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Abstract

The SAEM-MCMC is a powerful algorithm used to estimate maximum likelihood

in the wide class of exponential non-linear mixed effects models. The main problem

of this method is that several parameters of simulation need to be calibrated. In this

paper we propose some criteria to fix these parameters and we show on a real data set

and by simulations that we need to run long markov chains in the Metropolis-Hastings

algorithm to obtain an accurate estimator, which is relatively time consuming. In a

second part, we applie our method to a model that does not belong to the exponential

class, and we show on a simulated data set that we obtain the same results as the exact

SAS NLMIXED procedure based on Gaussian quadrature. Our method seems to be

appropriate for estimation in this class of non-linear models also.

Key words: non-linear mixed models, maximum likelihood, stochastic algorithm, Metropolis-

Hastings, SAEM-MCMC.
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1 Introduction

The main interest of this paper is to obtain good parameter estimates using maximum

likelihood estimation in non-linear mixed effects models.

Let us recall some information about the linear mixed models. The Expectation-Maximization

algorithm (Dempster et al, 1977) is a very famous tool used for parameter estimation in

this class of models. Let y denote the vector of observed data, φ the vector of unob-

served (or missing) data, θ the vector of parameters, p(y; θ) the incomplete likelihood and

p(y, φ; θ) the complete likelihood. In the general case, since p(y; θ) is not in a closed form

or is hard to compute, it seems to be difficult to maximize p(y; θ). In this sense Dempster

et al (1977) present the EM algorithm, which tends to maximize E
[

log p(y, φ; θ)|y, θ
]
.

At iteration k of the algorithm, there are two steps: the E-step computes the conditional

expectation of the complete log-likelihood, noted Qk(θ, θ
(k−1)) equal to

E
[

log p(y, φ; θ)|y, θ(k−1)
]

and the M-step determines θ(k) as maximizing Qk(θ, θ
(k−1)).

Dempster et al. (1977) and Wu (1983) proved the convergence of the sequence (θ(k))k

towards a stationary point of the observed likelihood under general regularity conditions.

In the case where we study non-linear mixed models, the E-step leads to an integral

that has no closed-form solution. Several approximations of the incomplete log-likelihood

have been proposed: the linearization procedure (Sheiner and Beal, 1980), the LME ap-

proximation (Lindstrom and Bates, 1990), the Laplace approximation (Wolfinger, 1993;

Vonesh, 1996). Some of these methods are available on statistical software like the NLME

procedure in S-PLUS software (Pinheiro and Bates, 1995a) or the NLMIXED procedure

of SAS. Since errors can be large in the approximation of the observed log-likelihood (Da-

vidian and Giltinian, 1995; Pinheiro and Bates, 1995b; Lindstrom and Bates, 1990), some

exact methods based on Monte Carlo methods have appeared. Wei and Tanner (1990)

proposed the MCEM algorithm in which the expectation of the E-step is estimated with

a mean of some simulated samples from the exact conditionnal distribution of φ|y, θ. The

MCEM algorithm requires an increase of the number of simulated data in order to have

some accuracy, and so it is highly time consuming. For instance, Booth and Hobert (1999)

report some results from a study on a real data set: they simulated around 60,000 sam-

ples for the final iteration. There exists a variant of this method based on the stochastic

approximation method of Robbins and Monroe (1951) which promises convergence with

fewer simulations: the SAEM algorithm (Delyon et al, 1999). When the conditionnal dis-

tribution of the missing effects given the observations, that is to say p(φ|y, θ) is unknown,

Walker (1996) proposes an EM algorithm with importance sampling to estimate the con-

ditional expectations. In his paper, Walker (1996) tells that importance sampling is more
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efficient than other algorithms that use dependent Markov chains to evaluate an expec-

tation under an unknown distribution. In another way, Kuhn and Lavielle (2004, 2005)

presented a similar method based on the SAEM algorithm: the SAEM-MCMC algorithm,

available on the MONOLIX group website (http://www.monolix.org/). In this method,

the E-step of EM is replaced by a stochastic approximation and the simulated sample

(which is under the unknown conditionnal distribution of φ|y, θ) used for the stochastic

approximation is simulated with a Metropolis-Hastings algorithm (Robert and Casella,

2004). In this method, several parameters need to be calibrated in order to better esti-

mate the vector of parameters. For example, the Metropolis-Hastings algorithm based on

the Monte Carlo and Markov Chains methods, simulates a markov chain using an instru-

mental distribution. We need to choose the instrumental distribution and the length of

the markov chain.

The aim of this study was to present some criteria which determine the parameters we

need to fix before running the SAEM-MCMC algorithm, and we discuss if this choice of

parameters is relevant or not. The paper is organized as follows: In section 2 we intro-

duce the model and the SAEM-MCMC algorithm in its general version. In section 3 we

propose some criteria to determine the parameters to run the algorithm. In section 4 we

compare our SAEM-MCMC algorithm with the SAEM-MCMC algorithm in its general

version applied with different sets of parameters on the well known orange tree data set

and on a simulated data set. Section 5 is devoted to the development of the method when

the complete data likelihood p(y, φ; θ) does not belong to the curved exponentiel family.

Finally a validation of this method by simulation is presented.

2 The nonlinear mixed effects model

2.1 The model

We consider the following model:

yij = f(zij, φi, β) + g(zij, φi, β, α) εij, ∀i ∈ {1, ..., N} ∀j ∈ {1, .., ni},

where yij is the jth observation of subject i, N is the number of subjects, ni the number

of observations of subject i and (zij)ij are known covariates. The εij’s are supposed to be

independent identically distributed centered Gaussian random variables, independent of

the φi, with variance σ2.

We note φi (k × 1) the vector of individual random parameters of function f and g. It is

modeled by:
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φi = Aiµ+ ηi

where the ηi ∼ N (0,Γ) are independent, µ (c × 1) is an unknown vector of fixed effets,

the individual matrix Ai contains covariates and is assumed to be known, and Γ is the

covariance matrix of ηi.

β (p× 1) corresponds to the vector of the unknown other fixed parameters. The variance

function g is dependent on f and a parameter vector α. In general g = fα, reflecting the

possible character of intra individual variability.

