
Some ways to reduce the space dimension

in polyhedra computations ∗

N. Halbwachs, D. Merchat, and L. Gonnord†

Vérimag‡, Grenoble - France

Abstract

Convex polyhedra are often used to approximate sets of states of programs in-
volving numerical variables. The manipulation of convex polyhedra relies on the
so-called double description, consisting of viewing a polyhedron both as the set of
solutions of a system of linear inequalities, and as the convex hull of a system of

generators, i.e., a set of vertices and rays. The cost of these manipulations is highly
dependent on the number of numerical variables, since the size of each representation
can be exponential in the dimension of the space. In this paper, we investigate some
ways for reducing the dimension: On one hand, when a polyhedron satisfies affine

equations, these equations can obviously be used to eliminate some variables. On
the other hand, when groups of variables are unrelated with each other, this means
that the polyhedron is in fact a Cartesian product of polyhedra of lower dimensions.
Such a Cartesian factoring can be exploited if the operations can be adapted to
work on Cartesian products. Finally, the applicability of Cartesian factoring can be
extended by allowing suitable variable change to be applied, in order to maximize
the factoring.

1 Introduction

Convex polyhedra, or systems of linear inequalities, are a natural way to represent upper
approximations of sets of states of programs involving numerical variables. In particu-
lar, linear relation analysis [CH78] was defined as an abstract interpretation based on
the lattice of polyhedra. The results of such analyses were used in many contexts, like
program verification [HPR97], timed and hybrid system verification [HHWT97], auto-
matic discovery of invariants used in formal proofs [BBC+00, BBM97], compile-time error
detection [DRS01], or object code optimization in compilers and automatic program par-
allelization [IJT91, Fea96]. Convex polyhedra have other applications, e.g., in the design

∗This work has been partially supported by the project APRON of the “ACI Sécurité Informatique”
of the French Ministry of Research

†Author’s email: {Nicolas.Halbwachs,David.Merchat,Laure.Gonnord}@imag.fr
‡Vérimag is a joint laboratory of Université Joseph Fourier, CNRS and INPG associated with IMAG.

1

of systolic arrays [LMQ91, LM95, QR00], but in this paper we will focus on program
analysis.

All these applications require a common set of operations on polyhedra: representation
and simplification, intersection and convex hull, affine transformation, test for inclusion
and emptiness, and widening. These operations are generally realized thanks to the “dou-
ble description” of polyhedra [MRTT53], which we recall in Section 2: a polyhedron can
be considered as the set of solutions of a system of linear inequalities, or can be char-
acterized by a “system of generators”, made of its set of vertices and its set of infinite

rays. In general, each operation is easier on one representation, and the knowledge of both
representations allows each of them to be minimized (elimination of irrelevant inequal-
ities, non extremal vertices and rays). Several libraries for polyhedra manipulation are
available [Wil93]1 [CL98]2 [HPR97][BRZH02]3.

A well-known problem with the double-description is that the size of each description
can grow exponentially with the dimension of the space (number of variables): an n-
dimensional hypercube is defined by 2n inequalities, but has 2n vertices; the converse can
happen, since the descriptions are completely dual. As a consequence, the dimension of the
space is a crucial limitation to polyhedra manipulation. Another, more technical problem
that arises with large dimensions, is that the implemented algorithms generally work with
rational numbers (to avoid precision problems): in such implementations, implementing
each coefficient in inequalities and each component of generators as a rational number is
very expensive, both in time and memory. This is why, generally, these coefficients and
components are generally converted to the same denominator, this denominator being
stored only once. Now, when the number n of variables is high, the common denominator
of n rational numbers tends to be very large, and one is faced with serious problems of
arithmetic overflows.

In program analysis, the number of variables can be reduced by well-known techniques:
determining the life range of each variable [Muc97], applying program slicing [Tip95] to
discard variables which do not influence the result of the analysis, . . . In this paper, we
investigate some complementary approaches, which don’t take the analysed program into
account, but work at the level of polyhedra operations. The proposed techniques can be
(and have been) implemented as a layer above a polyhedra library.

A first, obvious, idea, is to take advantage of affine equations satisfied by a polyhedron.
If we can predict that the result of an operation will satisfy some affine equations, we can
use each of these equations to eliminate a variable. Of course, this technique is not likely
to induce huge improvements (since it allows only one variable to be eliminated for each
equation), and, as a matter of fact, in Section 3, we quickly report on disappointing
experiments with this idea.

Another solution consists in detecting that a polyhedron can be factored as a Cartesian
product of polyhedra in smaller dimensions. This situation, which occurs very often in
real-life examples, means that the set of variables can be partitioned into subsets, such
that variables belonging to different subsets are independent, i.e., not related by any

1see also http://www.ee.byu.edu:8080/ wilde/polyhedra.html
2see also http://icps.u-strasbg.fr/PolyLib/
3see also http://www.cd.unipr.it/ppl/

2

inequality in the polyhedron. In order to take advantage of such factorings, they must be
detected, and operations should be, as far as possible, performed on factored arguments.
These topics are addressed in Sections 4,5, and 6. A preliminary presentation of this idea
appeared in [HDPV03].

