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A Review of Magnetostatic Moment Method
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This paper proposes a review of the magnetostatic moments method (MoM) applied to model electromagnetic devices. This method
is now well-known for its “light weight” and its simplicity of implementation. Its main advantages are the nonrequirement of an air
region mesh and a coarse mesh of the ferromagnetic material. It leads to very fast resolution and very accurate field, force, and moment
computations. The paper proposes a state of the art of this approach and shows some efficient realizations.

Index Terms—Magnetization identification, magnetostatic moment method, point-matching approach, simplified moment method.

I. INTRODUCTION

MAGNETOSTATIC moments method (magnetostatic
MoM) is now known as a powerful approach to model

electrotechnical devices. Developed more than 30 years ago by
Harrington [1], several academic codes like GFUN [2], RADIA
[3], or CALMAG3D [4] have already shown the reliability of
the approach. Nowadays, it can be an interesting alternative to
classical finite-element methods (FEM) in some situations.

In this method, only ferromagnetic material parts are divided
into elementary elements with a uniform magnetization asso-
ciated with each of them. These elements are called moments
and the distribution naturally respects Maxwell’s equations. The
main idea of the approach is that the magnetic field is created by
the inductor sources and all the moments defined in the problem.
With a point matching technique, which ensures the validity of
the materials constitutive laws, a system is obtained. It remains
to solve it to obtain the values of moments and then to compute
the magnetic field everywhere. Force or flux can thus be easily
computed too.

The main advantage of the approach is that air (or equiva-
lent) does not require any mesh. Only ferromagnetic materials
and magnets are meshed and often with coarse subdivisions. It
leads to very high-speed resolutions and to high accuracies for
stray field computations, in comparison with FEM. Most part of
references found in the literature deals with this use of moment
method. However, other interesting applications can be found.

The method could be called a “light weight” approach
because of its simplicity of implementation, its speed, and
above all its efficiency to solve complex problems with very
few numbers of unknowns. It is why this method is particularly
well adapted for multistatic studies with motion or optimization
strategy (no mesh of the air region is required at each step and
the evaluation of a problem is very fast). Finally, the method
can easily be inverted and so gives very good results for mag-
netization identification.

However, to apply moment method to all these applications
is not without difficulties. The use of this approach needs a
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good knowledge of the physical phenomena and of the numer-
ical method itself. In opposition to FEM, which is very general,
the moment method requires a high level of how-to skill.

This paper proposes a review of this method based on sig-
nificant applications. First, we will sum up the main concepts
of the theory. Linear and nonlinear models will be considered.
Different kinds of elements will be shown in order to reduce
the computation times and increase the accuracy of the method.
Moreover, we will show some numerical realizations.

II. BASIC THEORY

A. Standard Equation

Let us consider a magnetostatic problem composed by some
ferromagnetic regions and coils in which currents flow. Equa-
tions governing the problem are

(1)

(2)

We must add the classical following material law [5]:

(3)

where is called the induced magnetization of the material
and is the permanent one. It is usual to divide the mag-
netic field into the summation of two terms: , the source
magnetic field created by currents and , the reduced mag-
netic field created by the ferromagnetic material. As we have

(4)

we can conclude that the reduced magnetic field derives from a
scalar potential

(5)

where P is a point located everywhere in the domain region. The
reduced scalar potential is equal to [6]

(6)

where V is the volume of ferromagnetic material and the
vector between the integration point and the point P where the
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Fig. 1. Device under study, with magnets, inductors, and ferromagnetic parts
meshed into volume elements.

field is expressed. Let us notice that the expression (6) ensures
the validity of (1). By calculating the gradient of (6), we get
thus an equation for the magnetic field

(7)

In the integral terms, readers will recognize the standard expres-
sion of field created by a dipoles volume distribution.

B. Mesh of the Device

Let us consider a device composed of several magnets
with a known magnetization , inductors in

which flows static currents I and ferromagnetic parts (V) with
unknown magnetization (see Fig. 1).