The aim of this study was to estimate the complete vector of unknown parameters

θ = (β, µ,Γ, σ2, α) by maximum likelihood estimation. In the case of a linear model,

that is to say when f and g are linear in φ, the estimation of θ can be treated with the

analytic EM algorithm (Dempster et al., 1977). However, a non-linear function is often

more suitable for modeling the physical problems but requires a specific approach for es-

timating the parameters because the Expectation step of the EM algorithm can not be in

closed form. Kuhn and Lavielle (2004) propose a method based on the SAEM algorithm

coupled with a Monte Carlo Markov Chains method, especially the Metropolis-Hastings

algorithm. In this method, some parameters need to be calibrated and we propose some

criteria in this sense.

2.2 The SAEM algorithm

The Stochastic Approximation version of the EM algorithm was proposed by Delyon et

al. (1999). It consists in replacing the E-step of the EM algorithm by two steps: a simula-

tion step of the missing data under the conditional distribution of φ|y, θ and a Stochastic

Approximation step.

Given θ(k−1), estimated parameter value of θ at iteration k − 1

• Simulation step: Draw φ(k) under the conditional distribution p(.|y, θ(k−1))

• Stochastic Approximation step: update Qk(θ) according to

Qk(θ) = Qk−1(θ) + γk
[
log p(φ(k)|y, θ(k−1))−Qk−1(θ)

]
where (γk)k is a decreasing sequence of positive numbers

• the M-step is the same as the EM algorithm: θ(k) = argmaxθQk(θ)
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If we assume that the complete data likelihood p(y, φ; θ) belongs to the curved expo-

nentiel family, then we can write it by:

p(y, φ; θ) = exp
{
− Φ(θ) + 〈S(y, φ), ψ(θ)〉

}
where 〈., .〉 denotes the scalar product and S(y, φ) is the minimal sufficient statistic of

the complete model. Then the Stochastic Approximation step of the SAEM algorithm is

reduced to compute:

sk = sk−1 + γk
[
S(y, φ(k−1))− sk−1

]
The maximization step of the SAEM algorithm consists in computing

θ(k) = Argmax
θ

{
− Φ(θ) + 〈sk, ψ(θ)〉

}
Properties about the convergence of the sequence (θ(k))k towards the maximum likelihood

under mild conditions are presented in Delyon et al (1999) in the case of the curved

exponentiel family.

Remark In order to have the convergence of the sequence (θ(k))k, the serie (γk)k has

to be chosen such that each γk must belong to [0,1] and the series
∑
γk must diverge,∑

γ2
k must converge. Kuhn and Lavielle (2004) propose to take the sequence (γk)k such

that γk = 1 for 1 ≤ k ≤ K and γk = (k − K)−1 else, where K is an integer that can

be fixed between 50 and 100. In practice since the sequence (γk)k is decreasing quickly,

the choice of K seems to be very important and so θ(K) must be close to the maximum

likelihood of θ to be sure that the sequence converges towards the maximum likelihood.

In section 3 we present a criterion to fix K.

2.3 The SAEM-MCMC algorithm

Since (φi|(yij)j, θ)i are independent random variables, we can generate them indepen-

dently. In the general case, the distribution of (φi|(yij)j, θ)i is not in a closed form, so the

Simulation step of the SAEM algorithm cannot be directly performed. In this sense Kuhn

and Lavielle (2004) proposed to combine the SAEM algorithm with a MCMC procedure:

the Metropolis-Hastings algorithm (Robert and Casella, 2004). The results of convergence

of this method of estimation, called SAEM-MCMC, are proposed in Kuhn and Lavielle

(2004).
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This algorithm produces an ergodic Markov chain with stationnary distribution

p(φi|(yij)j, θ). At this stage some parameters need to be fixed before running this algo-

rithm: the length of the chain (noted itMC) and the instrumental distribution. In this

paper, we studied another instrumental distribution than the one proposed by Kuhn and

Lavielle (2005) and the one proposed in the Monolix software. The algorithm proposed

is presented in detail in Section 3.

As suggested in the user guide of Monolix software, we can improve the convergence of

the SAEM-MCMC algorithm by running L independent Markov chains and then by doing

the Stochastic Approximation on the mean of the (S(y, φ
(k,l,itMC)
i ))l=1,...,L, where φ

(k,l,t)
i

corresponds to the tth iteration of the lth chain at the kth iteration of the SAEM-MCMC

algorithm. In fact if L is large enough, 1
L

∑L
l=1 S(y, φ

(k,l,itMC)
i ) is a good estimator of

E
[
S(y, φ

(k,l,itMC)
i )|y, θ

]
. To obtain a better approximation, we prefer doing moreover the

mean on several iterations intra chains. However the first iterations obtained in the simu-

lated markov chains with the Metropolis-Hastings algorithm are not under the stationary

distribution, so we define a parameter (noted burn), which corresponds to the length of

the burn-in period in the Metropolis-Hastings algorithm.

Then the Stochastic Approximation step becomes:

sk = sk−1 + γk

(
1

L(itMC − burn)

L∑
l=1

itMC∑
t=burn+1

S(y, φ(k,l,t))− sk−1

)
where L is the number of independent chains, itMC the length of the chains and burn

the length of the burn-in period within chain in the Metropolis-Hastings algorithm.

2.4 Estimations of standard errors and log-likelihood

Let θ̂ be the estimator of θ at convergence, and we denote ∂θ (∂2
θ ) the differential (the

hessian) with respect to θ. Using the Louis formula (Louis, 1982) and following Delyon

et al (1999), we approximate the observed information matrix of θ̂ in the following way:

At the Stochastic Approximation step, we calculate

∆k = ∆k−1 + γk[∂θ log p(y, φ(k); θ(k−1))−∆k−1]

Gk = Gk−1+γk

[
∂2
θ log p(y, φ(k); θ(k−1))+

(
∂θ log p(y, φ(k); θ(k−1))

)
t
(
∂θ log p(y, φ(k); θ(k−1))

)
−Gk−1

]
Hk = Gk −∆k

t∆k

Then we note H(θ̂) the matrix Hk at the convergence, and we approximate the observed

information matrix of θ̂ by the inverse of −H(θ̂).
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Concerning the log-likelihood of the observations, we follow the user guide of the Monolix

software,

- we draw φ1, ..., φs under the conditional distribution p(φ|y, θ̂) using a Metropolis-Hastings

algorithm

- we estimate the log-likelihood of the observations by log(ls) where

ls =
1

s

s∑
j=1

p(y|φj, θ̂)
p(φj; θ̂)

p(φj|y, θ̂)

and p(φ; θ) is the distribution of the missing data φ. Since p(φ|y, θ̂) is not known in

the general case, we estimate this distribution with a Gaussian distribution, with mean

E(φs|y, θ̂) and variance V ar(φs|y, θ̂) estimated using the simulated φj’s.