Now, the success of the factoring method is highly dependent on the choice of the vari-
ables. A single variable change in the analysed program can have dramatic consequences
on the performances of the analysis. In order to eliminate this dependence, we propose
in Section 7 a way of making the best variable choice, and of performing the basis change
which maximizes the factoring.

These techniques have been implemented as a layer above the Parma Polyhedra Library.
In Section 8 we give some experimental comparisons on the performances with and without
this layer.

2 Convex Polyhedra

Let N be a numerical field (R or Q). A convex polyhedron (or “a polyhedron”, for short)
in N n is a subset of N n consisting of the intersection of a finite number of half-spaces.
The classical “double description” [MRTT53] of a polyhedron P (see Fig.1), consists of
characterizing it

• either as the set of solutions of a system of linear inequalities:

P = {X ∈ N n | AX ≤ B}

where A is a matrix m× n and B is an m-vector. When this representation is used,
we note P as ineq(A, B).

• or as the convex hull of a system of generators, i.e., two finite sets of vectors, V =
{V1, . . . , Vk} (“vertices”) and R = {R1, . . . , Rℓ} (“rays”) such that each point of P
is the sum of a convex combination of vertices, and a positive combination of rays:

P = {
k

∑

i=1

λiVi +
ℓ

∑

i=1

µiRi | λi ≥ 0, µi ≥ 0,
∑

i

λi = 1}

When this representation is used, we note P as gen(V, R).

The knowledge of both representations is useful for performing most common opera-
tions on polyhedra:

Intersection :
ineq(A, B) ∩ ineq(A′, B′) = ineq([A, A′], [B, B′])

Convex hull — i.e., the least convex polyhedron containing the union:

gen(V, R) ⊔ gen(V ′, R′) = gen(V ∪ V ′, R ∪ R′)

3

1 2

1

2

x

y

3

3

−1 −1
−1 1

−1

(

x
y

)

≤

−3
1

−1

V0 =

(

1
2

)

, V1 =

(

2
1

)

, R0 =

(

1
0

)

, R1 =

(

1
1

)

Figure 1: Double description of a polyhedron.

Inclusion :

gen(V, R) ⊆ ineq(A, B) iff AVi ≤ B (i = 1..k) and ARi ≤ 0 (i = 1..ℓ)

Test for emptiness :
gen(V, R) = ∅ iff V = ∅

Affine transformation — defined from an n× n matrix C and an n-vector D as CP +
D = {CX + D | X ∈ P}:

Cgen(V, R) + D = gen({CVi + D | i = 1..k}, {CRi | i = 1..ℓ})4

Moreover, the knowledge of both representations allows both of them to be minimized (re-
moving redundant inequalities, vertices and rays), which is essential to avoid an explosion
of their size: a constraint, a vertex, or a ray is redundant if removing it does not change
the polyhedron. In the example of Fig. 1, x ≥ 0 would be a redundant constraint, (2, 2)
would be a redundant vertex, and (2, 1) would be a redundant ray.

The translation of each representation into the other is not very difficult [Che68, LeV92,
Wil93] but can be very expensive (exponential) in the worst case, because each representa-
tion can be exponentially larger than the other as the dimension n of the space increases.

A last operation that we shall use is the projection, or existential quantification of a
variable. If P is a polyhedron, its projection, noted ∃x.P , according to some variable x,
can be computed using the classical Fourier-Motzkin procedure: all pairs of constraints
with non-null and opposite sign coefficients for x are positively combined in order to get
a null coefficient for x in the composition.

3 Predicting affine equations

The simplest idea to eliminate variables, is to take advantage of affine equations satisfied
by polyhedra. The discovery of invariant affine equations has been studied in Karr’s
pioneering work [Kar76] a long time ago: Karr’s method is an abstract interpretation

4In fact, affine transformations can also be performed directly on systems of inequalities.

4

working of the lattice of affine varieties. All the operations for minimizing systems of
equations and propagating affine equations over program statement are available, and the
iterative computation of affine invariants is guaranteed to converge, since the lattice of
linear varieties is of finite depth.

Global affine invariants:

So, it is easy to first apply Karr’s method to attach to each program point a system of
affine equations invariantly satisfied by the variables, and then to use these equations to
eliminate variables in costly polyhedra computations, i.e., in computing the system of
generators of a polyhedron, or the intersection of two polyhedra, or the convex hull of two
polyhedra. Now, our experiments show that this naive approach gives very poor results:
most of the time, the performances are worse, because there are only very few invariant
equations, and the benefit of using them is negligible with respect to the cost of finding
them.

