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Abstract. We present a very efficient, in terms of space and access speed,
data structure for storing huge natural language data sets. The structure is
described as LZ (Ziv Lempel) compressed linked list trie and is a step
further beyond directed acyclic word graph in automata compression. We
are using the structure to store DELAF, a huge French lexicon with
syntactical, grammatical and lexical information associated with each
word. The compressed structure can be produced in O(N) time using suffix
trees for finding repetitions in trie, but for large data sets space
requirements are more prohibitive than time so suffix arrays are used
instead, with compression time complexity O(N log N) for all but for the
largest data sets.

1 Introduction

Natural language processing has been existing as a field since the origin of
computer science. However, the interest for natural language processing
increased recently due to the present extension of Internet communication, and
to the fact that nearly all texts produced today are stored on, or transmitted
through a computer medium at least once during their lifetime. In this context,
the processing of large, unrestricted texts written in various languages usually
requires basic knowledge about words of these languages. These basic data are
stored into large data sets called lexicons or electronic dictionaries, in such a
form that they can be exploited by computer applications like spelling checkers,
spelling advisers, typesetters, indexers, compressors, speech synthesizers and
others. The use of large-coverage lexicons for natural language processing has
decisive advantages: Precision and accuracy: the lexicon contains all the words
that were explicitly included and only them, which is not the case with
recognizers like spell [5]. Predictability: the behavior of a lexicon-based
application can be deduced from the explicit list of words in the lexicon. In this



context, the storage and lookup of large-coverage dictionaries can be costly.
Therefore, time and space efficiency is crucial issue.

Trie data structure is a natural choice when it comes to storing and searching
over sets of strings or words. In the contemporary usage of the term, a trie for a
set of words is a tree in which each transition represents one symbol (or a letter
in a word), and nodes represent a word or a part of a word that is spelled by
traversal from the root to the given node. The identical prefixes of different
words are therefore represented with the same node and space is saved where
identical prefixes abound in a set of words - a situation likely to occur with
natural language data. The access speed is high, successful look up is performed
in time proportional to the length of word since it takes only as many
comparisons as there are symbols in the word. The unsuccessful search is
stopped as soon as there is no letter in the trie that continues the word at a given
point, so it is even faster.

When sets of strings are huge a simple trie can grow to such proportions that
its size becomes a restrictive factor in applications. A huge data structure that
can’t fit into main memory means slower searching on disk, furthermore if the
structure is small enough to fit into cache memory the search speed is increased.
Numerous researchers did a lot of work on compacting tries, reducing the size
and increasing the search speed. As there are many possible uses of a trie, most
of the compaction methods are optimized according to specific application
requirements.  When data must be handled dynamically (databases, compilers)
trie has to support insertion and deletion operations as well as a simple lookup;
the best results in trie compaction, however, are achieved with static data. Few
examples of work on dynamic trie compaction are [3], [7], [8], [15]. Static tries
are used successfully in a number of important applications (natural language
processing, network routing, data mining) and the efforts in static trie
compression are both numerous and justified. Although researchers usually try
to establish as good trade-off between speed and size as possible, in most of the
work emphasis is on one of the two. Two examples of work where the speed is of
main concern are [2] where search speed is increased by reducing the number of
levels in a binary trie and [1] where trie data structures are constructed in such
manner that they accord well with computer memory architecture. When the
size of the structure is of primary concern the work is usually focused on
automata compression. With natural language data significant savings in
memory space can be obtained if the dictionary is stored in a directed acyclic
word graph (DAWG), a form of a minimal deterministic automaton, where
common suffixes are shared [4], [12], [13], [17].

