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Abstract 

 

Transit network design (TND) is a complex combinatorial optimization problem. The goal is to obtain an 

optimized public transport network, taking into consideration main characteristics of the system, 

passenger’s desires, budget constraints and several possible levels of service. The author proposes a 

comprehensive nouvel model, based on Constraint Satisfaction, with essential and complementary 

constraints. Using Constraint Programming (CP), some tests are made using the proposed model in an 

attempt to open new perspectives for solution alternatives. The tests show that the chosen CP package is 

apparently unable to process large instances, although it works well with small ones. Other CP packages 

and search strategies should be tried by CP specialists in order to comprehensively validate the 

conclusions of the present work. 
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Solving the TND problem with Constraint Programming 

 

1. INTRODUCTION 

 

From the pioneer work of Lampkin and Saalmans (1967) till nowadays, the 

problem of optmizing public transportation (transit) networks has being exhaustively 

studied. It continues to attract researchers all over the world, probably because of the 

impossibility to find “the” optimal solution for a real-scale network, and the difficulty of 

finding “near-to-optimum” solutions. The Transit Network Design (TND) is a 

combinatorial problem and it is classified as NP-hard. 

The Transit Network Design (TND) is more complicated than the traditional 

Network Design Problem. Besides finding which arcs to be included in the network, 

TND involves arcs grouping in fixed routes, also determining the frequency of service 

of these routes (transit lines). 

The result of the public transportation network design, then, should include a set 

of routes and their frequencies. Most commonly, the problem is formulated on a graph 

with nodes, links, and (subsequently) routes (Desaulniers and Hickman, 2003). Let G = 

(N,A) be a graph with N the set of nodes and A the set of links, and R represents the set 

of routes. Nodes represent intersections (e.g., road intersections), but can also represent 

zone centroids where a geographic zone is represented by a single point (the centroid) 

and the bus stops, train stations etc. A link between nodes represents a particular mode 

of transport between nodes, and a route represents a sequence of nodes and links of a 

single mode. 

 
'As input to this problem, the formulation typically assumes that there is an existing 

origin-destination (O-D) matrix, covering the demand between a set of nodes or 

zones, either on a daily basis or for a specific period within the day. Alternately, it 

is reasonable (although complicated) to assume that demand is endogenous and 

determined as an equilibrium problem, in which the flows are a function of the 

network design. With the origin-destination flows and an assignment of these flows 

to routes, the set of routes and their frequencies must be determined' (Desaulniers 

and Hickman, 2003). 

 

As stated by other authors, the transit demand assignment plays an important role 

in the solution quality. More than that, we are convicted that it plays an essential role in 

the optimization process and directly affects the solution search, i.e. the design of the 

transit network. 

Naturally transit planning professionals base upon their own experiences, with or 

without the assistance of a simulation software, to conceive new transit networks or to 

point out minor improvements in a network. For them, normally it is easier to adopt 

empirical strategies than to formulate the TND like a complex optimization problem. 

This is justified because this modeling process is not yet spread out since TND is deep 

mathematical problem, and not so appealing to the technical corps of transit agencies 

(Barra and Kawamoto, 1999). 

If one takes the urban case, it is even more difficult to the transit specialist of a 

large-sized city to incorporate into his/her work all the complexity of the transit system 

without a rational method based on a combinatorial optimization model.  

By the means of a simulation package, the transit planner can use his/her own 
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experience and knowledge to test possible configurations, to predict user's behaviors, 

and to assess tested alternatives, with a good interaction in the whole process. 

Nevertheless, some optimization methods can also ensure a good interactivity, with the 

aditional advantage of not to be necessarily dependent on the specialist's subjectivity. 

Using optimization approaches, not simulation ones, the planner can take, besides 

his/her own experience, the alternatives automatically found by the algorithm that can 

be acepted or not by him/her, on its whole or in some extent. These alternatives could be 

brought from solution spaces that human mind have not imagined, since our minds can 

be guided many times by our habits and existent conformations. 

TND is a complex problem since a huge number of discrete variables and 

constraints must be considered for real large-sized cities. The actual demand and 

existent infrastructure characteristics should be considered. Both level of service 

parameters and cost/operational restrictions must be taken into consideration. In a more 

sophisticated model, one could also consider fare policy, e.g. lower fare for poverty 

reasons in poor areas. If one considers that infrastructure could be changed, making it 

possible new subway lines for instance, the problem becomes even more complicated. 