Temporary affine equations:

Since global affine invariants are rare, a second idea is to take advantage of temporary
affine equations: at some step of the analysis, some polyhedra satisfy affine equations that
can be used. If systems of inequalities are kept minimal, equations (i.e., pairs of opposite
inequalities) are identified in them. So, whenever we have to perform an operation on
polyhedra, we know the equations they satisfy. With respect to the previous approach, we
are likely to get much more equations, since on one hand we don’t require these equations
to be global invariants, and on the other hand, linear relation analysis is able to discover
equations which are missed by Karr’s method (when they result from opposite inequalities).
So, knowing the equations satisfied by the arguments of an operation, we can use the
corresponding operation on equations to predict the equations satisfied by the result, and
use them to eliminate variables.

In particular:

• for computing P1∩P2, one forms the conjunction, say C, of the systems of constraints
of P1 and P2. Then, to check if the intersection is empty, and to simplify the system
of constraints C, one has to compute the system of generators of the intersection.
The equations identified in C can be used to eliminate variables before performing
the costly computation of the system of generators.

• for computing the convex hull P1 ⊔ P2, knowing that P1 ⊂ E1 and P2 ⊂ E2 (where
E1 and E2 are affine varieties), one first compute the systems of generators of P1

and P2. Then, the system of generators of P1 ⊔ P2 is formed as in §2, and the
corresponding system of inequalities must be computed. For that, one can compute
first the affine hull of E1 and E2, which provides the equations satisfied by P1 ⊔ P2.
These equations can be used to eliminate variables before computing the system of
constraints.

5

Unfortunately, experiments with this idea are very disapointing. They show that, in good
cases, improvements are negligible while in bad cases there can be a significant overhead.
The reason is that the expensive step is Chernikova’s algorithm, and it appears that, in
good implementations of this algorithm, equations are already implicitly exploited.

So, the whole attempt to use affine equations to improve polyhedra operations is a
failure, but even failures deserve to be reported!

4 Factoring of Polyhedra

A more promising idea is to detect that a polyhedron is a Cartesian product of several
polyhedra of lower dimension. As a matter of fact, such a factoring can result in a logarith-
mic reduction of the size of the system of generators: for instance, consider the family of
hypercubes defined by Hn = {0 ≤ xi ≤ 1 | i = 1, ..n}. Hn has 2n vertices, but if we notice
that all variables are independent from each other, we can consider Hn as the product of
n intervals in 1-dimensional spaces.

Let I be a subset of {1 . . . n}. We note P ↓ I the projection of the polyhedron P
on variables with indices in I (i.e., the result, in N |I| of the existential quantification of
all variables with indices outside I). Conversely, if PI is a polyhedron on variables with
indices in I, and if I ⊂ J , we note PI↑J the extension of PI to the greater space (i.e., the
polyhedron on variables with indices in J , such that (PI↑J)↓I = PI).

Let (I1, I2, . . . Iℓ) be a partition of {1 . . . n}. We say that a polyhedron P can be factored

according to (I1, I2, . . . Iℓ) if and only if

P = P ↓I1 × P ↓I2 × . . . P ↓Iℓ

A matrix A is block-diagonalizable according to a partition (I1, I2, . . . Iℓ) if for each of its
row Ai there is one ki ∈ {1..ℓ} such that {j | Aj

i 6= 0} ⊆ Iki
.

Some obvious facts:

f1. for any polyhedron P , there is a greatest partition (I1, I2, . . . Iℓ) according to which P
can be factored (possibly the trivial partition, with ℓ = 1).

f2. for any matrix A, there is a greatest partition (I1, I2, . . . Iℓ) according to which A is
block-diagonalizable (possibly the trivial partition, with ℓ = 1).

f3. if P = ineq(A, B), and if A is block-diagonalizable according to a partition
(I1, I2, . . . Iℓ), then P can be factored according to (I1, I2, . . . Iℓ) (the converse is not
true, if the system of constraints is not minimal). This gives an easy way to factor
a polyhedron, and to get the constraint descriptions of its factors: each constraint
AiX ≤ Bi becomes a constraint of the factor Pki

.

f4. For any pair (P, P ′) of polyhedra (resp., for any pair (A, A′) of matrices) there is a
greatest common partition (possibly the trivial partition) according to which both
polyhedra can be factored (resp., both matrices are block-diagonalizable).

6

1

2

x

y

x ≥ 1

0 ≤ y ≤ 2

2x ≥ y

Figure 2: A factored polyhedron.

f5. Conversely, given a description of the factors P1, . . . Pℓ, one can easily obtain the
corresponding description of P = P1 × . . . × Pℓ:

• its system of constraints is just the conjunction of those of the factors;

• its system of generators is obtained by composing together all the ℓ-tuples of
vertices (resp., of rays) of the factors. This composition explains the explosion of
the size of the systems of generators, since |V | =

∏ℓ

k=1 |Vk| and |R| =
∏ℓ

k=1 |Rk|.

