
HAL Id: hal-00189514
https://hal.science/hal-00189514

Submitted on 25 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Managing structure complexity in a multi-physic
simulation software

Quoc Hung Huynh, Yves Maréchal, Jean-Louis Coulomb

To cite this version:
Quoc Hung Huynh, Yves Maréchal, Jean-Louis Coulomb. Managing structure complexity in a multi-
physic simulation software. IEEE Transactions on Magnetics, 2006, 42 (4), pp.1239 à 1242. �hal-
00189514�

https://hal.science/hal-00189514
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON MAGNETICS, VOL. 42, NO. 4, APRIL 2006 1239

Managing Structure Complexity in a Multi-Physics
Simulation Software

Huynh Quoc Hung, Yves Marechal, and Jean-Louis Coulomb

Laboratoire d’Electrotechnique de Grenoble, UMR 5529 INPG/UJF-CNRS,
ENSIEG-BP 46-38402 Saint-Martin-d’Hères Cedex, France

This paper presents an efficient method for managing the complexity of software structure by implementing the business rules over
the data model using a combination of logical programming and object-oriented programming, concretely applied in a multiphysics
application.

Index Terms—Business rules, logical programming, multiphysics, object-oriented programming, simulation software.

I. INTRODUCTION

THE development of numerical simulation software, partic-
ularly those involving electromagnetisms and other disci-

plines, implicitly increases the complexity of its structure. This
increase demands a well-organized and reusable structure. In
order to establish such a model, managing the complexity of
software’s structure should be observed.

Moreover, in the software community, especially in the nu-
merical simulation community, it is well-known that the time
spent to develop a whole application is much larger than that de-
voted to innovative aspects, such as the development of new al-
gorithms with their related data. However, most of applications
have a set of common functionalities, like database manage-
ment, visualization, graphic and command user interface, etc.
Hence, it is possible to increase software productivity by intro-
ducing reusability and extensibility.

The aim of this paper is to study the possibility of structure
management by integrating a set of rules over the data model
with help of the logical programming and the object-oriented
programming.

II. PHYSICS DESCRIPTION STRUCTURE

Our approach rises from a solution for the management of
multiphysic solver structure [1]. The solver contains two parts:
the description of physics and the description of resolution. We
observe only the first part, which involves a database structure
composed by many entities serving to describe the physics.

Fig. 1 shows a simplified global structure which contains the
most important objects (study, discipline, region, domainType,
material, and property) of our model. A study related to a dis-
cipline contains one or more regions, each of them relates to a
domain type and has a material, which, at last, includes one or
more properties. In fact, this model is common to all physics
and should be extended, by inheritance mainly, to describe one
or more physical disciplines.

Let us consider the example of the magneto-static case. The
entities related to this physics will be introduced as subclasses.
An advantage of this type of classification is that the subclasses

Digital Object Identifier 10.1109/TMAG.2006.870938

Fig. 1. Simplified global structure of the physics description.

can inherit all properties of their abstract classes. Fig. 2 presents
the data model with added objects in our example.

III. FROM ONE TO SEVERAL PHYSICS

As a next step, consider now two physics: the magneto-static
and the thermal with its new entities (shaded objects in the
Fig. 3).

While the software development leads to an unavoidable in-
crease of the structure’s complexity, the global organization of
the data model isn’t modified. In fact, the number of realizations
of these abstract structures may be important. For example, there
are about 5000 terminal classes in Flux [10].

On the other hand, such an application needs a consistency
checker to ensure that any command or object construction is
valid [4]. For example, a magnetic region needs material with
at least one magnetic property. This is not expressed by the data
model that allows a mix of thermal regions with magnetic prop-
erties for instance. Thus, some constraints will be imposed over
the data model. Let us consider for instance the magnetic as-
pects.

In order to implement these rules, the chosen language is
naturally an international standard: object constraint language
(OCL) [5] which has been developed to enhance the unified
modeling language (UML) with constraints. Two examples of
rules, associated to the Fig. 3 diagram in the magneto-static case,
implemented in OCL will be presented. These rules ensure the
validation of a choice when being in the magneto-static study.