The use of approximate methods is then justified by the impossibility of applying 

exact methods in real-scale transit network optimization. Purely exact methods can only 

deal with small networks and simplified demand data, as stated by Chakroborty (2003) 

and other researchers. 

The authors propose constraint satisfaction model for the TND problem, which is 

tested using a constraint programming (CP) system, which seems to have not been 

applied before to TND, although it has been used on the traveling salesman problem, 

another combinatorial optimization problem, with sucess.  

CP is at the same time a declarative programming language and an optimization 

technique, based normally on branch-and-bound search and, but not necessarily, 

heuristics. CP can assign passengers into routes simultaneously with the itinerary design 

process, which is impossible in techniques like Genetic Algorithm or Tabu Search. 

In the proposed model, several levels of service parameters are considered like: 

minimum frequency, maximum number of transfers, etc., as well as operational 

restrictions like maximum routes length or minimum ridership per line. 

The method allows expert’s interaction, using his/her experience to enhance the 

results by changing variables and constraints parameters, but do not depend on his/her 

expertise. 

The authors' initial intent was to apply this method in real data from Fortaleza, a 

Brazilian city with 2.5 million inhabitants. Four road networks were generated to be 

used as an input, and represent different levels of accuracy the road network of the city. 

Actual O-D matrix, bus and train lines could also be considered as input data to test the 

method. Unfortunately, the chosen CP system has demanded a huge computational time 

to process these original instances, so authors had had to reduce the instances 

complexity in order to obtain some results and to assess them. 

Nevertheless, the results show that Constraint Programming is a promising 

technique since it considers both route and scheduling design together. Improvements 

must be made to, in one way, reduce computational time cost and in the other hand to 

include other constraints. Finally, CP’s flexibility enables the use of the proposed 

method in other instances, with few modifications. 

 



4/16 

2. TND MODELING 

 

In the Transit Network Design problem, the involved variables and constraints are, 

in great portion, formed by integer values. So models are generally of Mixed-Integer 

Programming – MIP, since there are also some linear variables. 

If there was a linear problem, using Linear Programming it would be easier to 

build mathematical models. But for discrete problems, like TND, it isn't so evident to 

find a mathematical model that represents the reality with fidelity.  

According to Wagner (1986), with sufficient ingeniousness, one can always 

imagine a non trivial integer programming representation of a combinatorial problem. 

Frequently, those integer problems are too big (i.e., there are a huge number of 

constraints and variables) and, than, formulation is of a negligible computational 

interest. But several of the algorithm techniques for integer programming problems can 

be directly applied to combinatorial models without been a priori converted in integer 

programming models. 

In deed, some TND authors prefer to implement the solution technique without 

previously formulating a mathematical model. Teypaz (2004) presents a MIP 

formulation, but also a solution method based on Tabu Search which has no math 

modeling a priori. 
Several models have been presented in the literature for optimization 

combinatorial problems, but not everytime with a complete mathematical representation 

of all relations between discrete variables. That is not a problem itself, since it is 

possible to find 'good' solutions without mathematical modeling. Anyway, to represent 

the reality, some decisions must be made by the TND researcher, like the choice of the 

demand assignment model and data modeling. 

 

2.1 Route Choice and the Demand Assignment Model 

 

Given a Origin-Destination (O-D) matrix, i.e., a matrix with the origin node, the 

destination node, and the quantity of passengers desiring to travel between these two 

nodes (normally traffic zones' centroids) in that specific time period (24 h, morning 

peak-period, etc), planner must choose the demand assignment model to the resulting 

routes from the optimization process. 

Generally, the assignment of O-D pairs to the resulting routes network is done in 

sequence, i.e., the demand assignment starts after the route set is found. In the present 

work, we show that Constraint Programming makes it possible the simultaneous search 

of the best routes and of the demand assignment to the best routes. Actually, best routes 

are found in accordance with the demand assignment, which probably is a novel way of 

solution search. 