A similar treatment works also to obtain a description of P factored according to
any partition rougher than (I1, I2, . . . Iℓ).

Example: Fig. 2 shows a factored polyhedron in 2 dimensions. In its minimal system
of constraints:

−1 0
0 1
0 −1

(

x
y

)

≤

−1
2
0

the matrix is block-diagonal. Now, if the redundant constraint 2x ≥ y is added, the matrix
is non longer block-diagonalizable, and the factoring of the polyhedron is hidden.

5 Easy Operations

Most of the operations mentioned in Section 2 can be easily applied componentwise to
factored polyhedra. The operands need first to be factored in the same way (using f4 and
f5 above). Moreover, in many cases, the result may be better factored than the operands,
which can be done using f2.

Intersection. If P and P ′ are factored according to the same partition (I1, I2, . . . Iℓ), then
so is P ∩ P ′ = P1 ∩ P ′

1 × P2 ∩ P ′
2 × . . . × Pℓ ∩ P ′

ℓ. It may be the case that P ∩ P ′

can be further factored (Fig. 3).

Affine transformation. Let X 7→ CX + D be an affine transformation. If C is block-
diagonalizable according to (I1, I2, . . . Iℓ), and P is factored according to the same
partition, then so is CP + D = CI1P1 + DI1 × . . . × CIℓ

Pℓ + DIℓ
. If C is not

invertible, it can be the case that CP + D can be further factored.

7

(b) better factoring(a) same factoring

Figure 3: Intersection of factored polyhedra.

(c) better factoring(b) same factoring(a) less factoring

Figure 4: Convex hull of factored polyhedra.

Widening. If P and P ′ are factored according to the same partition (I1, I2, . . . Iℓ), then
so is P∇P ′ = P1∇P ′

1 × P2∇P ′
2 × . . . × Pℓ∇P ′

ℓ. It may be the case (in fact, it
happens very often) that P∇P ′ can be further factored

Emptiness and inclusion. Let P = P1 × P2 × . . . × Pℓ. Then P is empty if and only
if there exists k ∈ {1..ℓ} such that Pk is empty. If P and P ′ are factored according
to the same partition (I1, I2, . . . Iℓ), then P ⊆ P ′ if and only if, for all k ∈ {1..ℓ},
Pk ⊆ P ′

k.

6 The Convex Hull

The computation of the convex hull is more difficult.
Obviously, if P = P1 × P2 and Q = Q1 × Q2 are two
polyhedra factored according to the same partition, then
P ⊔Q ⊆ (P1 ⊔Q1)⊔ (P2 ⊔Q2), but the later is generally
a rough approximation of the former (see figure beside).

x

P ⊔ Q

x

(P1 ⊔ Q1) × (P2 ⊔ Q2)

y y

P = {x = y = 0}

Q = {x = y = 1}

Moreover, the convex hull of two factored polyhedra can be either less factored (Fig. 4.a)
or as factored (Fig. 4.b), or even more factored (Fig. 4.c) than the operands.

The goal is to get the factored result, when possible, in a decomposed way, and without
penalizing the computation when the result is not factored. This can be achieved thanks
to the following proposition:

Proposition 1. Let P = P1×P2 and Q = Q1×Q2 be two polyhedra factored according
to the same partition (I1, I2). Let V be the set of variables, λ 6∈ V be an auxiliary
additional variable, and let us note V ′ = V ∪ {λ}, I ′

i = Ii ∪ {λ}, i = 1, 2. Let us consider

U1 = (P1↑I
′
1 ∩ {λ = 0}) ⊔ (Q1↑I

′
1 ∩ {λ = 1})

et U2 = (P2↑I
′
2 ∩ {λ = 0}) ⊔ (Q2↑I

′
2 ∩ {λ = 1})

8

P2 Q2

Q1

P1

(a) λ only bounded by
constants in U2: factored
result

λ

U2 P Q

U1

(c) λ upper bounded in U1

and lower bounded in U2:
unfactored result

λ

P
Q

U1

U2

λ

P
Q

U1

U2

(b) λ only lower bounded
in U1 and U2: factored re-
sult

Figure 5: Convex hull of factored polyhedra

Then:

• if λ is upper bounded by a non constant expression in U1 and lower bounded by
a non constant expression in U2, or conversely, then the convex hull P ⊔ Q is not
factored according to (I1, I2), and P ⊔ Q = ∃λ.(U1↑V

′ ∩ U2↑V
′).

• otherwise P ⊔ Q = ∃λ.U1 × ∃λ.U2.