3 The SAEM-MCMC algorithm with criteria

3.1 The Metropolis-Hastings algorithm

At the kth step of the SAEM-MCMC algorithm and at the (t+ 1)th step of the lth chain

simulated by the Metropolis-Hastings algorithm. We note m1 ∈ N, ρ1 ∈ R+ and ρ2 ∈ R+.

Given φ
(k,l,t)
i = x(t):

• If t < m1, then generate Wt ∼ N (Aiµ
(k−1),Γ(k−1))→ the value obtained is noted wt.

Let the acceptance rate: ρ(x(t), wt) = min
(

p((yij)j |θ(k−1),φi)|φi=wt
p((yij)j |θ(k−1),φi)|φi=x(t)

, 1
)

• If t ≥ m1, then generate ρ ∼ U[ρ1,ρ2] and Wt ∼ N (x(t), ρΓ(k−1))
the value obtained is noted wt.

The acceptance rate is: ρ(x(t), wt) = min
(

p((yij)j |θ(k−1),φi)|φi=wt×p(φi|θ
(k−1))|φi=wt

p((yij)j |θ(k−1),φi)|φi=x(t)
×p(φi|θ(k−1))|φi=x(t)

, 1
)

• φ(k,l,t+1)
i =

{
wt with probability ρ(x(t), wt)
x(t) with probability 1− ρ(x(t), wt)

At this stage some parameters need to be calibrated:

- the value of m1 (iteration at which we change instrumental distribution),

- the value of itMC (the length of the Markov chains),

- the value of burn (the length of the burn-in period within chain),
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- the parameters of the second instrumental distribution ρ1 and ρ2,

- the value of L (the number of independent chains).

3.2 Parameters of Metropolis-Hastings

These parameters are fixed as follows: we run a Markov chain with the Metropolis-

Hastings algorithm for one individual taking the initial value θ0 for the vector of parame-

ter θ and we calibrate the parameters with the following methods. Then these parameters

are used to run the Metropolis-Hastings algorithm for all individuals.

• The second instrumental distribution:

We decided to cut the markov chain into two parts. In the first part, we simulate Wt

with the prior distribution of the random effects. In the second part of the chain, Wt is

simulated with a Gaussian random walk centered on the precedent iteration of the chain.

According to Robert and Casella (2004), the acceptance rate must not be greater than

50%. So we fix ρ1 and ρ2 such that the acceptance rate is between 30% and 40 %.

• m1: The simulated markov chain does not have the same behavior in the first and

in the second part of the chain. In general, in the first part, since the new simulation Wt

can be very far from x(t), Wt is often rejected and in this case the chain stays constant.

In the second part, the chain varies more. So we choose to fix m1 = itMC/10.

• burn: many ways to choose the burn parameter are presented in detail in Robert

and Casella (2004). We fixed it at itMC/2.

• itMC: is it necessary that the chain reaches the stationary distribution to better

estimate the conditional expectations? Indeed in the MCEM algorithm (Wei and Tanner,

1990), the longer the chains are, the more precise are the estimations of the conditional

expectations. Nevertheless in the SAEM-MCMC algorithm the Stochastic Approxima-

tion step may be a way to exempt the convergence of the chain towards the stationnary

distribution. In this study, we prefer to run enough iterations and test the convergence of

the chains towards the stationnary distribution thanks to the Gelman and Rubin (1992)

criterion. This criterion provides a diagnosis of the Markov chain convergence by com-

paring within-chain and between-chain variances.

• L: We know that the more chains are run, the better is the estimation of E
[
S(y, φ

(k,l,itMC)
i )|y, θ

]
.
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In practice we can run several chains and compare the behavior of each of them. If their

properties (mean, variance) are very different, we may choose L = 5 or L = 10 chains,

else, the L = 1 chain can be enough.

3.3 Convergence and “smoothing” criteria

3.3.1 A convergence criteria for the SAEM algorithm

Booth and Hobert (1999) propose to use in the MCEM algorithm the same standard

stopping rule as in the deterministic EM algorithm:

e(k) = max
j

(
|θ(k)
j − θ

(k−1)
j |

|θ(k)
j |+ δ1

)
< δ2 (1)

where δ1 and δ2 have small values and can be δ1 = 0.001 and δ2 = 0.0001 (Searle, 1992

p.296). However, Booth and Hobert (1999) realized that the algorithm can satisfy the

criterion thanks to random chance, and so they recommend to stop the algorithm when

the criterion has satisfied three consecutive iterations.

On the contrary, Jank (2006) has shown that criterion (1) is not adapted if the sequence

(γk)k is such that γk ∝ (1/k)α with α ≈ 1. Indeed in this case the slow convergence of the

algorithm implies that the criterion may lead to a bad estimation of the parameters. In

this sense he proposes a stopping rule based on an adaptation of the well known property

of increase of the sequence (Qk(θ, θ
(k−1)))k in the EM algorithm.

In our method, we begin the Approximation Step at the Kth iteration and the choice

of K depends on the variation of the parameters (see Section 3.3.2). Moreover we run

enough iterations in the Metropolis-Hastings algorithm to obtain a good estimation of

the conditional expectations. In these conditions we think that the algorithm has almost

converged at iteration K and finally we just smooth the estimations thanks to the Ap-

proximation Step. Finally we propose to use criterion (1) with δ1 = 0, δ2 = 0.0001, and

we note el(i) the lth component of e(i).

3.3.2 A “smoothing” criterion

In order to determine the parameter K, the iteration at which the sequence (γk)k is de-

creasing in the SAEM-MCMC algorithm, we studied a “smoothing” criterion that is based

on the variation of the e(i)’s.

Heuristic Figure 1 represents an illustration of the evolution of e1 (for β a fixed pa-

rameter of the model) during the iterations of the SAEM-MCMC algorithm. K was fixed
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at 43 iterations. The slope of the curve is high at the beginning and then after iteration

around 20, e1 varies slightly around a small positive value. At this moment, the curve

can be smoothed.