Majority of European languages belong to a family of languages where (i)
most of the words belong to a set of several morphologically close words
(inflectional languages), and (ii) the differences between two such
morphologically close words is usually a suffix substitution (suffixal inflection).
That accounts for good results with automata minimization, on the average a
substantial portion of a word is overlapped with other words’ prefixes and
suffixes. However, this works well only for simple word lists used mainly in
spelling checkers, for most other applications (dictionaries, lexicons, translators)
some additional data (lexical tags, index pointers) has to be attached to the word



sharply reducing the overlapping of the suffixes. The additional data can be
efficiently incorporated in the trie by more complex implementation [16] or by
using the hashing transducers. The hashing transducer of a finite set of words
was discovered and described independently in [13] and [17]. This scheme
implements a one-to-one correspondence between the set of N words and the set
of integers from 1 to N, the words being taken in alphabetical order. The user
can obtain the number from the word and the word from the number in linear
time in the length of the word, independently of the size of the lexicon therefore
producing a perfect hashing. The transducer has the same states and the same
transitions as the minimal automaton, but an integer is associated to each
transition. The number of a word is the sum of the integers on the path that
recognizes the word. Once the number of a word is known, a table is looked up
in order to obtain the data associated with the word.

In this paper we investigate a new method of static trie compaction that
reduces the size beyond that of minimal finite automaton and allows
incorporating the additional data in the trie itself. This involves coding the
automaton so that not only common prefixes or suffixes are shared, but also the
internal patterns. The procedure is best described as a generic Ziv Lempel
compression of a linked list trie. Final compressed structure is formally more
complex and has less states than minimal finite automata used in [4] and [13].
Particularly attractive feature is a high repetition rate of structural units in
compressed structure that enables space efficient coding of the nodes. The idea
has been informally introduced in [18] and [19].  Here we shall describe the
method in more detail and demonstrate how it performs when used for storing
DELAF, a huge lexicon of French words. We also present some compaction
results for various natural language data sets. For the sets on which previous
work has been reported in the literature our results are significantly better.

In section 2 we present our method and introduce notation we use throughout
the article. Two essentially similar algorithms for compression are described in
section 3, the first one is simpler and slower, the second one much faster but
requires more space. We also explain some heuristic for simplification of the
algorithms and propose a related problem as an open problem in theory of NP
completeness. In section 4 we describe experimental data sets, among them a
huge French lexicon, and present compression results. Conclusion is in section 5.

2 Overview of the Linked List Trie LZ Compression

A trie T is a finite automaton and is as such defined with the quintuple
T = {Q, A, q0, δ, F}, where Q is a finite set of states, A is an alphabet of input
symbols, q0 ∈  Q is the initial state, δ is a transition function from Q x A to Q and
F ⊆  Q is the set of accepting or final states. When trie T is produced from a set of
words W, then W is the language recognized by T.

Natural language data usually produce very sparse tries that lend themselves
to various possibilities for space reduction with retained high access speed.
Sparseness of a tree is a strong indication for employing the linked list data



structure in representation of the nodes. When linked list is used it is convenient
to associate symbols of alphabet with the levels rather than with the transitions
in the trie. In this case levels are represented with lists of structural units where
four pieces of information (Fig. 1a) are assigned to each unit:
1. a symbol (letter) � ∈  A;
2. a binary flag � indicating whether a word ends at this point (corresponding to

a final state);
3. a binary flag � indicating whether there is a continuation of valid sequence of

symbols past the current unit to the next level below;
4. a pointer � to the next unit at the same level (if null, there are no more

elements on the current level); if we use addressing in number of units, the
size bound for � is the number of units in T.

A linked list trie is then represented with a sequence or a string of units. Now,
the units themselves can be regarded as symbols that make up a new alphabet U
and the implemented trie structure can be defined as a string.

DEFINITION: Linked list trie LLT is a string of symbols � from alphabet U. If
we denote by N the number of structural units in LLT then:

LLT = �0�1�2 ... �N  |  �i ∈  U, N = |LLT| where

�i = �i�i�i�i  |  �i∈  A,  �i ∈  {0, 1}, �i ∈  {0, 1},   0 ≤  �i  ≤ N

To illustrate this, in Fig. 1b units of the trie from Fig. 1a are replaced with a new
set of symbols yielding a string representation of LLT. Of course, when each of
their parts are identical, two units are identical too and consequently
represented with the same symbol.

As on any string, some compression procedure can be attempted now on LLT.
Particularly natural approach is to use LZ paradigm of replacing repeated
substrings with pointers to their first occurrences in the string [23]. The general
condition for compression is that the size of pointer must be less than the size of
the replaced substring. We used the constant and equal size units for
representation of the elements of U and the pointers so that compression is
achieved whenever repeated substring is of size 2 or more elements. In Fig. 1c
repeated substrings are replaced with information in parenthesis about the
position of the first occurrence of repeated substring and it’s size. The first
number designates the position in (compressed) string and second the length of
replaced substring. Note that the first occurrence of a substring can include a
pointer to the previous first occurrence of a shorter substring.