So, the factored convex hull algorithm consists in computing the two convex hulls U1

and U2 (with an auxiliary variable λ, added to I1 and I2), and then to check if the result
will be factored; if so, the projections ∃λ.U1 and ∃λ.U2 (which are computed by Fourier-
Motzkin procedure) provide the factors of the results; otherwise, λ must be eliminated
(again by Fourier-Motzkin) from the conjunction of the systems of inequalities of U1 and
U2.

Fig. 5 illustrates the main cases that can occur when applying this algorithm5.
Proof of Proposition 1: By definition of the convex hull,

X ∈ P ⊔ P ′ ⇔ ∃Y ∈ P, Y ′ ∈ P ′, λ ∈ [0, 1], such that X = λY + (1 − λ)Y ′

⇔ X = (X1, X2) ∧ ∃λ ∈ [0, 1] such that
∃Y1 ∈ P1, Y

′
1 ∈ P ′

1, X1 = λY1 + (1 − λ)Y ′
1∧

∃Y2 ∈ P2, Y
′
2 ∈ P ′

2, X2 = λY2 + (1 − λ)Y ′
2

⇔ X = (X1, X2) ∧ ∃λ ∈ [0, 1] such that
(X1, λ) ∈ Q1 ∧ (X2, λ) ∈ Q2

Now, the existential quantification of λ in the last system of constraints can only produce
dependencies between previously independent variables in two cases:

• if there is some constraint E(X1) ≤ λ in Q1, and some constraint λ ≤ F (X2) in Q2

— which will produce E(X1) ≤ F (X2);

• or, conversely, if there is some constraint λ ≤ E(X1) in Q1, and some constraint
F (X2) ≤ λ in Q2 — which will produce F (X2) ≤ E(X1);

5Of course, in such an example with only two variables, the factored convex hull is of no interest!

9

Y2

(b) Y1

X2

X1
(a)

Y1 = 2X1 − X2

Y2 = −X1 + 2X2

Figure 6: Basis change for factoring

where E(X1) and F (X2) are non constant expressions. Otherwise, λ can be quantified
separately in Q1 and Q2.
✷

The procedure generalizes directly to polyhedra factored into k factors, still using only
one auxiliary variable:

Proposition 2. Let P = P1 × . . . × Pℓ and = Q1 × . . . × Qℓ be two polyhedra factored
according to the same partition. Let λ be a fresh variable and let us consider the polyhedra
(Uk)k=1..ℓ defined by:

Uk = (Pk↑I
′
k ∧ {λ = 0}) ⊔ (Qk↑I

′
k ∧ {λ = 1}

Then, the partition of P ⊔Q is obtained from (I1, . . . , Iℓ) by merging Ik and Ik′ whenever
either λ is lower-bounded by a non constant expression in Uk and upper-bounded by a
non constant expression in Uk′ , or conversely. Let (J1, . . . , Jh) be the resulting partition,
each Jm being a union of some Iks. Then

P ⊔ Q = R1 × R2 × . . . × Rh where Rm = ∃λ, ×
Ik ⊆ Jm

Uk

7 More Cartesian factoring

Cartesian factoring often give good results in practice, but it is highly dependent of the
choice of variables in the analyzed program. A simple variable change in the program
can have dramatic consequences on the cost of the analysis. To solve this problem, in
this section we investigate the idea of performing automatically the most suitable variable
change, before applying costly operations. Fig 6 shows the kind of transformation we want
to do.

7.1 Best factoring of a polyhedron

As a matter of fact, it is not difficult, given the system of constraints of a polyhedron, to
find the variable change which maximizes the factoring: we just have to find a maximal

10

subset of linearly independent constraints, and to perform a basis change according
to these constraints. The algorithm is mostly like “Gaussian pivot” used in linear
programming: it progressively replaces all the initial variables Xi by some new variables,
Yj, which represent linear combinations of constraints, while building a set E of equations
defining the initial variables Xi as functions of the new variables Y .

initial: a system of constraints AX ≥ B,
where A is an m × n matrix, and B is an m-vector

E = ∅
for i = 1 to m do

if there is a variable xj with non null coefficient in Ai

introduce yi = AiX − Bi, get the equation of xj and add it to E
replace in AX ≤ B and in E each occurrence of xj by its expression

endif
endfor
result: a system AY ≥ B, which can be maximally factored,

and a system of equations E = [X = CY + D] giving the corresponding
variable change.