At each iteration t of the SAEM algorithm, we fit a linear regression on the ten last

points (e(s))s=t−9,...,t and when the slope of the linear regression is not increasing, we add

15 iterations to ensure that we are really in the neighborhood of the maximum likelihood

estimator. We define:

slope(l, k) =

∑10
m=1

(
m− 1

10

∑10
s=1 s

)(
el(k −m+ 1)− 1

10

∑9
s=0 el(k − s)

)
∑10

m=1(m−
1
10

∑10
s=1 s)

2

K = 15 + min

{
k, ∀l slope(l, k)− slope(l, k − 1) < 0

}
3.4 Differences between our SAEM-MCMC and the classical

SAEM-MCMC

The two algorithms are based on the same theory presented in Kuhn and Lavielle (2004).

Nevertheless many parameters need to be calibrated by the user in the classical SAEM-

MCMC algorithm implemented for example in Monolix software (Lavielle 2005, Monolix

user guide manuel at http://www.monolix.org/). Kuhn and Lavielle (2005) proposed to

do the Approximation Stochastic step on L = 10 chains maximum with length itMC = 10

iterations. In general it is well known that MCMC methods need Markov chains with

millions of iterations until they converge towards the stationary distribution (Robert and

Casella, 2004). About the parameters proposed in Kuhn and Lavielle (2005), probably

10 iterations within chain are not enough to reach the stationary distribution. So we

want to analyse if the difference of iterations can deteriorate the estimation of θ or if

the Stochastic Approximation step is a way for the algorithm to converge towards the

maximum likelihood estimator of θ despite short Markov chains.

4 Application and simulation

The SAEM-MCMC algorithm proposed with some criteria was applied to the orange tree

data set and to a simulated data set in order to study its properties.

10



4.1 The Orange tree data set

4.1.1 The model

We applied our SAEM-MCMC algorithm and the classical SAEM-MCMC algorithm with

several sets of parameters to the well known orange tree data, studied by Pinheiro and

Bates (1995a, 1995b). This data set is available for example on S-Plus and R software and

consists of seven measurements of the trunk circumference of each of five orange trees.

Following Pinheiro and Bates (1995a, 1995b) and Kuhn and Lavielle (2005), we suggest

using the following non-linear mixed model:

yij =
φi

1 + exp
(
− tij−β2

β3

) + εij, ∀i ∈ {1, ..., 5} ∀j ∈ {1, .., 7}, (2)

where yij is the jth measurement at age tij (in days) of the ith tree, the (εij)ij’s are

assumed independent identically distributed with distribution N (0, σ2), and the φi’s are

assumed independent identically distributed with distribution N (β1, τ
2). The φi’s are

independent from the (εij)ij’s. Let θ = (β1, β2, β3, τ
2, σ2) be the vector of parameters.

The parameters φi, β2, β3 have a physical interpretation: φi corresponds to the asymptotic

trunk circumference, β2 represents the age at which the tree attains half of its asymptotic

trunk circumference, and β3 is the growth scale. The parameters β2, β3 are treated as

fixed effects.

The aim of this study was to obtain a good estimator of θ by maximum likelihood esti-

mation. Since the model is linear on φ, we can compare our results with the exact EM

algorithm results.

Details about the minimal sufficient statistic functions used to estimate θ can be obtained

in Kuhn and Lavielle (2005). We compare our SAEM-MCMC algorithm with the clas-

sical SAEM-MCMC algorithm using six different sets of parameters (Table 1). Time of

running of the SAEM-MCMC algorithm is noted time in seconds and let itSAEM the

number of iterations in the SAEM-MCMC algorithm, fixed with the stopping rule (1).

For example, set 1. is the set of parameters given in Kuhn and Lavielle (2005): 10

iterations with the first instrumental distribution, 0 with the second one, i.e. itMC = 10

and m1 = 11, L = 10 independent chains, K fixed at 100 iterations, the algorithm stopped

at iteration 303 (3 s).

Parameters (itMC, m1, burn, L, K, itSAEM) in sets 2 to 6 have been chosen to study

the behavior of the estimator of θ. In sets 1 and 2, only the first instrumental distribution

is used, with longer Markov chains in set 2 than in set 1. In sets 3 and 4, we used the two
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instrumental distributions, with longer chains in set 4 than in set 3. Set 5 is composed of

the same parameters of set 4 but with a burn-in period of 50 iterations for each Markov

chain. Set 6 is composed of the same parameters of set 4 with the value of K (iteration

at which the sequence (γk)k is decreasing) fixed at 50 iterations.

4.1.2 Results and discussion

Our criteria determined the following parameters for the SAEM-MCMC algorithm:

itMC = 500, m1 = 50, burn = 250, L = 10, K = 46 and the convergence criterion

stopped the SAEM-MCMC algorithm at the 61st iteration (19 s).

For each set (set 1. to set 6. and our set of parameters), the following initial values

of θ were used: β
(0)
1 =100, β

(0)
2 =650, β

(0)
3 =250, τ 2(0)=500, σ2(0)=10. Since the model is

linear in φ, we can apply the EM algorithm and obtain the exact maximum likelihood

estimator of θ.

Table 2 presents the estimation of θ and the value of the known log-likelihood of the

observations at these points for the classical SAEM-MCMC applied with the six sets of

parameters presented in Table 1, our SAEM-MCMC algorithm, and the EM algorithm.

The standard error (noted σ̂(θ̂)) of the estimator of θ were calculated for the EM algo-

rithm and our method.

Except for sets 1 and 3, we obtain good estimators of θ.

Comparison between the results of sets 1. and 2.

If we use only the first instrumental distribution (sets 1 and 2) to simulate new iterations

in short chains in the Metropolis-Hastings algorithm then the sequence (θ(k))k does not

converge towards the maximum likelihood estimator (set 1.). We obtain this result be-

cause the markov chains do not vary enough, and so the estimation of τ 2 is too small. If the

chains are longer (set 2), they are more variable and so the variances are estimated better.

Comparison between the results of sets 1. and 3., sets 2. and 4.

Adding a second instrumental distribution in the Metropolis-Hastings algorithm (sets 3

and 4), the estimations for all parameters are better but the estimators for the variances

are not exactly the same as those obtained with the EM algorithm.

Comparison between the results of sets 1. and 2., sets 3. and 4.

The longer are the Markov chains in the Metropolis-Hastings algorithm, the more precise
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are the estimators.

Comparison between the results of sets 4. and 5.