DEFINITION: Let lsi be the length of i-th substituted substring in LLT and K be
the number of substitutions. Then, reduction in space R = Σ (lsi – 1), for i = 1 - K.
Let LLTC denote the compressed linked list trie such as that of Fig. 1c. The size
NC of compressed structure is then Nc = |LLTC| = N - R, and the compression
ratio C = 1 – Nc/N.

All size values are given in number of structural units. For the example of Fig.
1c, R = 9 and C = 1 - 11/20 = 45%.



The sequence in Fig. 1c is a simplified representation of a compressed trie
structure; look up for the input is not performed sequentially as it may seem
suggested by the Figs. 1b and 1c, but still by following trie links. Only now when,
in reading the structure, at the position P1 a pointer unit (P0, ls1) is encountered,
reading procedure jumps to the position P0, and after ls1 units read, jumps back
to the position P1 + 1.

���� �� a) A trie of four words {abaabaab, abaabbab, abbabaab, abbabbab} is presented
in a graphical arrangement that points out its sequential features. Final states are
indicated by thick circles; horizontal arrows represent � flags; inflected arrows represent
� pointers. Structure is traversed by following the arrows and comparing the current
input symbol with one in the trie, if symbols don’t match and there is no � pointer from
the current unit then input is rejected. The input sequence is accepted if it leads to a final
state. b) LLT represented with new set of symbols; identical units are replaced with the
same symbol. c) Compressed representation of LLT string. The first number in
parenthesis is the position of the first occurrence of repeated/replaced substring, the
second number is the substring’s length. d) Implementation of compressed structure
includes two types of pointers:  signs indicate pointers that replace whole branches and

 sign stands for pointer that replaces only a portion of a branch and carries the
information about its length (2 in this case). Inflected arrows below indicate the paths the
reading procedure must follow in the structure. Full lines indicate one-way directions,
dashed lines indicate directions implied by  pointer.

The actual implementation of LLT compression is more complex than in
straightforward application of a LZ procedure on a string in Fig. 1c where
there’s no difference in treatment of repeated substrings. The underlying
structure of LLT is that of a tree and this divides repeated substrings of LLT
into two categories depending on whether the repeated substring represents a
complete branch of a tree or just a portion of a branch. Only for this latter case
should the pointers carry the information about the number of replaced units;



when the whole branch is replaced, every possible continuation of the current
input is contained in the first occurrence of the substring and there is no need for
coming back to the original position of a pointer. Second and third pointers of
Fig. 1c replace whole branches of the trie and the first one substitutes only a part
of a branch.  This LLTC sequence with two types of pointers then might look
like this: abc(1,2)daeb(6,_)b(4,_) where “_” indicates that there is no possible
need for coming back. The Fig. 1d shows how actually the structure of Fig 1a is
compressed with two different types of pointers.

DEFINITION: Let’s call ����	�
 pointers pointers that replace whole branches
and �	��	�
 pointers those that replace only parts of branches. Let’s say that a
substring s = �1�2...�ls of LLT is ����� if no unit �i ∈  s contains a �i ∈  �i pointer
that points outside s, and there is no continuation to the next level from the last
unit of s. That is:

s is closed if      ∀  �i ∈  �i ∈  s | value (�i) ≤ position (�ls)      and      �ls = 0.
Otherwise let’s call s ����. One-way pointers replace closed repeated substrings,
two-way pointers replace open repeated substrings.

THEOREM: Replacing every closed repeated substring of LLT with one-way
pointers produces DAWG for a given set of words W.

Proof: DAWG for a set of words W is the minimal finite automaton recognizing
all the words in W. Minimization is obtained by merging all the equivalent states
of the automaton.

If two states are reached by sequences s1 and s2 they are equivalent if for every
sequence z holds that if s1z is in W then s2z is also, and if s1z is not in W neither is
s2z. Since substrings of LLT replaced with one-way pointers are identical it is
obvious that they carry identical partial transition function, and since they are
closed there exist no other unknown suffixes so the repeated states are indeed
equivalent. 