Let’s illustrate the use of this algorithm on the following example:

x1 +x2 +x3 ≥ 0
x1 +x3 ≥ 0

3x1 −x2 +x3 ≥ 0
−4x1 −2x3 ≥ −1

A first variable y1 = x1 + x2 + x3 is introduced, and the equation x1 = y1 − x2 − x3 is
extracted. We get:

y1 ≥ 0
y1 −x2 ≥ 0

3y1 −4x2 −2x3 ≥ 0
−4y1 +4x2 +2x3 ≥ −1

E = {x1 = y1 − x2 − x3}

The second introduced variable is y2 = y1 − x2, which provides x2 = y1 − y2:

y1 ≥ 0
y2 ≥ 0

−y1 +4y2 −2x3 ≥ 0
−4y2 +2x3 ≥ −1

E =

{

x1 = y2 − x3

x2 = y1 − y2

}

Finally, a third variable y3 = −y1 + 4y2 − 2x3 is introduced, and we get:

y1 ≥ 0
y2 ≥ 0

y3 ≥ 0
−y1 −y3 ≥ −1

E =

x1 = y1/2 − y2 + y3/2
x2 = y1 − y2

x3 = −y1/2 + 2y2 − y3/2

In this new expression, the variable y2 is independent of the other two, so the system can
be factored according to I1 = {y1, y3} and I2 = {y2}.

11

7.2 Variable change for one polyhedron

A simple case is when one deals with only one polyhedron (computation of generators, test
for emptiness). In this case, one first perform a normal factoring, because it is cheaper,
as it does not involve a rewriting of constraints. Then, one tries to apply the preced-
ing algorithm on each factor (involving enough variables for the further factoring to be
interesting), before performing the operation. If this operation is the computation of gen-
erators, the result is obtained by composing the results and applying the inverse variable
change.

In the previous example, one finds at once the generators of the factors:

P (I1) = gen({(0, 0), (0, 1), (1, 0)}, ∅) , P (I2) = gen({0}, {1})

Composing these results provides the following system of generators in the basis (y1, y2, y3):

V = {(0, 0, 0), (0, 0, 1), (1, 0, 0)}, R = {(0, 1, 0)}

and the application of the inverse variable change, we get the system of generators in the
basis(x1, x2, x3):

V = {(0, 0, 0), (1/2, 0,−1/2), (1/2, 1,−1/2)}, R = {(−1,−1, 2)}

7.3 Best common factoring of several polyhedra

Now, in general, we want to find a good factoring before applying some binary operation
(e.g., a convex hull). So the real problem is to find a good common factoring of the argu-
ments of the operation. The above algorithm cannot be simply applied to both arguments,
since there is no reason for it to select a common factoring.

A simple solution consists in merging the systems of constraints of both arguments be-
fore applying the variable change algorithm, which provides a maximal common factoring
of the arguments.

8 Experimental Results

Two kinds of experiments have been conducted to evaluate the influence of the proposed
methods:

• at the operation level, a comparison was made on polyhedra operations, using the
Parma Polyhedra Library (PPL) with and without our new layer.

• inside a complete program analyzer, by comparing the analysis performances on
several programs, also using the PPL with and without our layer.

12

8.1 Efficiency of operations

Performing experiments on benchmarks of operations may seem meaningless, since the
results are, of course, highly dependent of the chosen benchmark. However, we made two
kinds of experiments, at this level:

• some series of systematic experiments on “regular” classes of well-chosen polyhe-
dra, representing good or bad cases, to highlight the variation of performances with
increasingly complex problems.

• we beneficiated of a benchmark of operations [IN04], gathered by an other team from
their experiments in program verification.

Systematic experiments: We consider two families of polyhedra: easily factored hy-
percubes Hn(a, b) = {a ≤ xi ≤ b}, and polyhedra Kn(a, b) = {

∧n

j−1(a ≤ Σj
i=1xi ≤ b)}

which need a basis change to be transformed into a factored hypercube. We give the times
for performing convex hulls of such polyhedra, in several situations:

• Hn(0, 2) ⊔ Hn(0, 3) (Table 1.(a)), where the result is factored;

• Hn(0, 2) ⊔ Hn(1, 3) (Table 1.(b)), where the result is not factored at all;

• Kn(0, 1) ⊔ Kn(0, 2) (Table 1.(c)), where a basis change is needed and the result is
factored;

• Kn(0, 1) ⊔ Kn(1, 2) (Table 1.(d)), where a basis change is needed and the result is
not factored at all.

Not surprisingly, these results show that, in very good situations, the factoring and
base change involve important improvements. But they show also that (1) the convex hull
is always cheaper, even when the result is not factored, and (2) even when it is useless,
the base change only causes a negligible overcost.

Results on an external benchmark: We got [IN04] a benchmark of convex hulls
collected from experiments with the PIPS analyser [IJT91]. Table 2 shows the results on
this benchmark: for each interval of dimensions, it gives the number of convex hulls in this
interval of dimensions in the benchmark, and the average ratio between the time taken by
the PPL alone and the PPL equipped with our complete factoring layer. Notice that we
can compute in quite high dimensions, because, due to the relational bottom-up analysis
performed by PIPS, the systems of constraints in this benchmark are very sparse. The
results show that the ratio gets better and better as the dimension increases.