When we do not run the Stochastic Approximation step with all the iterations of the

chains simulated in the Metropolis-Hastings algorithm, that is to say when burn > 0, the

estimators are closer to the EM estimates.

Comparison between the results of sets 4. and 6.

The choice of the parameter K does not seem to be important in this study, we obtained

almost the same results with the two sets of parameters.

The results obtained with our method indicate that it is not necessary to run many

iterations with the first instrumental distribution, but Gelman and Rubin’s criterion im-

plies to run more iterations with the second one. Our “smoothing” criterion fixed K to

46 iterations. Finally we obtained results close to the EM results.

The standard error of the estimator of θ obtained with our method was close to the

EM standard error. In this real data set we only have a few individuals, that’s why

the standard errors of the estimators are very large, in particular: σ̂(τ̂ 2)=650.3 for our

method. Moreover the log-likelihood of the observations remains stable around the esti-

mator of the maximum likelihood so we cannot have precise estimators. Nevertheless we

have seen that set 5. and our method give the best values for the estimators.

In order to validate our method we simulated a data set on the same model (2) with more

observations.

4.2 A simulated data set

4.2.1 The model

The model used for the simulated data set is similar to (2).

yij =
φi

1 + exp
(
− tij−β2

β3

) + εij, ∀i ∈ {1, ..., 100} ∀j ∈ {1, .., 15},

The parameters for generating the 100 simulated data sets are the following:

θ = (β1 = 20, β2 = 70, β3 = 30, τ 2 = 10, σ2 = 0.5), the 15 points of observations tij are

the follow: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200.
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In this section we carry out 100 simulated data sets to compare performances of our

SAEM-MCMC algorithm, the classical SAEM-MCMC algorithms previously defined by

6 sets of parameters (set 1. to set 6. presented in Table 1) and the EM algorithm. The

choice of the parameters of our method is described in the following section.

4.2.2 Choice of the parameters of SAEM-MCMC

All the parameters were fixed with the criteria presented in Section 3 on the first simulated

data set. Then the same parameters were used to apply the SAEM-MCMC algorithm to

the other data sets.

• The choice of m1:

Let us remind the two different instrumental distributions: the first one is the Gaussian

distribution with mean β1 and variance τ 2. The second instrumental distribution is a

Gaussian random walk with mean equal to the value of the precedent iteration and with

variance equal to ρτ 2 where ρ ∼ U [ρ1, ρ2]. When the initial values of the parameters are

quite far from the maximum likelihood estimator, the two instrumental distributions do

not provide the same behavior to the markov chain simulated in the Metropolis-Hastings

algorithm. To analyse that, we simulated a long chain (100,000 iterations) for the indi-

vidual 1, with parameters β1 = 10, β2=60, β3=20, σ2=1, τ 2=3, and m1 = 50, 000. The

choice of ρ1 et ρ2 did not have an incidence on the difference of behavior between the two

parts of the chain.

Figure 2 shows that in the first 50,000 iterations, with the first instrumental distribu-

tion, the markov chain stays during many iterations at the same place on the contrary

to the second part of the markov chain (from iteration 50,000 to 100,000) where it moves

around a certain mean value. This fact can be explained by the following: the first instru-

mental distribution simulates larger variables than the second instrumental distribution

and so these variables are more rejected in the first case than in the second case.

Since the model is linear in φi, the stationnary distribution of the markov chain is known:

p(φ1|Y1, θ) = N (u1, V ) where u1 and V are given in Kuhn and Lavielle (2005). Figure 2

clearly shows that the distribution of the markov chain from iterations 40,000 to 50,000

is not Gaussian and so the chain has not reached the stationnary distribution before iter-

ation m1.

On the contrary, the histogram of the iterations from 50,000 to 60,000 of the markov
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chain and the graph of the density of the distribution N (u1, V ) is presented in Figure 3.

It clearly shows that the chain has yet reached the stationnary distribution at the 60,000

th iteration.

The lack of variability of the chain with the first instrumental distribution can lead us

to use only the second instrumental distribution. Nevertheless the second instrumental

distribution imposes to the chain to stay in a neighboorhood of the element obtained at

iteration m1. So we prefer to fix a small value for m1, in particular: m1 = itMC/10.

• The choice of ρ1 and ρ2:

Several values of ρ1 and ρ2 were tested and to obtain an average acceptance rate close to

35 %, the values retained are ρ1 = 1/4, ρ2 = 1/2.

• The choice of itMC and burn:

As suggested in section 4.1., the burn-in period was fixed at burn = itMC/2 and we fixed

itMC at 300 iterations. With these values, we obtained a Gelman and Rubin coefficient

equal to 1.01.

• The choice of L:

Several independent chains were compared and their behavior was similar, so we decided

to fix L at 1.

The other parameters of the SAEM-MCMC algorithm were fixed during the run of the

algorithm.

4.2.3 Results and discussion

The same six sets of parameters presented in Section 4.1 were considered to compare our

SAEM-MCMC algorithm with the classical SAEM-MCMC algorithm.

Table 3 presents the mean value of the estimators, the mean computing time to run

the SAEM-MCMC algorithm in seconds (noted time), the mean of the number of iter-

ations for the estimation of θ (noted itm) and the mean value of K (noted Km), based

on the 100 simulated data sets. Table 4 presents the bias and the Mean Squared Error

(MSE) of the estimator of θ obtained with the seven SAEM-MCMC algorithms and the

EM algorithm.
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The trajectories of the SAEM-MCMC algorithm strongly depend on the value of the

initial parameter θ0, and particularly when itMC is very small. Indeed in this case, if θ0

is far from θ, the algorithm may not converge towards the maximum likelihood estimator.

Since the aim of the paper was to study the bias of the estimator with different sets of

parameters for the SAEM-MCMC algorithm and not to study the divergence or the con-

vergence of this algorithm, θ0 was drawn with a Gaussian distribution of mean θ equal to

(β1 = 20, β2 = 70, β3 = 30, τ 2 = 10, σ2 = 0.5) and standard deviation 0.1θ for each of the

100 simulated data sets.