According to the chosen approach, based mainly on the users' behavior model, all 

O-D pairs are assigned to the transit route set. If the different forms of demand behavior 

modeling are combined with the different forms of network's arcs costs modeling, one 

can use the following classification (adapted from Mauttone, 2005): All or Nothing - 

AON), Stochastic Network Loading - SNL, Deterministic User Equilibrium - DUE, 

Stochastic User Equilibrium - SUE, Deterministic Dynamic Process - DDP and 

Stochastic Dynamic Process - SDP. 
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route choice

road network assignment criteria deterministic stocastic

without congestion transit loading AON SNL

equilibrium DUE SUE

dynamic DDP or SDP DDP or SDP
with congestion

 
Figure 1: Assignment models classification 

 

AON model type assigns all O-D pair demand to one route only, tipically the one 

with the best travel time. SNL model type distributes the demand among the route set, 

generally in function of each route's frequency. When network costs, i.e., travel time on 

board depends on lines' ridership (passenger flows), assignment models are DUE or 

SUE. DUE type is solved applying variables inequalities and fixed-point. SUE type uses 

a fixed-point approach to be solved, and allows congestion effects modeling in onboard 

travel time as well as in effective service frequencies. DDP and SDP types include 

attribute learning process, which allow to update passengers' option mechanisms. 

For further considerations on route choice, traffic assignment or transit demand 

assignment, one can see Bovy and Stern (1990); Bell (1995); Aragón and Leal (1999; 

2003). 

 

2.2 Network Modeling 

 

The road/rail system representation, formed by roads, railroads, intersections, 

natural barriers, etc must be constructed in the most possible reliable way in accordance 

with an existent road/rail system. Flow directions, as well as links capacity and speed 

limits should be also preferably taken into consideration. 

Other infrastructure requirements are the bus stops, subway stations, rail 

terminals. Traffic zones centroids must also be present and linked to transit nodes. 

Besides that, there is congestion caused by transit routes operation and loading, 

which is different from congestion caused by general traffic that transit is subjected in 

shared roads (low level of right-of-way). The transit congestion itself is caused, for 

instances, by the overtime spent on boarding operation or by over ridership, bringing it 

lower the vehicle speed. Or also, by not observing the minimum headway between 

vehicles, causing a vehicle convoy of the same transit line, with a loss to the normal 

operation (see Lam et al, 1999). 

In most large-sized cities in the world, bus transit is one of the main transit modes, 

and its operations mostly occur in shared road ways. When there is some segregation 

level, like in bus corridors, congestion effect is mitigated. Anyway, even bus corridors 

or subway lines (the highest level of right-of-way) have capacity restrictions, i.e., there 

is a limit to the maximum quantity of vehicles that can ride on that link in a chosen time 

period. So network flow models (see Ahuja et al., 1993) can represent congestion effect, 

neither on shared roads or in segregated ones. 

It is not possible, obviously, to use simultaneously all these elements in a TND 

model. Each researcher picks up some of the most convenient constraints and variables, 

in accordance with his/her beliefs. If the proposed method and model succeeds, than the 

author can  
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2.3 Instances for TND and Present Challenges 

 

Mandl's data, based on a Swiss road network, were presented in 1979 and have 

been used as a reference instance for TND community since then (Mandl, 1979; 

Marwah et al., 1984; Baaj and Mahmassani, 1991; Shih and Mahmassani, 1994; 

Pattnaik et al., 1998; Kidwai, 1998; Chakroborty, 2003; Teypaz, 2004; Mauttone, 2005). 

Unfortunately, this only instance is not sufficient, because it has 15 nodes and 21 links, 

while real-scale instances may have hundreds or even thousands of nodes and links. 

In the other hand, TND researchers have been using more complex models and 

larger instances, in an attempt to increase fidelity (like Zhao and Gan, 2003). To 

understand and to evaluate methods and models developed in the near past by these 

researchers, one must be able not only to reproduce their experiences, but to be sure too 

that the studied instances fulfill some minimum requirements that each model may 

require. Besides, the same evaluation algorithm must be used to guarantee direct 

comparison. 

In the present days, there is a lack of standardization in both steps (instance 

definition and solution evaluation). This problem produces several inconveniences: the 

difficulty of results comparison, the impossibility of cooperation between different 

research teams that use different both instance and evaluation standards, and the 

impossibility of cooperation on instance evolution itself that could be produced if there 

was a common basis for instance definition. 

The scientific community may need, in these days of great possibilities opened by 

increasing capacity of computer processing, to work together in cooperation to 

transgress actual models’ limits. 

Metropolitan cities around the planet are facing, with an increasing progress, 

traffic and environmental problems. More than ever, governments, transportation 

experts and citizens must work together to reduce congestions, accidents and pollution. 

Regional transportation is not much better than that either. 

TND community must accept the actual challenge of producing more robust 

models, instances with higher fidelity to real-scale urban networks, and better solutions 

that could be really applied. If one succeeds, which means that proposed transit network 

increases its attractiveness, the benefits for suburban and urban populations of large-

sized cities could be significant. 