8.2 Influence on program analyses

We also tried our extension of the PPL by comparing the performances of our program
analyzer with and without the extensions, on many examples. Here we just present the
results on two families of examples, chosen because it is easy to make the dimension vary.

13

Dimension 12 13 14 15 50
PPL 18.99 102.94 516.54 >600 >600
with factoring 0.01 0.02 0.02 0.02 0.03
with factoring and basis change 0.01 0.02 0.02 0.02 0.03

(a) Convex hull of hypercubes Hn, no need for basis change, factored result

Dimension 8 9 10 11 12
PPL 0.70 3.81 11.58 84.96 662.99
with factoring 0.30 1.26 2.50 13.03 77.02
with factoring and basis change 0.33 1.25 3.53 12.86 77.74

(b) Convex hull of hypercubes Hn, no need for basis change, not factored result

Dimension 19 20 21 22 23 24 25
PPL 1.96 10.72 45.56 196.82 >600 >600 >600
with factoring 2.12 11.19 46.77 196.79 >600 >600 >600
with factoring and basis change 0.12 0.28 0.77 3.15 23.78 108.53 442.63

(c) Hypercubes Kn needing basis change, factored result

Dimension 19 20 21 22 23 24 25
PPL 3.49 13.62 60.32 235.67 >600 >600 >600
with factoring 5.51 18.07 65.09 245.04 >600 >600 >600
with factoring and basis change 0.13 0.28 0.77 3.22 23.59 109.28 445.17

(d) Hypercubes Kn needing basis change, not factored result

Table 1: Influence of factoring and basis change on simple convex hulls computations

Dim. 40-49 50-59 60-69 70-79 80-89 90-99 100..9 110..9 120..9 130..9 150..9
Nb hulls 36 7 26 12 13 16 37 6 32 33 3
Ratio 1.8 1.9 2.1 2.1 4.0 4.4 4.7 5.7 6.0 6.0 7.6

Table 2: Results on the PIPS benchmark

14

2 trains

♯V ♯P PPL Fact. Basis chg.

Prop1 5 61 0.50 0.87 1.13

Prop2 6 37 0.78 1.50 1.91

Prop3 5 37 0.44 0.83 0.90

Prop4 5 37 0.47 0.73 0.89

Prop5 5 37 0.52 0.91 1.07

3 trains

♯V ♯P PPL Fact. Basis chg.

Prop1 7 361 96.99 50.11 37.07

Prop2 8 217 78.37 69.89 50.28

Prop3 7 217 190.67 72.63 22.89

Prop4 7 217 192.61 74.38 22.78

Prop5 7 217 195.08 76.69 24.85

Table 3: Analysis times for the subway example

Version ♯V PPL Factoring Basis change
3 axes 1 10 4.44 2.20 2.22
3 axes 2 14 222.92 37.15 3.54
5 sensors 11 14.81 7.89 5.28
6 sensors 12 51.69 18.95 8.74
7 sensors 13 177.66 53.89 15.03
2 axes 12 101.45 72.12 25.07
3 bis 22 >600 18.32 18.17
more fail 11 243.27 64.75 21.19

Table 4: Analysis times for the fault tolerant gyroscope

The subway example: The first one is the “subway” toy example, presented in
[HPR97], where the number of trains can be increased, and where we verify several prop-
erties of the system. In addition to the number ♯V of variables, we give also the number
♯P of control points in the control -flow graph of the program, which is an other factor of
complexity.

Table 3 shows the verification time for 5 properties of subway example, for 2 and
3 trains (for more trains, the control structure tends to explode). It shows that our
techniques improve the performances only for dimensions greater than 7.

The gyroscope example: Our other example comes from a real avionic fault-tolerant
equipment which acquires gyroscopic data (axes: roll, pitch, yaw) from redundant sensors.
Here again, the number of sensors and the number of axes may be augmented to increase
the complexity of the analysis; moreover, various fault hypotheses can be taken into ac-
count. Table 4 shows the analysis times of the gyroscope example, for various numbers of
sensors, and various fault hypotheses, that we don’t detail here.

These examples show that, not only the Cartesian factoring can significantly improve
the performances of Linear Relation Analysis, but also that further improvements can be
obtained using base change, without introducing a significant overhead. In our opinion,
these benefits due to base change are especially apparent for systems dealing with counters,
thresholds, . . . , where the analyzed properties often depends on differences of variables,
or even arbitrary affine combinations of variables.