Concerning the criteria chosen to compare the eight methods, the estimation of the vari-

ances of estimators obtained by the classical SAEM-MCMC algorithm may not be positive

because of a bad estimation of the conditional expectations (in particular for set 1. and

set 2.). In this case, the observed information matrix is not well estimated and the esti-

mation of the matrix is not always definite positive. Consequently we could not compare

the different methods with the MQE (Mean Quadratic Error) criterion. Nevertheless the

variances of estimates may be a good indicator to analyse and to see if the curve of the

complete likelihood is flat close to the maximum likelihood. With our method, the vari-

ances of estimators are the following: σ̂(θ̂) = (0.32, 0.27, 0.23, 1.43, 0.02), indicating that

the complete likelihood is not flat around the maximum likelihood and we can hope to

have precise estimators of the maximum likelihood.

Concerning the mean value of the estimators of the fixed effects, we obtained good results

for all the methods. Since the markov chains do not vary enough during the first part of

the Metropolis-Hastings algorithm (with the first instrumental distribution), the variance

τ 2 estimated as the variability within chains, is underestimated in sets 1. and 2. In the

same way results from sets 3. and 4. show that it is necessary to run long chains to have

good estimators. The comparison between the results of sets 1. and 3. indicates that

adding a second instrumental distribution is relevant for the estimation of the variances

τ 2 and σ2. The mean value of τ 2 (equal to 8.8) and σ2 (equal to 0.8) for set 2. is better

than the ones for set 3. (τ̂ 2 = 7.4 and σ̂2 = 1.3), which indicates that we must use several

instrumental distributions and also run long chains in the Metropolis-Hastings algorithm.

Concerning the choice of the parameter burn, the results from sets 4. and 6. show that

we obtain a light improvement with the burn-in period in the estimation of τ 2 and σ2.

As in the orange tree data set, the results from sets 4. and 6. indicate that the value

of K does not have a large incidence since we obtain the same estimators. This may be
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because we simulate long chains and so the conditional expectations are good estimates

as the first iterations of the SAEM-MCMC algorithm. If we had varied the parameter

itMC along the SAEM-MCMC algorithm, that is to say for example short chains at the

beginning and long chains at the end, we think that the parameter K would have had

more impact on the results.

Our method provides the same results as the EM algorithm, which gives the exact value of

the maximum likelihood estimator. Set 5. also provides good estimators close to the EM

algorithm estimators but when compared to our method, no criteria are used to choose

the parameters of simulation. In terms of computing time, our method is the best one.

Concerning the biases and the MSE, set 5. and our method provide the best results

close to the ones of the EM algorithm. In particular, our SAEM-MCMC algorithm pro-

vides the best results on biases, especially for the variance τ 2, and the results are quite

similar for MSE. Running long chains with two instrumental distributions reduce the MSE

and the bias of the estimators for all the parameters.

To conclude, we need to run long chains and use several instrumental distributions in

the Metropolis-Hastings algorithm to have a good estimator for θ, and in particular for

the variances. The choice of the parameter burn is relevant and the burn-in period is

necessary. Concerning the parameter K, we think that it depends on the length of the

chain. The longer the chains are, the smaller is the impact of parameter K on the estima-

tion of θ. One advantage of our method is to propose criteria to fix all these parameters,

even if some preliminary statistical study must be done before. However some of these

criteria may be stringent. For example, the Gelman and Rubin criterion that diagnose

the convergence of Markov chains, imposes generally to run long chains.

In the next section we present the case where the model does not belong to the exponential

family class, for which Kuhn and Lavielle (2004) did not prove the convergence of the

SAEM-MCMC algorithm. Wang (2007) presents a method of estimation based on the EM

algorithm and applied the SAEM-MCMC algorithm on several non-exponential models.

5 The SAEM-MCMC algorithm in a wider class of

models

Wang (2007) used the SAEM-MCMC algorithm to estimate parameters of Model (2) with

the two parameters φ and β2 considered as random effects. In this case the model does
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not belong to the exponential family. Although we cannot use the minimal sufficient

statistic to estimate the maximum likelihood estimator of θ, the same strategy as the

EM algorithm was adopted to estimate the conditional expectations with the Stochastic

Approximation step of the SAEM-MCMC algorithm. In this section, our procedure and

the exact SAS NLMIXED procedure based on the quadrature method, were compared on

the orange trees data set and on a simulated data set.

5.1 The Model

The model is defined by:

yij =
φ1i

1 + exp
(
− tij−φ2i

β3

) + εij, ∀i ∈ {1, ..., N} ∀j ∈ {1, .., Ni}, (3)

where yij is the jth measurement of the ith tree, the (εij)ij’s are assumed independent

identically distributed as N (0, σ2), and the φi = (φ1i, φi2)’s are random variables assum-

ing independent identically distributed with distribution N (β,D) where β = (β1, β2) and

D =

(
τ 2
a τab

τab τ 2
b

)
the covariance matrix of the φi’s. Let θ = (β1, β2, β3, D, σ

2) the vector

of parameters.

5.2 The estimation of the parameters

The heuristic of this method of estimation is the following: for the two random param-

eters φ1 and φ2, the mean and the variance are estimated from the simulations of the

missing data, and more precisely from the chains of the metropolis-Hastings algorithm.

Concerning the other parameters, in the general case, we need to evaluate the gradient

and the hessien of the complete log-likelihood and we apply Newton’s method to obtain

the estimation of the parameters. The method used to estimate the vector of parameters

θ is presented in Wang (2007).

Since log p(y, φ; θ) = log p(y|φ; θ) + log p(φ; θ) where p(φ; θ) is the log-likelihood of

the missing data, the EM algorithm at iteration t leads to these estimations:

We note ω = (β3, σ
2).

β̂
(t)
1 =

∑N
i=1

E
[
φ1i|y,θ(t−1)

]
N
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τ̂
2(t)
a =

∑N
i=1

E
[
(φ1i−β̂

(t)
1 )2|y,θ(t−1)

]
N

β̂
(t)
2 =

∑N
i=1

E
[
φ2i|y,θ(t−1)

]
N

τ̂
2(t)
b =

∑N
i=1

E
[
(φ2i−β̂

(t)
2 )2|y,θ(t−1)

]
N

τ̂
(t)
ab =

∑N
i=1

E
[
(φ1i−β̂

(t)
1 )(φ2i−β̂

(t)
2 )|y,θ(t−1)

]
N

∂ log p(y,φ;θ(t−1))
∂ω

= ∂ log p(y|φ,θ(t−1))
∂ω

can not be solved in closed form. To obtain an estima-

tion of ω(t), we consider a single iteration of Newton’s method:

ω(t) = ω(t−1) −H(φ, ω(t−1))−1P (φ, ω(t−1))

where H(φ, ω(t−1)) = ∂2 log p(y|φ,θ(t−1))
∂ω2 and P (φ, ω(t−1)) = ∂ log p(y|φ,θ(t−1))

∂ω
.