Mauttone (2005) says that there is no pattern instances
1
 for the TNDP: 'most 

papers about the TNDP in which numerical results are presented, these are generated 
from instances based on fictitious data'. The researcher claims that the difficulty of 

obtaining realistic instances lay on high costs of reliable data obtainment, specially the 

Origin-Destination matrix obtained from residences' poll. Anyway, since realistic 

instances are available to one team, TND community must effort to make it available to 

everyone. 

In this sense, we are constructing a website (www.det.ufc.br/tndlib) which may be 

a meeting point to the TND community, the TND Lib. In the TND Lib website, one will 

find all instances proposed by all authors who want to have their instances published, 

for free. The idea is to follow good experiences, sharing data as well as research results. 

                                                 
1
 Given the literature, probably Barra et al. (2005) were the pioneer to propose standardization of 

instances as well as evaluation functions to the Transit Network Design problem. 
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With the present work regarding on CP opened perspectives, and the TND Lib, we 

expect to improve the scientific cooperation between TND researchers, since it will 

allow a common basis for the community of operations research, transportation 

engineering, maths and economics to plan regional and urban transit systems. 

 

2.4 Solutions in TND 

 

A solution of the TND problem is ideally formed by at least two main 

components: (i) the routes set; and (ii) the paths set, as explained below. 

The routes set is composed by all routes found in the feasible solution, and each 

transit route/line is composed by its itinerary (sequence of nodes or sequence of arcs 

from the initial to the final ones) and by its frequency (number of departures in the 

chosen period of time). 

The paths set is composed by the path that the demand of each O-D pair takes in 

the transit network, i.e. the sequence of transit lines the demand of the O-D pair takes to 

have its travel desires satisfied. Obviously, there may be paths formed by a segment of a 

single route (direct travel). The path can also be formed by walking paths, e.g. from 

residence to the initial bus stop, in a large transfer station, and from the final bus stop to 

office/school. 

 

3. THE CONSTRAINT SATISFACTION MODEL 

 

The model proposed was inspired in several models presented in the literature, and 

it takes into consideration also the authors' practical experience in their professional 

fields (consulting, teaching, research) to the variables and constraints choice. It differs 

from others since there is no objective function, it is based on the concept of constraint 

satisfaction
2
. 

The way of presenting the model formulation, from a systematic view, was 

inspired by Fan and Machemehl (2006a,b). 

 

Sets/Indices 

i,j ∈ N = nodes; rk ∈ R = transit routes set; po ∈ P = paths set 

 

Input Data 

nVertices = the number of vertices in the instance; nArcs = the number of arcs in the 

instance; A [orig, dest, DistCost, Speed] = the description of each arc, with origin node, 

destination node, distance between nodes and speed at the arc; nRoutes = number of 

transit routes in the solution (k = 1...nRoutes); minRouteCost = minimum route length; 

maxRouteCost = maximum route length; minRouteRidership = minimum route 

ridership; maxRouteCap = maximum route capacity; minH = minimum headway; maxH 

= maximum headway; maxTransfers = maximum number of transfers; fcoef = 

coefficient to enable some variation in the minimum fleet demanded by the solution; 

existFl = existent operational fleet in the actual transit network; maxPathCost = 

                                                 
2
 Constraint satisfaction problems are typically identified with problems based on constraints on a finite 

domain, and to be coded it is recommended a Constraint Programming language. Such problems are 

usually solved via search, in particular a form of backtracking or local search. 
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maximum travel time; maxTotalPathCost = maximum travel time in the whole transit 

network; odPairs {orig, dest, flow} = O-D matrix, with origin and destination nodes, 

and the demand; minSpeed = minimum speed of each O-D pair in the transit network; 

CTU = capacity of the transit unit. 

 

Given a connected directed graph G = (N, A) consisted by a finite set of N nodes 

and A arcs which connect pairs of nodes, find a solution formed by a transit network 

(routes set) and a paths set, subject to: 

 

(a1 and a2) ∀ rk ∈ R, minRouteCost ≤ RouteCostk ≤ maxRouteCost (route length is 

limited on its minimum and maximum values); 

(b) ∀ rk ∈ R, RouteRidershipk ≤ maxRouteCap (the daily ridership in each route must be 

equal or less than the capacity of the line maxRouteCap = maxFk x CTUkv), while maxFk 

is the maximum frequency of line k (see below) and CTUkv is the capacity of the transit 

unit v (each vehicle or rail composition of route k used in the considered time period). 

