)

WhenG q, is smooth enough, the classical theory (e&e[LAD 68]) tells us that (1)

has a unique variational solutigne H'(£2) such thatpo, € H?(;) and such that
the boundary condition in (1) and the transmission condgiim (2) hold in the trace
sense. Whenevei)N = 01, uniqueness doesn’t hold anymore and there is then a
solutioniff f has zero mean value, all solution then differ up to a constant

2. DDFV discretisation of the problem
2.1. Mesh definition and discrete data

We consider a Delaunay triangulation/tetrahedrisatioof a bounded polygo-
nal/polyhedral subsé? ¢ R?, d = 2,3. We denote by andZ the associated sets
of vertices and interfaces (elements edges/faces). TheeelsC' < C will be called
primal cells For equation (1) to be correctly discretised, we naturafigume that the
internal interfaces "follow” cracks iz and that the boundary interfacesc 0 are
dealt into two subsetg”, ZV such that)V = U, czvo, QP = U,czpo. The set of
vertices of the interfacas € Z” is denoted by C V.

To every primal cellC' is associated a centi€ € C (its iso-barycentre in practice).
By Cx one denotes the primal céll of centreK . To any interfacer € 7 is associa-
ted a centr&’, € o (also its iso-barycentre in practice), also simply dendfe&very
internal interfacer € 7 is the boundary between two primal cefl§ andC5. This

is denoted by = C4|C>. For more simplicity one shall denote by the same symbol
any geometrical element and its measurer: & Z, o also denotes its length/area; if
C € C, C also denotes its area/volunie poth denotes the domain and its measure...

To every vertexA € V is associated dual cell P,4. Let us first introduce the sub-
setZ4 C Z of all the interfaces having as a vertex. To every € 74 is associated a
geometrical elemen®y ,. P4 is given byPy = Ugcz, Pa 6.

The elements,4 , are defined as follows (see figure 2.1). lket= Ck, |Ck, be an
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Figure 1. (a) Two dimensional case, definition 8% , (hatched dark grey) and’4
(dark grey).(b) Three dimensional case, definition Bf, , for an internal interface

o = Ck|Cr, = ABC. (¢) Three dimensional diamond cdl,, (dark grey).D, =
D, x U Dy 1, Do i is the part abover whereasD,, 1, is the part underneath.

A\_/

internal interface and leY” be o’s centre. In dimension 24 ,, is the quadrilateral
AK, Y Ks. In dimension 3, le3 andC' be the two other vertices af (o = ABC).
Then P, , is the reunion of the two pyramids having the same quadrdhtease
ABY C andK,, K, forapex :Ps , = ABYCK,; U ABY CK>. That definition has
obvious extension to the caseC 0f).

Remark that in dimension 2 the (interiors of the) dual cetls @isjoints and reco-
ver the whole domain, therefoie, ,,, P4 = Q. Whereas in dimension 3 the dual
cells are no more disjoints, il and B are two vertices of the same interfase
P4 ,NPg,, # 0. Actually the dual cells now recover exactly twice the whadenain,
sothat) ., Pa = 2Q.

To every interfacer € 7 is associated ondiamond cell D,,. For an internal inter-
facec = Ck|Cy, itis defined ad), = D, x U D, 1 whereD, x, D, 1, are the two
triangles/pyramids with base and apex’ and L respectively, as depicted on figure
2.1. In the case of a boundary interfaceC 012, D, is a simple triangle/pyramid,
D, = Dy k. The D, i will be called sub-diamond cells.

To this different types of cells are associated the follaytiypes of data :

A discrete vector field X, (resp.discrete tensorGy,) is a vector (esp.matrix)
function, piecewise constant on each sub-diamond@glk . To each internal inter-
facec = Ck|C}, are associated two vectals, x andX, ;, (resp.matricesG,, k
andG,. 1) on each side of. G, is always assumed symmetric positive definite. We
shall say thalX;, is conservative relatively t6/, if (n, being a normal te) :

Vo € T suchthato = Ck|CL @ Gox Xox Ny =Gor Xor-n,, (3)