1) The discipline of study must be of type disciplineMagStat
and all regions must be of type domainMagStat:

0018-9464/$20.00 © 2006 IEEE

1240 IEEE TRANSACTIONS ON MAGNETICS, VOL. 42, NO. 4, APRIL 2006

Fig. 2. Data model with added classes in magneto static case.

Fig. 3. Data structure in the two-physics case with constraints implementation.

context study def:

let caseDomain OclType OclType :

disciplineMagStat

domainMagStat

let validAllType discipline domainType :

caseDomain type type

or type supertypes

type OclType caseDomain type type

context study inv typeOfDomain:

region validAllType discipline

type

2) The region must be of type domainMagStat and among
the properties of the region’s material; at least one is of
type propertyMag.

context region def:

let caseProp OclType OclType :

domainMag propertyMag

let validProp domainType property :

caseProp type type

context region inv propertyOfMaterial:

material props property validProp type

type type

However, OCL is not a programming language so we need
to use either coding or a logical programming language like
PROLOG [6]–[9]. Indeed, to reduce the simulation software de-
signer task, the consistency management should not require any
hand coding. Moreover, PROLOG offers the possibility of in-
versibility. These are the main reasons explaining our transla-
tion of the rules formalism into a PROLOG clause.

IV. BUSINESS RULES IN OBJECT-ORIENTED SYSTEMS

Before passing to the rules implementation step, we should
talk about the notions of business rules.

In an object-oriented model, business rules can be repre-
sented in many ways. Some rules will define the types of entities
in a system along with their attributes. Other rules may define
legal subtypes, which is usually done through subclassing.
Other rules will define legal types of relationships between
entities, which is applied in our case. These rules can also
define basic constraints such as the cardinality of relationships
and if a certain attribute is required or not [2], [3]. Most of these
types of rules deal with the basic structure.

Our data model concerns in a developing structure and it be-
comes sophisticated gradually. In order to simplify the manage-
ment of such a complex structure, the rules implementation will
be an efficient solution.

V. CONSTRAINTS INTEGRATED IN DATA MODEL

First of all, two requirements on the implementation of the
rules in the model will be presented. 1) The rules management
must be as simple as possible and independent of the code. This
aspect concerns the maintenance point of view. 2) The rules have
to be not only evaluatable but also invertible. This will allow
not only the validation of the rules for any input entered by the
end-user but also the proposition of valid choices to the end-user
if required.

These two requirements also explain the reasons why we have
chosen to couple PROLOG, a logical and declarative program-
ming language, to the object-oriented language.

In order to translate OCL expressions into PROLOG predi-
cates, we have defined for each OCL syntactic element an equiv-
alent PROLOG predicate. If we turn back to the two examples
of the previous section regarding the magneto-static case, they
are now expressed in PROLOG.

1) caseDomain disciplineMagStat domainMagStat .

validAllType Discipline Domain :-

isTypeOf Discipline DisciplineType ,

isKindOf Domain DomainType ,

caseDomaine DisciplineType DomainType .

inv study Study :-

getField Study discipline Discipline ,

getField Study regions Regions ,

forall Regions getField type DomainType ,

validAllType Discipline DomainType .

2) caseProp domainMag propertyMag .

validExistProp Domain Prop :-

isKindOf Domain DomainType ,

isKindOf Prop PropType ,

HUNG et al.: MANAGING STRUCTURE COMPLEXITY IN A MULTI-PHYSICS SIMULATION SOFTWARE 1241

caseProp DomainType PropType .

inv propertyOfMaterial region Region :-

getField Region type Type ,

getField Region material Material ,

getField Material props Props ,

exist Props validExistProp Type .

From this point, we just need to add some lines of rules for
each new physic. For example, in the case of thermal physics,
just some rules lines should be added.

caseDomain disciplineTher domainTher .

caseProp domainTher propertyTher .