Discrete; 

(c) ∀ rk ∈ R, RouteRidershipk ≥ minRouteRidership (the daily ridership in each route 

must value at least minRouteRidership, in order to have financial feasibility). Discrete; 

(d) ∀ rk ∈ R, Hk ≥ minH (headway H of each line k is at least minH of the transport 

mode). Discrete; 

(e) ∀ rk ∈ R, Hk ≤ maxH (headway H of each line k is limited by maxH). Discrete; 

(f) ∀ po ∈ P, #Transferso ≤ maxTransfers (number of transfers #Transfers of each O-D 

pair o is limited). Discrete; 

(g) ∀ po ∈ P, PathCosto ≤ maxPathCost (total travel time of each O-D pair o is limited); 
(h) ∀ po ∈ P, Speedo ≥ minSpeed (speed on transit network of each O-D pair o obeys a 

minimum speed), 
o

o
o

TimeCost

DistCost
Speed = , DistCost is the distance cost of pair o, and 

TimeCost is the total travel time of pair o; 

(i) TotalPathCost ≤  maxTotalPathCost (the daily traveled through kilometers in the 

transit network TotalPathCost is limited), 

where ∑
∈

×=

Kk
kk DayTripsRouteCost ost TotalPathC ; ∑=

p
kpk DepDayTrips  (the daily 

number of trips DayTrips of line k is the sum of departures in one day (24 h). 

(j) TotalNeedFl ≤ fcoef x existFl (this constraint enables some variation in the minimum 

fleet demanded by the solution, and fcoef > 0 and its value is near 1; where 

∑
∈

=

Kk
kneedFl  lTotalNeedF and needFl is the necessary fleet to operate the feasible transit 

route found). Discrete. 

 

Some imput data can be fixed to all nRoutes, like maxRouteCap, CTU or F. 

The headway H is the time (generally in minutes) between two departures (the 

time gap). minH is related to technical restrictions of each transport mode, and it 

depends on the used controlling technology, segregation level from general traffic and 

congestion influence. If H < minH, it is likely to happen accidents (e.g. a two trains 

collision) or at least operational problems (like two buses of the same route forming a 

not planned convoy). In the contrary, maxH is related to the desired level of service. 
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The frequency F is the number of vehicles per hour in one route, Fk = 60 / Hk and 

maxF = 60 / minH. 
To calculate needFl, it is necessary to know the total travel time in a round trip of 

route k in the chosen time period, i.e. the cycle time Tc. One must take the peak period, 

and how many minutes it takes, Period: 

H

T
needFl c

= , 
Dep

Period
H = ,  

CTURF

Pass
Dep ps

×
= , 

cr

ps

Pass

Pass
RF = , then 

CTU

Pass
Dep cr

=  

and finally 
CTUPeriod

PassT
needFl crc

×

×
=  

 

where: 

Period = considered period [minutes]; Dep = necessary number of departures in the 

period per direction to satisfy the demand; Passps = number of passengers per period per 

direction; CTU = capacity of the transit unit/vehicle (seats + maximum number of on 

foot passengers); RF = renewal factor; Passcr = number of passengers per period per 

direction in the critical session (critical ridership). 

 

PathCosto is the total time cost of each pair po, i.e., it depends on the path, and it 

values the sum of WaitTimeo, AboardTimeo and eventually TransferPenalo.  

TotalPathCost is calculated summing the total travel time (or total distance) of 

every trip made by each route, along the day, including transfer penalties 

TransferPenalo, if any. 

Speedo is a way to weight the time cost according to the traveled distance, i.e. it is 

the average speed of each O-D pair o. 

RouteRidership must attain at least minRouteRidership in the whole day in order 

to have financial feasibility. In some cities or regions, this feasibility can be reach by 

delimited areas (that can be called transit basins, like a river basin), instead of by single 

routes. In those locations, minRouteRidership must be replaced by a minimum ridership 

of each basin, i.e. all routes in the delimited area. 

The upper bound (maxRouteCost) and the lower one (minRouteCost) of the route 

length (RouteCostk) should be defined by the specialist according to technical 

restrictions and particularities of the city or region. 