The additional compression, above that of automata minimization, is achieved
with introduction of two-way pointers capable of replacing open substrings of
LLT. It is worth noting that the formal complexity of compressed structure is
then higher than that of finite automaton. States replaced by two-way pointers
are not equivalent in the finite automata sense and some conditional branching is
introduced in the procedure of reading the structure. For example, after reading
b in the second position on Fig. 1d further direction depends on whether this is
the first time read or the read directed by the pointer at the fourth position. This
type of decision is beyond the power of finite automata.

3 Algorithms

We first present a simple quadratic algorithm for producing LLT from W and
then replacing repetitions with pointers. Denote with si ∈  LLT a substring of



units starting at the position i in LLT. Let E be a relation of substring prefix
equality on LLT such that siEsj means that there are at least two first units of si

and sj that are equal. That is: siEsj  => �i...�k = �j...�k  and  k ≥ 2. Let R be the
relation of substring substitutability where siRsj means that sj can be replaced
with the pointer to si. For the algorithmic complexity reasons R covers smaller
class of LLT substrings than E; this will be explained a bit latter. The algorithm
is then as follows:

ALGORITHM A:

sort W
build LLT(W)
for i = 1 to N – 3
      for j = i+2 to N – 1
            if siEsj

                  if siRsj

                             check whether substitutable substrings are open or closed
                             replace sj with the appropriate pointer

end

Building of LLT(W) is a straightforward procedure of building a trie that can be
done in O(N) time and will not be explained here. Initial sorting of W is the
simplest way of preventing following situations to occur: Let M be the number of
words in W, wm | m < M denote m-th word in W, and LLTm a linked list trie with
m words built into it. If w(m+1) has a prefix wk that is also a word of W such that
k < m and wm is not a prefix of w(m+1) then there is no place for the suffix of w(m+1)

that is the difference between w(m+1) and wk. This suffix should find its place right
after wk, but since there is already at least one word not prefix of w(m+1) in the
structure, this place is occupied. Situation like this would require usage of
additional pointers in the construction of the trie and it is more economical
instead to arrange the input order in a way to avoid this. The simplest way to do
this is to sort W before building LLT(W), then if words exist in W that are
prefixes of other words they are all grouped together and any existing prefix of
w(m+1)  is at the end of LLTm.

The central part of presented algorithm has clear quadratic time complexity.
Double loop of comparing each position in LLT with every other to check
whether they are the starting positions of equal substrings takes N2/2 iterations.
(The inner loop is only shifted to the right by two – the minimum size of
substitutable substrings.) The procedures of checking whether repeated
substrings are open or closed and replacing them with pointers are done only
once for each replaced substring so they add to the overall complexity only a
linear factor proportional to R. The average input sorting procedure is done in
O(M log M) time and the total time complexity for producing LLTC from W is
then O(M log M + N + N2 + R) with O(N2) being by far the most important
bound. In practice this simple procedure is fast enough for smaller data sets such
are smaller simple word lists with high prefix repetition rate that produce
smaller tries. Unfortunately, for bigger sets of entries that do not share too many



common prefixes, and therefore produce huge tries, the exhaustive quadratic
procedure is not feasible.

��� ��		
 �� �� ������ �������

Speed up is possible and in fact a linear time bound can be achieved using suffix
tree for finding repetitions in LLT. The idea of assisting LZ compression with
suffix tree search has firstly been presented in [21]. A suffix tree of all suffixes in
LLT can be built in O(N) time, all the repetitions in LLT are then associated
with the nodes in the suffix tree and easily found in linear time [11]. The problem
with building suffix trees is that they require to much space when alphabet is
large as is the alphabet of all different units of LLT, and for this case a better
approach is to use suffix arrays [14]. A suffix array for LLT is an array of
starting positions in LLT of sorted suffixes of LLT. Sorting is on the average
done in O(N log N) time and then all repeated substrings are grouped together in
suffix array.