Otherwise, PROLOG, with its capacity of invertible queries,
gives us the possibility of not only validation (initial aim of OCL
rules) but also proposition and explanation for input data.

• Data input by users will be checked for the validation. For
instance, in our magneto-static case, the discipline and the
domain type of a given study are verified by applying the
rules to assure their compatibility.

• When a field is not filled in, the potential field values will
be proposed to complete the object creation. For example, if
we haven’t chosen a domain type for a region, two potential
domain types will be proposed. In our magneto-static case,
they are domainMagStatMagnetic and domainMagStatAir

• We have added a predicate “why” in order that the errors
would be explained. We consider two examples.

1) If the discipline of a study is not given, the error will
be notified by a message

why typeOfDomain study Study Why :-

getField Study discipline null ,

Why Field discipline of study is not �lled .

2) If the discipline of a study is not given, the error will
be notified by a message

why typeOfDomain study Study Why :-

getField Study discipline Discipline ,

Discipline null ,

reference Discipline DisciplineRef ,

Why Study discipline and domain type are not

compatible .

Considering a simple example described in the tables
below, we have three regions with their domain type and
material. In the second table, we have three studies with
their regions and their discipline defined by user. We will
try to verify these studies and let the engine propose poten-
tial values for incomplete or incorrect fields in Table I.

• Verifying the validation of Study MagStat

.

Study MagStat is valid .

TABLE I
POTENTIAL VALUES FOR INCOMPLETE OR INCORRECT FIELDS

Obj study Study MagStat regions

region air region circuit ,

discipline disciplineMagStat Discipline MagnetoStatic

• Verifying the validation of Study Ther

.

Field discipline of study is not filled.

Obj study Study Ther regions region core discipline

null

• Proposing the incomplete field “discipline” of Study Ther

,

.

Discipline disciplineTher Discipline Thermic

• Verifying the validation of Study MagStat 1

.

Study discipline and domain type are not compatible.

Obj study Study Ther regions region core ,

discipline disciplineMagStat Discipline MagnetoStatic

• Proposing the incorrect field “discipline” of Study
MagStat 1

,

.

Discipline disciplineTher Discipline Thermic

Once completely constituted, the rules need to be imple-
mented in the software. Fig. 4 presents the process of database
treatment with rules implementation. The entry data through
data input user interface is stored temporarily before the checker
verifies data validation. The validation checker is described
with more details in the Fig. 5.

Thanks to a database of OCL operators written in PROLOG,
a rules interpreter establishes the communication between
graphical user interface (GUI) and the business rules in OCL.
Inside the rules interpreter, a parser helps us to transform
PROLOG rules into OCL business rules. These rules will be
applied over the data model.

1242 IEEE TRANSACTIONS ON MAGNETICS, VOL. 42, NO. 4, APRIL 2006

Fig. 4. Database treatment process with the implementation of rules.

VI. APPLICATION AND PERSPECTIVES

We have implemented the rules created to support the de-
scription of our simulation software FLUX. The constraints in-
tegrated will verify the validation of objects construction. It is
believed that this approach will give a possibility to manage the
structures which contain complex entity relationships.

This approach can be developed by reaching a dynamic
business rules implementation with adaptive object-models, as
proposed in [2] and [3].

VII. CONCLUSION

We have proposed a solution for managing the complexity
of the data model in a multiphysics solver by implementing a
set of rules into the data model of a physics descriptor in our
multiphysics solver. We have translated the unambiguous syn-
tactic belonging to the standard object-oriented UML and OCL
into PROLOG, a logical programming language. Hence, the
proof-mechanism is reusable for any model described with this
standard.

The goal of this proposition is to permit developers to effi-
ciently manage, modify and execute the software data model.
The use of PROLOG allows us to satisfy the requirements on the
rules implementation in our model: the simplicity and the code
independence. As a result, the time spent to describe a phys-
ical problem is reduced. Besides, the rules permit to establish
a well-organized data structure, which naturally simplifies the

Fig. 5. Rules integration in database structure—validation checker
description.

work of a physicist who wants to add a new discipline in the
global structure without modification.