The proposed constraints were classified in accordance with its importance 

(essential or complementary) and the main reason of its choice (for technical/operational 

reasons, for a better level of service or for a lower operational cost), like the following: 
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importance constraint level of service technical cost

a1 and a2 X

b X

d X

f X

g X

i X

e X

h X

c X

j X

essential

complementary

 
Figure 2: Classification of the proposed constraints 

 

So the authors have selected 11 constraints (since constraint ‘a’ is actually two 

grouped constraints), being 7 essentials, 4 complementaries; being 3 due to technical 

reasons, 4 regarding the level of service and 3 the operational (fixed and variable) costs. 

To known which of the feasible solutions found is the ‘best’ one, it can be used 

one or more evaluation functions, like the functions proposed by Barra et al. (2005). 

 

4. USING CONSTRAINT PROGRAMMING TO THE TND 

 

Transit Network Design methods generally work in a bi-level process. Generally, 

there is an optimization level, in which is made the search for the optimal (or sub-

optimal) routes set; and a simulation level, in which is made the transit demand 

assignment. Simulation, also known as analytic method, is also used in models 

involving network flow (like in Loureiro, 1994). 

Only after the demand assignment one can assess the quality of the solution found. 

The explanation for this assertion is based on the fact that, if in the first level all 

itineraries of the routes are already known, only after the complete transit demand 

assignment one knows the routes’ frequencies, or the necessary fleet. So, only after the 

demand assignment process it is achieved the complete solution of the problem, 

assessed by one or more evaluation functions. 

Using optimization methods, also known as synthetic methods, the design of 

transit networks has been solved using heuristics as in Andréasson (1977), Mandl 

(1979), Baaj and Mahmassani (1991), Shih and Mahmassani (1994), Carmo et al. (2002) 

and Wan and Lo (2006); or meta-heuristics like in Pattnaik et al. (1998), Kidwai (1998), 

Dwivedi (2000), Chakroborty and Dwivedi (2002), Teypaz (2004), Fan and Machemehl 

(2004, 2006a, 2006b) and Mauttone (2005; 2006). 

 

4.1 Constraint Programming: a good alternative? 

 

Besides heuristics and meta-heuristics, which other techniques could be used in 

for the Transit Network Design? This question has appeared naturally in our research, 

that involves other techniques like Tabu Search. After all, if by one side the scientific 

community must improve recognized efficient methods, the researchers must also try 

other alternatives that potentially could bring even better results. 

Several researchers from India have been developing implementations based on 

Genetic Algorithm (GA), and have been reaching better results along the years. The 

second way was adopted by researchers that have tried other meta-heuristics than GA, 
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like Zhao and Gan (2003), Zhao and Ubaka (2004) and Teypaz (2004), with Tabu 

Search, or Mauttone (2005), with GRASP. 

The Constraint Logic Programming on finite domains – CLP (FD) has already 

showed a good efficiency in many practical implementations of Combinatorial 

Optimization problems, specially due to its characteristics of dealing well with discrete 

problems. As examples, there have been applications to some logistic problems, like the 

choice of optimum stock level or the fleet scheduling. 

The Constraint Programming has appeared in the beginning of 1960’s decade, 

with the technique of “iterative graphs”, but it was its joint with the Logic Programming 

back in 1987 that it has happened a great development in programming and in 

applications. Today the main available solvers for the Logic Constraint Programming 

(or simply Constraint Programming) are: GNU Prolog, CHIP, SICStus, ECLiPSe, Oz, 

Ilog Solver and Koalog Constraint Solver (Georget, 2002). The first three are based on 

declarative programming language Prolog. SICStus includes a Constraint Handling 

Rules (CHR), a constraint handler, which is a set of rules for simplification, propagation 

and "simpagation" (simultaneous simplification and propagation) of constraints. In all 

these languages, the programmer must define relation rules between variables, as well as 

possible domain for each one. 

The declarative programming is a paradigm of the Logic Constraint Programming, 

or simply Constraint Programming (see Abdennadher, 2001; Abdennadher e Fruhwirth, 

2004), where relations between variables can be stated in the form of constraints. It 

differs to procedural-based programming (like C/C++ or Pascal/Delphi) because it is not 

subjected to the need of defining all steps the machine must follow to execute the 

algorithm. Declarative programming is based on relations of objects defined by user. 

Theses objects are the variables and constraints of the model. 

While constraints are pieces of syntax used to model real world behaviour, a 

constraint solver determines if a constraint has a solution. Basically, the Constraint 

Programming can deal with three kinds of constraints: arithmetic constraints, tree 

constraints and constraints in finite domains. Constraints in finite domains are largely 

used on constraint programming which involves choices, letting possible values to the 

variable to correspond to different choices (Marriot and Stuckey, 1998). 