A discrete scalaryy, is the data of two sets of scalaisa) acv, (v )¢, ec @SSO-
ciated to the vertices and primal cells centres respegtivel

A DDFYV function is a scalar functionp;,, piecewise affine oMY, K (resp.
ABY,K) wheneversc € Z, A € V (resp. A, B € V) is (are) vertex(es) of in
dimension 2esp.3) ando C Ck, Cx € C.
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2.2. The discrete operators and the problem discretisation

Thediscrete divergence diy, of a discrete vector fiel&X, is the discrete scalar :

. 1 . 1
(dIVhXh)A = P_A / Xh "Nppy ds s (dIVhXh)K = a / Xh *NHC K ds, (4)
8PA aCK

wherengyg is the outward unit normal on the boundary of the polygorayfpedral
element E. That definition makes sense because there arsaumtinuities ofX;, on
the edges/faces of primal and dual cells.

Thediscrete gradientof a DDFV functiong,, is the discrete vector field :

- 1
(vhgoh)a.K = D / v@h dr . (5)
’ o, K

D, x

The discrete gradient for a discrete scalar is defined belowimplementation, a
practical formulation is given in appendix A.

Definition 2.1. Let us consider a discrete scalay, such thatp4 = 0 forall A € VP
and a discrete tensdk),. Then there exists a uniqgue DDFV functigp such that :

VAeV: @h(A)ZgaA, VCkeC: (ﬁh(K)zgaK,
VoeIP: on(Yo) =0, Yo eIV : Go (Vi @n), 0, =0,
and such tha¥,, @y, is conservative relatively t&;,, as defined irnf3).
Relatively toG},, the discrete gradient afy, is defined a&/, o = V5, on.
The previously defined discrete operators fulfil a dualitygaerty calleddiscrete
Green formula by analogy with the continuous case :

Proposition 2.2. Let GG}, a discrete tensory;, a discrete scalar and consider the
DDFYV functiong;, associated tap;, relatively toGy,. If X, is a discrete vector field
that satisfyX, x - n, = XmL -1, on every internal interface = C'x|C, then:

/(vh@h) Xpdr = — Z er (VX )k Crc — —— Z a(divaXp)aPa
Q CKGC A€y
+/s5h|aQXh\aQ'nan8 (6)
89

The consequence is the following :

Proposition 2.3. The right hand sid¢ in (1) being discretised in some discrete scalar
fn, we look for a discrete scalap;, such that :

VAeVP  ps=0, YoeIV : Go(Vhen)s -ng =0, (7)
VAey-—VP. (divi,(GrVron)) 4 = fa, YOk € C: (divi(GrVren)) i = [k
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Figure 2. (left) Simulation ofv : isochrons (ms )for the excitation wave on a 2D ven-
tricles slice mesh coming from MRI segmented images, 4886@@es of freedom.
(middle) Computation op at timet = 50ms. The four domain are separated with
black lines (ventricles, ventricles cavities, lungs angdoaremaining). (right) Simula-
ted ECG for two leadsi(1 andV'2) located on the body surface.

Such ap;, satisfies the transmission conditiof23 in a discrete sense by construction.
If ZP +# (), (7) has a unique solution. The resulting numerical linear peshlto

invert is moreover symmetric positive definite. The Neunpaoiolem ¢” = ()) has a
o1 d—1 . .
solution IﬁE Y cree [KCk + — > acy faPa = 0. The linear problem to invert
is now symmetric positive, its kernel is composed of theeatisscalary;, such that

Ya =Ch, Y = Co.

3. Application

The bidomain model (see.g.[KEE 98]) describes the electrical activity of the
heart. It involves two compartments : the intra/extra dalumediums, and models
a trans-membrane potential= p; — ¢, difference between the intra/extra cellular
potentials respectively. We use here thedified monodomaimodel (see [CLE 04]),
v(x, t) is given through a reaction diffusion system involving asetvariablew (x, t) €
RY that describes the cells membrane activity i6 up to 20). It is used to simulate
the normal propagation of excitation potential wave frqntpassing from a rest value
to a plateau value) and de-excitation, see figure 3. It reads :

Amcm@ + A Lion(v,w) = div(G1 V) + Typp(z,t) 88—?