REFERENCES

[1] H. T. Luong and Y. Maréchal, “Modélisation numérique multiphysique
et multiméthode: une description formelle pour construire un environ-
nement de simulation général,” Proc. MajecSTIC 2003, p. 23, Oct. 2003.

[2] J. W. Yoder and R. Johnson, “Metadata and adaptive object-models,” in
ECOOP’2000 Workshop Reader—Lecture Notes in ComputerScience.
New York, 2000.

[3] , Implementing Business Rules with Adaptive Object-Models. En-
glewood Cliffs, NJ: Prentice-Hall, 2002.

[4] O. Defour and Y. Maréchal, “Static and dynamic consistency checking
for numerical simulation: A mixed logic and object oriented program-
ming approach,” IEEE Trans. Magn., vol. 40, no. 2, pp. 1642–1645, Mar.
2003.

[5] OMG documents—“Unified Modeling Language, v1.5—Object Con-
straint Language Specification” (2003, Mar.). [Online]. Available:
http://www.omg.org

[6] M. A. Covington, “Some Coding Guidelines for PROLOG,” Artificial
Intelligence Center, Univ. Georgia, Atlanta, Dec. 2, 2002.

[7] J. R. Fisher. (1999–2004) PROLOG Tutorial. California State
Polytechnic Univ., Pomona, California. [Online]. Available:
http://www.csupomona.edu/~jrfisher/www/prolog_tutorial/

[8] M. Banbara and N. Tamura. (2003, Feb.) PROLOG Cafe Documentation
version 0.6. [Online]. Available: http://kaminari.istc.kobe-u.ac.jp/PRO-
LOGCafe/PROLOGCafe061/doc/

[9] J. Wielemaker, SWI-PROLOG 5.4.1 Reference Manual, Dept. Social
Science Informatics (SWI) Roeterstraat, 2004.

[10] Flux Documentation—“Notice d’utilization générale de Flux 3D, ver-
sion 8.1”—CEDRAT, 2003. Juillet.

Manuscript received June 28, 2005 (e-mail: Hung.Huynh-Quoc@leg.en-
sieg.inpg.fr).

	toc
	Managing Structure Complexity in a Multi-Physics Simulation Soft
	Huynh Quoc Hung, Yves Marechal, and Jean-Louis Coulomb
	Laboratoire d'Electrotechnique de Grenoble, UMR 5529 INPG/UJF-CN
	I. I NTRODUCTION
	II. P HYSICS D ESCRIPTION S TRUCTURE

	Fig.€1. Simplified global structure of the physics description.
	III. F ROM O NE TO S EVERAL P HYSICS

	Fig.€2. Data model with added classes in magneto static case.
	Fig.€3. Data structure in the two-physics case with constraints
	IV. B USINESS R ULES IN O BJECT -O RIENTED S YSTEMS
	V. C ONSTRAINTS I NTEGRATED IN D ATA M ODEL

	TABLE I P otential V alues for I ncomplete or I ncorrect F ields
	Fig.€4. Database treatment process with the implementation of ru
	VI. A PPLICATION AND P ERSPECTIVES
	VII. C ONCLUSION

	Fig.€5. Rules integration in database structure validation check
	H. T. Luong and Y. Maréchal, Modélisation numérique multiphysiqu
	J. W. Yoder and R. Johnson, Metadata and adaptive object-models,
	O. Defour and Y. Maréchal, Static and dynamic consistency checki

	OMG documents Unified Modeling Language, v1.5 Object Constraint
	M. A. Covington, Some Coding Guidelines for PROLOG, Artificial I
	J. R. Fisher . (1999 2004) PROLOG Tutorial . California State Po
	M. Banbara and N. Tamura . (2003, Feb.) PROLOG Cafe Documentatio
	J. Wielemaker, SWI-PROLOG 5.4.1 Reference Manual, Dept. Social S

	Flux Documentation Notice d'utilization générale de Flux 3D, ver