Constraint Programming was chosen to the implementation of the proposed 

Constraint Satisfaction Model by its semantic simplicity and a theoretical low 

computational cost, besides (as far as we know) it hasn’t been used to solve TND 

problems. The intention is to open new perspectives, in an exploratory study. 

 

4.2 The Choice of the Implementation Toolkit 

 

To implement the method, it was chosen the toolkit ILOG Solver (Ilog) and the 

modeling tool OPL Studio (Ilog). Teypay and Cung (2005) have made some tests using 

the Mandl’s data with OPL Studio but with another optimization engine, ILOG CPLEX, 

used also by Wan and Lo (2003).  

The well known ILOG CPLEX (used to exact methods) is unable to handle large 

networks for the TND problem (see Teypaz and Cung, 2005). 

The choice of ILOG OPL Studio was based on its simplicity to code the model, so 

any transport specialist could easily model the problem, even those who are not likely 

with mathematical modeling. So it is easier to access ILOG Solver (which is a C++ 
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library) via ILOG OPL Studio, than directly in this engine or another one like GNU 

Prolog, since OPL Studio does not require good expertise in computers programming. 

ILOG’s systems devoted to optimization problems has been showed efficient in 

some cases (see for instance Halatsis et al., 1996), and since a full licence is available 

ate GILCO Lab (www.gilco.inpg.fr), we have chosen to test them. 

 

4.3 Computational Performance and Code Improvement 

 

Testing the coded model, with several small instances derived from Mandl’s 

network, OPL Studio has produced good results. Using a PC with Sempron 2800 

processor, 515 MHz RAM, the system gives all possible solutions for these instances in 

up to 0.08 seconds in some cases. 

Nevertheless, for bigger networks, of even for the modified Mandl’s network 

(oriented graph with only 15 nodes and 42 arcs), it takes more than one whole week 

executing without finding any solution. 

In an attempt to accelerate the processing execution, other constraints were added 

in the code, to observe its behavior, expecting that solutions could be found, and in a 

reasonable time. The new constraints, that could be redraw or reintroduced by the 

specialist before each run, are described as following. 

The first new constraint is the determination, by the specialist, of the route 

cardinality, i.e. the number of arcs than some of the routes must take. It is similar to 

constraint ‘a’, but it is different since it doesn’t matter the cost of the taken arc, just the 

number of arcs is fixed for some chosen routes. 

The second added constraint is the mandatory initial arcs for some routes, i.e. the 

initial node and the direction to the second node are chosen by the specialist. The third 

and last extra constraint is the mandatory arc for a specific route or for any route, i.e. a 

determined arc (or more than one) is chosen to be a segment of a route, no matter if it is 

the initial arc, the final one or in other segment of the route. 

Another try was the simplification of the model, using only the essential 

constraints of the Constraint Satisfaction model, but there was any practical advantage 

in the computing cost. 

The results, however, have continued to be unsatisfactory, since this solution 

“guidance” takes away the meaning of the whole optimization process. Then the surplus 

in limiting the search space will reflect the specialist’s desire to achieve one or another 

solution. 

Nevertheless, similar constraints can be used by the specialist to fix, among 

existent transit routes, which of them may be maintained in the optimization process. 

This is positive considering punctual needs to improve transit offer quality, but not in a 

complete design of a transit network. 

In the model coding, we had decided not conditioning the search starting from the 

existent transit network, if any. Several other approaches (GA, Tabu Search, etc) require 

an initial transit network, so the try was to test an optimization strategy without this 

restriction that could also “guide” the search, and/or to eventually maintain 

performances’ vices of the current transit system. This could have played a role in the 

huge computational cost showed by our code to OPL Studio / ILOG Solver, since it 

must search and backtrack in a very large search space. 

Anyway, it is positive to prove that it is possible to implement a TND model 
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without necessarily having an existent transit network to be optimized. Also, it is good 

to have the option, to the specialist, to choose or not some mandatory nodes or arcs for 

some routes. It is relevant to remember that some methods require from the specialist 

the initial and/or the final node of each route, like in Jerby and Ceder (2006) for 

instance. 

Another positive statement is that the routes set and the paths set can be found 

simultaneously. Many implementations, however, treat them in sequence, as discussed 

before about the traditional work realized in the practice of transit planning agencies. 