Now the problem rests of finding the best candidates for replacement with
pointers among the substrings grouped together.  The simplest way to do this is
to delimit groups of suffixes in suffix table that have at least two first elements
identical and then to perform quadratic search only on elements in the group.
These groups should be sorted according to the suffix starting position in LTT so
that search and replace procedure can be done in consecutive order from the
beginning of the structure. This is important because it avoids considerable
expense of keeping track of all the changes in the structure that can interfere
with incoming replacements. Overall, this is much faster way to find possible
candidates for the substitution with pointers than the exhaustive quadratic
search of Algorithm A. The procedure is then:

ALGORITHM B:

1: sort W
2: build LLT(W)
3: build suffix_array(LLT(W))
4: define partitions of suffix_array(LLT(W)) that comprise two or more

entries with identical first two units
5: sort the suffixes in partitions according to their position in LLT(W)
6: from the first to the last element in partitions compare each element to

every other from the same group | check whether substitutable
substrings are open or closed | replace substitutable substrings with the
appropriate pointers

Time complexity of comparing substrings at suffixes’ starting positions to
possible candidates for replacement within the groups is still quadratic but with
much smaller base. If there are G different groups of suffixes with identical
beginnings in suffix_array(LLT(W)) and SGi, i = 1 – G is the number of elements
in i-th group, the time complexity of step 6 is O( Σ SGi

2).  For real data the size of



any group is much smaller than N so this improves strongly on time
requirements of Algorithm A. The price is paid in space used for suffix array
and tables needed for storing and searching groups. There is also the sorting of
the groups procedure of step 5 that requires O(Σ SGi log SGi) time so the total
time complexity of Algorithm B is O(M log M + N + N log N + Σ SGi log SGi +
Σ SGi

2 + R). When running the experiments it is apparent that steps 3 to 5
consume most of the running time of Algorithm B for values of N up to a million.
Only for tries with more units quadratic time complexity of step 6 becomes
increasingly important. However, these are the values of N where the difference
in complexity of Algorithms A and B matters the most. For the biggest tries that
we experimented with (N = 16 million) estimated run time of Algorithm A is 250
times longer.

If some additional structures are used to mark already replaced substrings
then Σ SGi

2 factor can be improved to Σ RGi
2 where RGi is the number of

substitutions actually performed in i-th group. This has not been justified
experimentally since Algorithm B already uses considerably more space than
Algorithm A and for large N values the size of additional structures may become
a restricting factor.

��� ����
� ��� �����	����� �� ����

LLTC produced by Algorithms A or B is not necessarily the smallest possible
structure of this sort recognizing W. There exist one obvious structural
limitation for compression – a constant size of unit, and some algorithmic
limitations that are imposed for the sake of the algorithmic simplicity.

���	 �� ���������  ����� If the size of structural unit is kept constant, which
immensely simplifies and speeds up the look up procedure, then the bound for
the size of each unit is the size of units holding the largest numerical information.
There are two types of structural units in LLTC: the �
���� units, same as those
of LLT that carry the symbol code �, � and � flags and the � pointer, and the
������� units that are either one- or two–way pointers replacing repeated
substrings in LLTC. The size limit for symbol unit in bits is given by  log A  +
1 + 1 +  log Nc  and this limit is forced onto pointer units too. Pointer units carry
information about the address of the first occurrence of substituted substring,
about its length (if two-way) and some information that distinguishes them from
symbol units.  In symbol units either � or � flag or both must be 1 (true) because
the word can only end with the current symbol or be continued to the next one.
Therefore combination of two zeros for � and � flags is impossible in symbol units
and this is used as an indication that the current unit is a pointer. The bound for
the size of the address of the first occurrence of replaced substring is  log Nc
again, so this leaves  log A  bits in pointer units for storing the length of replaced
substring for two-way pointers. This was enough for every data set we have
experimented with so far. LLTC normally supports embedded pointers, i.e. a
pointer can point to a sequence of units that contains another pointer, and this
can have many levels. For reasons of space economy we are storing in two-way



pointers only the number of units that has to be followed on the first level which
is usually considerably smaller than the full length of the replaced substring.
Apart from this little trick there is another reason why  log A  bits are enough
for two-way pointer information - the longest substituted substrings are usually
closed and are therefore replaced with one-way pointers. The problem with
constant size units is in that when Nc is big, most of the � pointers are much
smaller in value and a considerable amount of space is wasted. If this becomes
critical it is always possible to use variable size coding of units or, which should
be the best solution for the overall reduction of redundancy in LLTC, to use
additional table for minimal size coding of units described latter in section 3.3.