The ferromagnetic material is meshed into J volume elements
and the magnets are divided into K volume elements too. Let
us assume that magnetizations are uniform in each element of
the ferromagnetic material and in the magnets. Equation (7)
becomes

(8)

Now, let us define an orthogonal basis in each volume element
for the magnetization. As (8) is linear, it can be rewritten as it
follows:

(9)

where coefficients and define magnetizations in
each local basis, is a (3 3 K) matrix, is a ( J)
matrix. Let us notice that is a vector and
is a one.

C. Point-Matching Method

A simple way to obtain an approximate solution of (7) is to
ensure that this equation will be satisfied at discrete points in

the region of interest. This procedure is called point matching
approach. In our method, chosen points will be the barycenter
of each element i of ferromagnetic regions. Equation (9) will be
written at each barycenter of each element and projected in its
local basis.

1) Linear Material Law: In the case of a linear ferromag-
netic material, the relation between the magnetization and the
field is

(10)

By combining (9) and (10), we can write a linear system

(11)

with unknowns. is the identity matrix, and the
source field at each barycenter projected in local basis. It can
easily be computed by analytical or numerical computation of
Biot and Savart’s law. Let us notice that in this model, (1) and (2)
are satisfied by construction. In fact, the moment method solves
(10) (i.e., the material law) by a numerical approximation (i.e.,
a point matching approach).

The system obtained is square and full. This is the main draw-
back of the approach. In fact, for large meshes, the matrix of
this system become too memory consuming and required too
much time to be solved. It is the most important drawback of
the method in comparison with the finite-element one.

2) Nonlinear Law: For a nonlinear material, an iterative al-
gorithm is required (relaxation) using the (3). In some cases,
the convergence is difficult to reach, but some now well-known
techniques can ensure and improve the convergence speed [7].

III. INTEGRATION IMPROVEMENTS

A. Reduction of the Singularity

The main difficulty in moment method is the computation
of matrix coefficients (and/or matrix too). If we compute
the influence of element j at the barycenter of element i, the
coefficient will have the following expression:

(12)

where denotes the classical scalar product operator. Let us
notice that (12) is a (3 3) matrix for volume element. In par-
ticular, for (computation of the influence of an element on
itself), even if this integral is analytically convergent, the use of
numerical integration can lead to artificial numerical singularity
(i.e., Gauss integration points are too close from the matching
point). Moreover for an unspecified element shapes, no analyt-
ical solution for (12) can be found.

A well-known solution is to consider that all the elements are
spherical (or better ellipsoidal). Equation (12) has thus a very
simple expression in all the cases [8]. However, if this technique
can be acceptable to compute the field created by magnet in
air, it can lead to important inaccuracies when ferromagnetic
materials are taken into account.

The best solution is to use the well-known equivalent sur-
face charge distribution. As we said, the magnetization
is constant on each element. Its divergence is equal to zero on
the volume. On this assumption, the field created by the volume
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Fig. 2. Computation of the influence of a cube volume element on itself
(point-matching at the element barycenter). The magnetization is parallel to a
face. Curve shows values of (13) obtain for different number of Gauss points
and compared with analytical solution.

is exactly the same that the field created by a surface charge dis-
tribution located on the surface delimiting the volume
[6] (the vector is the external normal of V). The advantage
of this approach is to present a reduced singularity in
comparison with (12) . Equation (12) becomes thus

(13)

The integral can be computed analytically [7], [9], so with a
great accuracy. However, formulas are complex to implement
and their evaluation can increase the computation time. It is thus
possible to use numerical Gauss technique. It allows us to use
a vectorized algorithm (“for” loops are replaced by matrix ma-
nipulations). Computation time decreases, but the accuracy de-
creases too.

As it is shown in Fig. 2, an important number of integration
points (16 for a square surface) is needed to ensure an error in-
ferior to 0.5%. This number still leads to high computation time
even if a vectorized algorithm is used. Our preferred solution is
to use a limited number of integration points (four per rectan-
gular faces for example) and to recompute matrix terms which
represent the influence of an element on itself with an analytical
integration. It allows us to increase the speed of the algorithm,
the accuracy remaining very good.