The ideal, in our opinion, is to choose implementation tools that can treat both questions 

in a concurrent and simultaneous way, which is possible using a Constraint 

Programming language. That is an important step toward new challenges for the 

scientific community since they are mutually dependents, but it mustn’t make the 

implementation impracticable.  

 

4.4 Open Perspectives 

 

Even with the modeling simplification and the added constraints it wasn’t possible 

to reduce the search space in a way to obtain a ‘good’ solution in an appropriate 

computing time. Nevertheless, Constraint Programming allows that search heuristics to 

be introduced to ‘accelerate’ the possibility of finding solutions. This way wasn’t 

explored yet. 

A next would be then to refine the search strategy. This kind would be similar to a 

proof search in the solution tree, while the one that was explored regards a search in 

width in a tree which has been ‘guided’ by the simplification or by the added 

constraints. 

To refine the search mode might reveal a better way than the adopted strategy. In 

this sense, the original Constraint Satisfaction model would be preserved, and 

Constraint Programming would allow easily the specification of several forms of search, 

which would amplify its utility in the TND problem’s solution. Unfortunately, this 

direction wasn’t the preferred in the chosen approach, since this approach seemed to be 

more promising. 

Actually, both strategies can be considered as a pattern in numerical solutions of 

optimization problems. Given a initial point, one can execute the search in two ways: (i) 

the search length is fixed and the better direction is picked up (known as trusted region 
search), or (ii) the better direction is fixed and the search length is chosen (known as 

line search). 

Constraint Programming shows itself as a promising tool to this kind of problem. 

CP is a language with smaller semantic gap, and it is in deed more adequate to 

optimization problems that can be solved by constraint satisfaction, specially in finite 

domains, without the need a priori of the minimization of an objective function. 

To confirm or not this impressions in this exploratory study, many other tests 

should be made by the scientific community, including big instances after successful 

results with the small ones. 

 

5. CONCLUSIONS AND RECOMMENDATIONS 

 

Transit network design (TND) is a combinatorial optimization problem. To solve 
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it, the authors have presented a comprehensive nouvel model, based on Constraint 

Satisfaction, with essential and complementary constraints, eleven in total. These 

constraints take in to consideration main characteristics of the system, passenger’s 

desires (represented by the Origin-Destination matrix), budget constraints (as total km 

daily traveled by all routes in the transit network, or necessary fleet to operate the 

resulting network) and several possible levels of service (varying the maximum 

headway or the minimum average speed and other characteristics in accordance with 

specialist choices). 

Using a Constraint Programming toolkit, OPL Studio / ILOG Solver, some tests 

are made using the proposed model in an attempt to open new perspectives for solution 

alternatives. The tests show that the chosen CP toolkit is apparently unable to process 

large instances, although it works well with small ones. Other CP packages and search 

strategies should be tried by CP specialists in order to comprehensively validate the 

conclusions of the present work. 

As concluding remarks, some assertions can be made: 

(i) other relevant aspects of the problem, besides the essential and 

complementary constraints, should be consider to make the model and 

the implementation closer to the reality. There is obviously a trade-off 

between fidelity and computational cost, as discussed before about the 

simultaneous search of routes set and paths set; 

(ii) other search strategies should be tried, in order to achieve non explored 

spaces, also reducing computational processing time; 

(iii) the interactivity of the specialist with the search should be improved, 

since in the present work the interactivity is limited on the choice of the 

input values. Ideally, it should be possible to the specialist to make some 

interference in the optimization process during its execution, as long as 

he/she identifies good possibilities (based on quantitative assessments 

and qualitative measures given during the process) and directions that 

would make it easier to the algorithm to find better solutions. Here there 

is another trade-off between the specialist positive aid based on objective 

reasons and the negative guidance to a desired solution based on 

subjective beliefs; 

(iv) the system must be more friendly to the specialist, in order to amplify the 

number of possible interested transit planners and public transport 

planning agencies. Specially, some effort should be done in the 

visualization of candidate routes and search space, using a Geographic 

Information System for instance. 

 

So for future researches, it is recommended: (a) the test of other possible search 

strategies in Constraint Programming, using heuristics in addition to branch-and-bound 
and backtracking, to solution quick finding; (b) the test of other Constraint 

Programming toolkits, to be compared with ILOG Solver and OPL Studio; (c) the 

consideration of other constraints, regarding the fare policy for example. 

It is also important a more dynamic scientific cooperation between different teams 

in different countries, maybe through the TND Lib, with a intense exchange of 

experiences to boost the development of this so complex and fascinating field. 
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