!���������� �����	���" ���������� �� #����$�	 ��$������ ��$���������� There
are three algorithmic limitations to compression of LLTC arising from its
underlying tree structure and they are defined with the following rules:
Rule 1. If the repeated substrings overlap, then shorten them so that they don’t.
Rule 2. If si = �i...�k...�i+ls is a repeated substring and �k ∈  �k has value(�k) > i+ls+1
then shorten si to siR = �i...�k-1.
Rule 3. If si = �i...�k...�i+ls is a repeated substring and there exists �h ∈  �h | h < i,
such that value(�h) = k |  i+1 ≤ k ≤ i+ls, then shorten si to siR = �i...�k-1.
The above three rules account for the aforementioned difference between classes
of equal and substitutable substrings of LLT.  If these rules are not observed
situations would be occurring that would require complicated procedures to
solve while at the same time not improving much on the compression. If
overlapping of replaced substrings is allowed it would take great pains to avoid
never-ending loops and the savings in space would be only one unit per
occurrence. (If overlapping is allowed ����������������������� can be replaced
with ���������������, and if not, with ����������������������� with only the cost of
one pointer increase in space.) Hence the Rule 1.

Rule 2 prevents the substitution of a substring si that contains a � pointer
pointing out of si by more than one. This is necessary because it is possible that
substring of LLT between the end of si and the position the � pointer points to
can latter be replaced with another pointer unit and then the value of � won’t be
correct anymore. To account for that a complicated and time costly checking
procedure should be employed and the savings would be at most two units per
occurrence. (If  k = i + ls then only unit �i+ls is not included in the substituted
substring, if k = i + ls - 1 then the loss is two units �i+ls-1�i+ls, and if k < i + ls - 1
then the part of si behind �k is a new repeated substring and can be replaced
with a new pointer so the loss is again only two units.)

Rule 3 for the similar reasons shortens si up to the position pointed to by some
� pointer positioned before si. If si is replaced then this � value wouldn’t be correct
anymore and the necessary checking would be unjustifiably costly. Analogously
to Rule 2 the loss in compression is at most two units per occurrence.

It should be noted that situations where Rules 1, 2 and 3 come to effect occur
seldom enough in natural language data that we have been experimenting with
so far. Apparently, application of these rules worsens the compression by not
more than 3%.



%���� &�
	���� #��$�	�� Apart from that, there exists a serious algorithmic
impediment in optimization of LLTC compression introduced by the order of
input words when building LLT. Fortunately, this has only a theoretical
importance and carries a little weight in practice. Let us consider a special case
where W can be divided into a set of distinct partitions Wi, Wi ∈  W, such that
every word in Wi has the same length Li and differs from other words in Wi only
in the last letter. Let Pi denote a sequence of units in LLT that represents a
common prefix of words in Wi, then length(Pi) = Li - 1. Let �Lik denote the unit
representing the last letter in word wik ∈  Wi where k = 1 – Ki, Ki = |Wi|. Suppose
that no word in W is a prefix of another word in W, then when a linked list trie is
built each subset Wi produces a LLT branch of type Pi�Li1�Li2�Li3...�LiKi. Units
corresponding to the last letters in words are connected with � pointers of value
one and are identical in every aspect but for the symbol content throughout all
the subsets Wi. Ordering of the sequence of �Li units has no bearing on the
content of LLT, it is determined by the ordering of input words which can be
arbitrary since no word of W is a prefix of another word in W. Now, the problem
is how to order sequences of �Li units in such a way as to obtain the highest
possible compression achieved by replacing substitutable substrings in LLT with
pointers. We haven’t been able to find an efficient solution for this problem and
we suspect it is NP-hard. We haven’t been able to prove that neither so we
propose this as an open problem in theory of NP completeness. Reduced for the
simplicity it can be stated as:

INSTANCE: Finite set of variables V and a collection T of  triples (vj, vk, vl) from
V. For each triple holds a statement

vj ∠  vk      and      vj ∠  vl

where ∠  stands for any transitive, asymmetrical and irreflexive relation such as
‘smaller than’, ‘bigger than’, ‘has lower/higher rank’ etc.