15

9 Related works and Conclusion

We presented two attempts for reducing the number of variables in polyhedra operations.
The first one, using affine equations, was found uninteresting. In contrast, the use of
Cartesian factoring and its extension by changing the space basis, show real improve-
ments in many cases, and negligible overhead in bad cases. So, the Cartesian factoring
technique extended with base change constitutes a layer which should be inserted above
the polyhedra libraries. We did not find, in the literature, other attempts to reduce the
dimension at the operation level, and without losing information. In Astrée [BCC+03], a
so-called “packing” technique is applied to reduce the size of relations in relational lat-
tices: the set of variables is split into subsets, and only relations concerning variables in
the same subset are considered. The choice of the subset is made statically (i.e., before
the analysis), according to some heuristic, and, of course, the “packing” of relations loses
information. In [GDD+04], a technique is presented for dealing with unbounded dimen-
sions, by folding the space using “summary dimensions”. Here again, of course, the folding
does not preserve the information of the initial relation. Our approach tries to reduce the
dimension without losing information. Only when further reduction is necessary, should
losing information reductions be considered.

References

[BBC+00] N. Bjorner, A. Browne, M. Colon, B. Finkbeiner, Z. Manna, H. Sipma, and
T. Uribe. Verifying temporal properties of reactive systems: A STeP tutorial.
Formal Methods in System Design, 16:227–270, 2000.

[BBM97] N. Bjorner, I. Anca Browne, and Z. Manna. Automatic generation of invari-
ants and intermediate assertions. Theoretical Computer Science, 173(1):49–87,
February 1997.

[BCC+03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Mon-
niaux, and X. Rival. A static analyzer for large safety-critical software. In
PLDI 2003, ACM SIGPLAN SIGSOFT Conference on Programming Lan-

guage Design and Implementation, pages 196–207, San Diego (Ca.), June 2003.

[BRZH02] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex
polyhedra and the parma polyhedra library. In M. V. Hermenegildo and
G. Puebla, editors, 9th International Symposium on Static Analysis, SAS’02,
Madrid, Spain, September 2002. LNCS 2477.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In 5th ACM Symposium on Principles of Programming

Languages, POPL’78, Tucson (Arizona), January 1978.

[Che68] N. V. Chernikova. Algorithm for discovering the set of all solutions of a linear
programming problem. U.S.S.R. Computational Mathematics and Mathemat-

ical Physics, 8(6):282–293, 1968.

16

[CL98] Ph. Clauss and V. Loechner. Parametric analysis of polyhedral iteration
spaces. Journal of VLSI Signal Processing, 19(2), July 1998.

[DRS01] N. Dor, M. Rodeh, and M. Sagiv. Cleanness checking of string manipulations
in C programs via integer analysis. In P. Cousot, editor, SAS’01, Paris, July
2001. LNCS 2126.

[Fea96] P. Feautrier. Automatic parallelization in the polytope model. In The Data

Parallel Programming Model: Foundations, HPF Realization, and Scientific

Applications, pages 79–103. LNCS 1132, Springer Verlag, 1996.

[GDD+04] D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv. Numeric domains with
summarized dimensions. In TACAS’04, pages 512–529, Barcelona, 2004.

[HDPV03] N. Halbwachs, D., and C. Parent-Vigouroux. Cartesian factoring of polyhedra
in linear relation analysis. In Static Analysis Symposium, SAS’03, San Diego,
June 2003.

[HHWT97] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for
hybrid systems. Software Tools for Technology Transfer, 1:110–122, 1997.

[HPR97] N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design, 11(2):157–
185, August 1997.

[IJT91] F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural paralleliza-
tion: An overview of the PIPS project. In ACM Int. Conf. on Supercomputing,

ICS’91, Köln, 1991.

[IN04] F. Irigoin and D. Nguyen. Private communication, 2004.

[Kar76] M. Karr. Affine relationships among variables of a program. Acta Informatica,
6:133–151, 1976.

[LeV92] H. LeVerge. A note on Chernikova’s algorithm. Research Report 635, IRISA,
February 1992.

[LM95] V. Loechner and C. Mongenet. A toolbox for affine recurrence equations par-
allelization. In International Conference and Exhibition on High-Performance

Computing and Networking, pages 263–268, May 1995.

[LMQ91] H. LeVerge, Ch. Mauras, and P. Quinton. The alpha language and its use
for the design of systolic arrays. Journal of VLSI Signal Processing Systems,
3(3):173–182, September 1991.

[MRTT53] T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double
description method. In H. W. Kuhn and A. W. Tucker, editors, Contribution

to the Theory of Games – Volume II. Annals of Mathematic Studies, nr 28,
Princeton University Press, 1953.

17

[Muc97] S. S. Muchnick. Advanced Compiler Design Implementation. Morgan Kauf-
mann Pub., 1997.

[QR00] F. Quilleré and S. Rajopadhye. Optimizing memory usage in the polyhedral
model. ACM TOPLAS, 22(5), September 2000.

[Tip95] F. Tip. A survey of program slicing techniques. Journal of Programming

Languages, 3(3):121–189, September 1995.

[Wil93] D. K. Wilde. A library for doing polyhedral operations. Research Report 785,
IRISA, December 1993.

18