When H is not definite positive, that is to say when the estimator is not in the neighbor-

hood of the maximum likelihood, we can use a Marquardt algorithm (Marquardt, 1963):

we replace H(φ, ω(t−1)) by (H(φ, ω(t−1)) + λtdiag(H(φ, ω(t−1)))), where λt is a positive real.

In this sense we take λt large and then

(H(φ, ω(t−1)) + λtdiag(H(φ, ω(t−1))))−1P (φ, ω(t−1)) ∼ 1
λt
P (φ, ω(t−1)): the algorithm is a de-

scent of gradient.

5.3 The NLMIXED procedure (Pinheiro and Bates, 1995b)

The NLMIXED procedure of SAS software estimates parameters in the nonlinear mixed

models by maximizing an approximation of the likelihood of the observations. This one

can be written under an integral form over the random effects. Different integral approx-

imations are available, the two principal ones are adaptive Gaussian quadrature (exact

approximation) and a first-order Taylor series approximation (approximation by lineariza-

tion). In this paper we used the adaptive Gaussian quadrature approximation, because it

seems to be the best method in terms of estimation of the value of the parameters (Pin-

heiro and Bates, 1995b). It is used to approximate integrals thanks to a given kernel by
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a weighted average of the integrand evaluated at pre-determined abscissas. In this sense,

this method can be viewed as a deterministic version of importance sampling method in

which the sample and the weights are fixed beforehand. One disadvantage of this method

is that it gives accurate results for a large number of abscissas, and so the computing time

can be very large.

5.4 Results on the Orange tree data set

In this model seven measurements (Ni=7) of the trunk circumference of each of five or-

ange trees (N=5) were made. The following initial values were taken: β
(0)
1 =150, β

(0)
2 =600,

β
(0)
3 =200, τ

2(0)
a =500, τ

2(0)
b =200, τab(0)=0 and σ2(0)=10. Our criteria fixed the parameters

of the SAEM-MCMC algorithm for this real data set and we obtained: itMC = 300,

m1 = 30, burn = 150, with a Gelman and Rubin criterion at 1.06, ρ1 = 0, ρ2 = 0.4 with

an average acceptation rate at 25%. It was difficult to increase this rate because either

we would have reduced the interval [ρ1; ρ2], which may affect the behavior of the markov

chains, either we may have reduced the length of the chain, which would have generated

a problem to satisfy the Gelman and Rubin criterion. Then we fixed L = 5. The other

criteria of the algorithm that are setting up during the algorithm runnig fixed K = 37,

and the stopping rules stopped the algorithm at 172 iterations, the computing time was

equal to 28 seconds. The results are presented in Table 5.

Concerning the estimators and the standard errors for the fixed effects, and the variances

τ 2
a and σ2, we obtained similar results with the two methods. However, the estimators of

τ 2
b and τab are very different. We noted that in this study, the NLMIXED procedure was

unstable and the estimators strongly depended on the initial values of the parameters. In

terms of value of the log-likelihood of the observations, the estimator obtained with our

method was the best.

Since the estimated value for the variances are very different between the two methods,

we study in the next paragraph a simulated data set based on Model(3).

5.5 Results on a simulated data set

We simulated 100 data sets based on Model (3) with the following parameters: N = 100,

Ni = 15, β1 = 20, β2 = 70, β3 = 30, tij defined in Section 4.2.1, D =

(
10 −1

−1 40

)
and

σ2 = 0.5.
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After applying our criteria to fix the parameters of simulations of the SAEM-MCMC al-

gorithm for the first simulated data set, we obtained: itMC = 800, m1 = 80, burn = 400,

with Gelman and Rubin criterion at 1.04, L = 1, ρ1 = 0, ρ2 = 0.4 with an average rate

of acceptation at 30%. The mean computing time was 360 seconds, the mean number of

iterations was 143 and the mean K was 38.

Results

The values of the estimators obtained with the two methods were similar for all the pa-

rameters. These values were close to the exact parameters, except for τab, which indicates

that the two methods give coherent results. Concerning biases, MSE, σ̂(θ̂) and MQE the

results were also similar.

On the contrary to the study of the Orange tree data in the same model, here the

NLMIXED method was stable for all initial values. Since we obtained the same results as

the exact NLMIXED method, our method seems to be adapted and efficient in maximum

likelihood estimation in the general class of the non-linear mixed models.

6 Conclusion

In summary, we propose some criteria to fix the different parameters of the SAEM-MCMC

algorithm presented by Kuhn and Lavielle (2004, 2005) in maximum likelihood estima-

tion. We show on the orange tree data and on a simulated data set that we need to

run long chains in the Metropolis-Hastings algorithm to obtain precise estimates. These

chains must be simulated using several instrumental distributions and taking a burn-in

period improves the estimator’s value.

In this study our method provides estimates similar to the EM algorithm estimates and

the computing time was comparable to that of other software used in maximum likelihood

estimation.

Moreover we test our algorithm on a wider class of non-linear models, according to the

method of estimation presented by Wang (2007). We obtain the same estimates as the

NLMIXED method and close to the exact parameters on a simulated data set. Our algo-

rithm seems to be adapted to the study of several kinds of non-linear models.

In quantitative genetics and animal breeding, heteroscedasticity has generated much in-

terest. In fact the assumption of homogeneous variances may not always be appropriate.