QUESTION: Is there an assignment of values to variables in V such that the
number of statements (or triples) that are satisfied is not less than a given integer
I ≤ |T|? 

The order of input words may therefore have influence on how well the linked
list trie is compressed. With actual natural language data this is not an
important factor, the lexicographical sort of input results in highly repetitious
LLT structure and this normally solves the problem well enough. When we
investigated possible variations between worst and best case orderings on actual
data the difference in size of compressed structures could never be above 2%.

��� ������ ���	  ��� ��
��� '��� �$�	 ���(��

An interesting and exploitable feature of LLTC is a high repetition rate of
identical units throughout the structure. Apparently, lexicographic sort of input
records combined with employed linked list representation produces a high level
of structural unit repetitions in both LLT and LLTC. This effect gets more



pronounced with larger data sets. For example, in a compressed trie of over 2
million elements only about 200,000 units are different. A simple and very
effective coding of the units is therefore possible for reducing redundancy in the
structure. If all the different units are stored separately in a table of size
ND × (unit size), where ND is the number of different units, then LLTC can be
represented with an array of N pointers of size  log ND  bits. On top of this, up
to two bits per table unit can be saved by using their position in table instead of
flags. In most cases table coding leads to important savings in space and the time
needed for table lookup only about halves the search speed, as indicated by our
experiments.

The compressed structures produced with Algorithms A or B are very
compact and fast to search. Typical access speed for LLTC is measured in tens of
thousands of found words per second. This is fast enough for any real time
application, even for those that rely on an exhaustive search in space of similar
words. In the following section we describe some actual data sets and present
results of compaction experiments.

4 Data Sets and Experimental Results

)�� *���� �����	 �	�����

A simple spell-checker needs only to recognize whether a word belongs in the
vocabulary of the language or not. In that case, the states of the automaton
recognizing a word set are classified as final or non-final. For most other
applications, correct words need to be assigned a lexical tag with a grammatical
content: part of speech (noun, verb...), inflectional features (plural, 3rd
person...), lemma (e.g. the infinitive for a verb). For instance, 	��� should be
assigned a tag like 	��.N:p (i.e. the noun wood in the plural). A minimal
automaton can still represent a dictionary that assigns tags to words. Two
methods are used to allow for tags in the dictionary. In the first [17], [20], tags
are associated to states; the automaton has multiple finalities, i.e. the number of
finalities is not necessarily 2 (final/non-final) but the number of tags. In the
second method [12], tags are considered as parts of dictionary items. In both
cases, minimization is still possible and time efficiency is preserved, but the
minimization is less efficient in space, since common suffixes are no longer
shared when the words have different tags (e.g. � in the noun 	��� and in the
verb ��).

When the linguistic information in the tags is limited to basic grammatical
information, the number of possible different tags can remain small and these
solutions are still optimal. The limit is reached when more elaborate information
is included into the tags, namely syntactic information (number of essential
complements of verbs, prepositions used with them, distribution of subjects and
complements). When this information is provided systematically, the number of



different tags comes close to the number of words, and beyond because this level
of description requires more sense distinctions [9]. Consequently, the minimal
automaton grows nearly as large as the trie. However, the variety of labels used
in tags is more limited and there exists a substantial amount of substring
repetition in lexical entries. For this reason LLTC structure seems like a natural
choice for storing lexicons.

We used LLTC for compressing a comprehensive dictionary of French, the
DELAF [6]. This dictionary lists 600,000 inflected forms of simple words. It is
used by the INTEX system of lexical analysis of natural-language texts [22].
Linguistic information are attached to each form: parts of speech (noun, verb...);
inflectional features (gender, tense...); lemma (e.g. the infinitive in the case of a
verbal form); syntactic information about verbs. In case of ambiguities,
appropriate sense distinctions are made. The syntactic information attached to
verbal forms is derived from the lexicon-grammar of French, a systematic
inventory of formal syntactic constraints: number of essential complements,
prepositions used with them, distribution of subjects and complements etc. [10].
The size of DELAF in text format is 21 Mbytes and a typical example of three
entries in DELAF is presented in Fig. 2.