ot :g(U,W). (8)

A, Cp, are constantsy; is a non constant anisotropy tensor described belgyy,

g are reaction terms anfl,;,, a source term (applied current) that activates the sys-
tem. The electrocardiograms (ECG) is the body surface piateesulting from that
cardiac electrical activity. It is the trace on the tofSdoundarydT’ of the extracel-
lular potentialp. In the extra cardia@ — H, ¢(z,t) is given by a Poisson equation
div(GrVe) = 0, whereGr is isotropic heterogeneous between the different tissue
layers conductivities (lungs, blood...). In the he#rtcurrent balance between the in-
tra and extra cellular compartments gives(@yVy) = —div(G3Vv). The tensors
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Figure 3. Notations for the gradient definitiofia) Two dimensional case : interface
o = AB = Ck|C}, of centreY, the three vectors,, my, m; have unit length
and are respectively orthogonal &g Y K, Y L. Three dimensional casg) Interface
o = ABC = Ck|Cy, of centreY’, n its unit normal fromCx towardsC',. (¢) Same
interfacec view from above, all vectors have unit length, x, mp x andmc g
are orthogonal tadY K, BY K andC'Y K respectively ; same thing fan ., mp 1,
andmc z, by turning K into L.

A

G, take into account the fibrous organisation of the heart. Teay the same aniso-
tropic/non constant form & (z) = P~'(z)G;P(x), whereG; = Diag(g, ¢!) is a
reference matrix g!, g! being the longitudinal/transverse conductivities alacgdss

the cardiac fibresP(x) then is a change of basis matrix from the Frenet basis atta-
ched to the fibre direction at poimt On the whole domaiff’, this results in one global
elliptic equation per time instant

dV(GVep(t) = F(u(1) f(v(t))={0_div(G3W(t)) @

completed with the transmission conditions (2) on the lieaso boundary and also
on the interface between different tissue layers, and alfo avNeumann boundary
condition ondT" (no current flow out of the body). In that problendx, t) is an entry
coming from a first computation on the heart previously diésct.

We then discretised (9) using the DDFV scheme. Our dorfidma torso slice mesh
coming from MRI segmented data and counting 600 000 degffdassalom. The do-
main is divided in four parts : the heart, the ventricles tasi(filled in with blood),
the lungs and the remaining torso. each part having therdiftgoreviously described
conductivity propertiesp is computed or{’ at eachms, the ECG body surface po-
tential is recorded at 6 leads located on the torso boundagyfigure 3. On a whole
cardiac cycle{ 600 ms), 600 computation are thus performed. That computation ne-
cessitates the inversion of an ill-conditioned symmetdsitive linear system at each
ms. For this a Gm-Res solver combined with a basic SSOR pretionitig has been
used.
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A. Discrete gradient implementation

With the notations oflef.2.1 and of figure A, the expression ©f, ¢;,is :
d=2: 2Dk (Vhen), g = (@) —px)on+ (pp —pa) KYmg
d=3: 3Dok (Vien)s x = (@Y) — vr)on+ (g5 — pc) AY Kmy
+(pc —pa) BYKmp g + (pa — ) CYKmc g
It involves the DDFV functionp,, in def.2.1, whose definition is completed by :
d=2: ¢n(Y)=apkx + (1 —a)er + k(e — ¢a)
d=3: ¢on(Y)=apk + (1 —a)pr +kales —vc) +kelpc — pa) + kc(pa — ¢B) -

with :
DO’ g
0471:14— K IIG ,Ln
DU,L nGU,Kn
LY mLGan KY mKG[,—’KIl
F=7D T o D
g LLHGU kn+nG, n g LKnG[, n+nG, gn
D(T7K ) ) D(T7L ) )
ZY L Go ZYK Go
by = R SARZeE 7= A, B, C.
g D(T,L g DU,K

nGy xkn+nG, pn nGyrn+nG, gkn

DU,K DU,L

For boundary interfaces this expression is adapted asifsllBoro € Z7, ¢, (Y) =
0. Foro € IV, one suppressd3, ;, by statingL = Y andG,, ;, = 0.
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