In linear mixed models, there is now a large amount of experimental evidence of hetero-
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geneous variances for most important livestock production traits (Garrick et al., 1989;

Visscher et al., 1991; Visscher et Hill, 1992; Robert-Granié et al., 1999). Major theo-

retical and applied work has been carried out for estimating and testing the source of

heterogeneous variances arising in univariate linear mixed models (Foulley et al., 1990;

Gianola et al., 1992; San Cristobal et al., 1993; Foulley and Quaas, 1995; Foulley et al.,

1998; Robert et al., 1995a; Robert et al., 1995b). Foulley et al. (1990) formalized the

heterogeneous variances using a mixed model approach on log variances in linear mixed

models. According to this modelisation, it would be interesting to adapt our algorithm

to the study of heterogeneous variances in non-linear mixed models.
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Figure 1: Illustration of the evolution of e1 during the iterations of the SAEM-MCMC

algorithm.
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Figure 2: Simulation of a markov chain of the Metropolis-Hastings algorithm.
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Figure 3: Histogram of the 50,000 to 60,000 iterations of the markov chain and the graph

of the density of the distribution N (u1, V ).
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Set number itMC m1 burn L K itSAEM time

set 1. 10 11 0 10 100 303 3

set 2. 100 101 0 10 100 195 18

set 3. 20 11 0 10 100 222 5

set 4. 200 101 0 10 100 120 22

set 5. 200 101 50 10 100 137 20

set 6. 200 101 0 10 50 102 18

SAEM-MCMC with criteria 500 51 250 10 46 61 19

Table 1: Presentation of the six sets of parameters used in the SAEM-MCMC algorithm,

and the set of parameters fixed thanks to the criteria.
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θ β1 β2 β3 τ 2 σ2 logL

initial value θ0 100 650 250 500 10 -

EM 192 728 348 1001 62 -131.6

σ̂(θ̂) 15.7 35.2 27.1 649.5 15.9 -

set 1. 186 697 326 727 169 -137.4

set 2. 191 720 343 957 75 -131.9

set 3. 188 710 335 849 121 -134.4

set 4. 192 728 348 990 68 -131.6

set 5. 192 728 348 1001 61 -131.6

set 6. 192 725 346 984 68 -131.6

SAEM-MCMC with criteria 192 726 347 998 61 -131.6

σ̂(θ̂) 15.4 32.6 25.3 650.3 16.0 -

LogL = log p(y|θ̂)

Table 2: Values of θ̂ for the EM algorithm, the classical SAEM-MCMC algorithm with

six sets of parameters and our SAEM-MCMC algorithm on the Orange tree data.
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θ β1 β2 β3 τ 2 σ2 logL t itm Km

true value 20 70 30 10 0.5 - - - -

estimate

EM 19.4 71.5 28.7 10.0 0.6 -1965.50 - - -

set 1. 19.3 70.7 28.2 4.3 2.1 -2382.40 41 156 100

set 2. 19.3 71.2 28.5 8.8 0.8 -2002.63 480 131 100

set 3. 19.3 71.2 28.5 7.4 1.3 -2154.08 90 143 100

set 4. 19.4 71.4 28.6 9.5 0.7 -1975.98 600 120 100

set 5. 19.4 71.4 28.6 9.9 0.6 -1965.82 502 114 100

set 6. 19.4 71.4 28.6 9.5 0.7 -1975.96 390 72 50

SAEM-MCMC with criteria 19.4 71.4 28.7 10.0 0.59 -1965.50 28 49 33

LogL = log p(y|θ̂)

The mean estimates are based on 100 simulations.

Table 3: Estimation of the mean estimates for the estimators on the simulation data set

using Model (2).
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θ β1 β2 β3 τ 2 σ2

Bias

EM -0.61 1.46 -1.31 0.03 0.09

set 1. -0.75 0.74 -1.84 -5.67 1.64

set 2. -0.66 1.22 -1.48 -1.23 0.32

set 3. -0.66 1.18 -1.51 -2.60 0.85

set 4. -0.63 1.35 -1.39 -0.54 0.20

set 5. -0.62 1.40 -1.35 -0.14 0.10

set 6. -0.63 1.35 -1.39 -0.54 0.20

SAEM-MCMC with criteria -0.62 1.44 -1.33 0.03 0.09

MSE

EM 0.46 2.21 1.77 2.35 0.01

set 1. 0.75 1.95 4.00 32.84 2.78

set 2. 0.53 1.75 2.32 3.33 0.11

set 3. 0.55 1.81 2.48 8.04 0.74

set 4. 0.49 1.96 1.99 2.36 0.04

set 5. 0.48 2.08 1.88 2.28 0.01

set 6. 0.49 1.96 1.99 2.36 0.04

SAEM-MCMC with criteria 0.47 2.17 1.80 2.35 0.01

The biases and MSE of the estimates, based on 100 simulations.

Table 4: Estimation of the MSE and MQE of the estimators on the simulation data set

using Model (2).
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θ β1 β2 β3 τ 2
a τ 2

b τab σ2 logL(θ̂)

initial value θ0 150 600 200 500 200 0 10 -

SAEM-MCMC with criteria 191 714 344 1169 984 877 57 -130.89

σ̂(θ̂) 16.2 31.3 23.3 761.7 1895 951 16 -

NLMIXED 192 725 348 1176 193 313 59 -131.2

σ̂(θ̂) 16.7 37.4 26.7 905.3 2180 838.3 18.9 -

LogL(θ̂) is an estimation of the log-likelihood of the observations to the point θ̂

Table 5: Value of θ̂ and the standard error of θ̂ for our SAEM-MCMC algorithm and the

NLMIXED procedure on the Orange tree data.
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θ β1 β2 β3 τ 2
a τ 2

b τab σ2 logL(θ̂)

exact 20 70 30 10 40 -1 0.5 -

initial values θ0 10 35 15 5 30 0 0.1 -

SAEM-MCMC with criteria 19.41 71.51 28.67 9.77 40.17 -2.09 0.59 -2071.25

biais -0.59 1.51 -1.33 -0.23 0.17 -1.09 0.09 -

MSE 0.43 2.66 1.81 2.48 36.94 5.06 0.01 -

σ̂(θ̂) 0.32 0.69 0.23 1.41 6.52 2.16 0.02 -

MQE 0.53 3.15 1.86 4.50 80.29 9.80 0.01 -

NLMIXED 19.41 71.49 28.68 9.81 40.15 -2.12 0.59 -2071.00

biais -0.59 1.49 -1.32 -0.19 0.15 -1.12 0.09 -

MSE 0.43 2.59 1.80 2.36 35.77 5.20 0.01 -

σ̂(θ̂) 0.32 0.69 0.23 1.41 6.52 2.16 0.02 -

MQE 0.53 3.08 1.86 4.40 78.97 9.94 0.01 -

LogL(θ̂) is an estimation of the log-likelihooh of the observations to the point θ̂

Table 6: Value of estimates, biases, MSE and MQE of θ̂ for our SAEM-MCMC procedure

and the NLMIXED procedure on a simulated data.
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