�����������	
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Fig. 2. Three entries in DELAF lexicon of French words with attached grammatical,
syntactical and lexical data.

Three things are obvious from this example: first, the amount of repeated
substrings is high; second, a simple DAWG would be of little use since the
endings of entries are highly diversified (i.e. there are not too many equivalent
states in finite automaton produced from DELAF); and third, a trie produced
from entries such as those on Fig 2 will be huge. The first two facts speak in
favor of trying to store DELAF in LLTC, but the third presents a problem. A
huge LLT means a huge N and the quadratic part of compression algorithm
becomes important. In fact, with Algorithm B the compression time for
LLT(DELAF) was 5.5 hours on a 333 MHz PC running Linux. In Table 1 we
present all the relevant numbers for experiments with DELAF and other data
sets.

The compressed size with table unit coding is 5.5 Mbytes. This is a
considerable improvement over currently used format with tags stored
separately that is over twice that size. Reduction in size can be important in
integrated applications where lexicon is only a part of the system (computer-
aided translation, natural language access to databases, information retrieval).
The five and half hour compression time is acceptable for this instance because it
is unlikely that data sets of this type will be updated on the run. The search
speed is high enough for every possible application.



Table 1. Experimental results for various natural language data sets
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In order to demonstrate the potential of our method for compressing static
dictionaries we present in Table 1 experimental results for seven additional
natural language data sets. Six are publicly available and some compression
results have already been published for two of them. Here are the brief
descriptions:
- DELAF word forms: all the simple French word forms without any additional
information, extracted from DELAF
- Calgary book1 7-tuples: a list of all successive seven-tuples from book1 of
Calgary corpus; the compressed size of this set as reported in [7] is about 2.5 M
- words: a list of English words found in /usr/dict/words on Unix systems (older
release); the compressed size of this set as reported in [13] is 112 K
- linux.words: a list of English words found in /usr/dict/linux.words on Linux
systems
- Moby words simple: a list of simple English words from
http://www.dcs.shef.ac.uk/research/ilash/Moby/mwords.html
- Moby words compound: a list of compound English words from
http://www.dcs.shef.ac.uk/research/ilash/Moby/mwords.html
- Moby words all: combined simple and compound word lists of above.

The compression times and search speeds were measured on 333 MHz P II PC
under Linux OS. The compression times given are for Algorithm B steps 3 to 6,
i.e. without initial sorting of input entries and building the trie. Search speed is
calculated by measuring the time needed for reading all the input words from
disk and looking them up in the compressed structure loaded in the main
memory. The first, most densely populated, level of the compressed trie is
accessed through the array of starting positions for each letter instead of
searching the list. This speeds up the search for up to 20% with the space
overhead of only 512 bytes for the array (if long integers are used as pointers to
starting positions of different letters in LLTC).

In standard coding of LLTC units node sizes are rounded to a whole byte for
optimum speed and simplicity. In some cases this is a considerable waste; for
instance, Moby data largest pointer units require 26 bits, leaving 6 bits per 4
byte unit unused. In structures with minimal coding all elements are coded with
minimum number of bits. Only a small overhead of few bytes is necessary for
denoting table and array element sizes, as well as the distribution of various
pointers in the table.

5 Conclusion

Experimental results presented in Table 1 show that our method exhibits
considerable potential for storing natural language data, for inflected languages
more than for non-inflected - the French word forms set compresses
considerably better than the sets of English words. Still, it performs well for
every set tested. The only data sets we could find with previously published



results (words and 7-tuples) compress better than previously reported. One
would expect that increased number of words would always lead to a better
overlapping of substrings. It is therefore somewhat surprising that combined sets
of Moby simple and compound words do not compress better than when
separated. Also, although we are satisfied with the final result, the huge number
of different tags in DELAF did not compress as well as we expected. When
partitions of DELAF (even as small as 10,000 entries) are compressed separately
the compression ratio is roughly the same as for the whole set. Obviously, with
LLTC compression, as with any compression method, the degree of success
depends on the actual data. Overall, we believe that presented method of LZ
linked list trie compression can be successfully used for storing and accessing
data in various natural language related applications.
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