B. Other Elements

For some particular geometries, the direction of magnetiza-
tion in the device can be known. Equation (13) is thus simpli-
fied and the number of unknowns is significantly reduced. In
this section, we present two different kinds of elements: surface
one, which allows to model shells, and line ones dedicated to
rods modelings.

1) Surface Elements: Let us consider a ferromagnetic shell.
We consider that the permeability of the sheet is high and that
the thickness e is small in comparison with other dimensions.
The field in the sheet is mainly tangential and constant through
the thickness of the shell [10]. Equation (13) becomes then

(14)

The shell needs thus to be meshed only by surface elements (ele-
ments are not meshed in the thickness). Charges are then located
on segments delimiting the surface elements. Surface integra-
tion becomes thus line ones and only two bases tan-
gential to the surface element are used ( is the external normal
of the element and is tangential to it). It allows us to reduce sig-
nificantly the number of unknowns. Analytical and numerical

Fig. 3. Bases description to take into account symmetrical problems. Two
cases are represented: (a) tangential symmetry, and (b) normal symmetry for
the magnetic field.

integrations can be provided. Reference [11] compares obtained
results.

2) Line Elements: Let us now consider a device composed
of ferromagnetic rods (small section s and high permeability).
By applying the same approach that in previous section, we can
model the rod by segments (line elements) with charges located
at the extremity of each of them. Equation (13) becomes

(15)

Only one basis is need ( tangential to the line element). In
some particular case, an high mesh density is necessary to take
into account important variation of the magnetization along the
rod. The length of elements may become so small that the sec-
tion of the rod cannot be neglected any more. Special integra-
tion, taken into account the shape of the section can thus be pro-
vided [12].

IV. SYMMETRIES

The main drawback of the magnetostatic MoM is that linear
systems obtained are full. Therefore, the memory needed to
store and solved them increased dramatically with the number
of element . It is thus absolutely necessary to develop a tool
which allows to take into account geometrical and physical sym-
metries of the device.

Let us represent a main basis of volume el-
ement number i (with a magnetization ) and its symmet-
rical elements (with a magnetization ) with an associated
basis . This symmetrical basis will
depend on the symmetry of the field in the device (see Fig. 3).

Let us write and in their associated bases. In both
cases (a) and (b), coefficient obtained are exactly the
same to describe the magnetization associated to element i and
its symmetrical magnetization

(16)

(17)

Now, we write the global system obtained without taking into
account symmetries. To simplify expressions, the permanent
magnetization is not taken into account. Thanks to (11), we get
the following linear system:

(18)
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With our bases, we can notice that

(19)

(20)

(21)

(22)

It remains to write a new linear system which takes into account
symmetries of the problem

(23)

Let us consider that the main region has n volume elements, the
symmetrical one has thus n elements too. The computation of
matrix (23) leads to operations against . The inte-
gration time is then divided per 2. Moreover, the space memory
needed to store the matrix is against . It
is then reduced per 4. The computation time to solve the system
is then divided per 8.

V. POST-PROCESSING

A. Stray Field Computation

The stray field created by the device can easily be computed
with (8). The main advantage of the method is that the air region
is not meshed, so no numerical noise decreases the accuracy
of the stray field computation. The method has already shown
good results in shielding effects computation or magnetic signa-
ture of ferromagnetic hulls. A combination of FEM and moment
method can lead also to interesting results [13]. This method
seems easier to implement than the use of infinite modeling tools
in FEM or coupling with BEM.

B. Forces and Moments Computations

The computation of force acting on the ferromagnetic devices
can be obtained with the following equation [6]:

(24)

where is the induction created by all the devices (inductor,
magnets, and ferromagnetic regions) except the ferromagnetic
region considered. Moments can easily be computed too. The
method leads to accurate and very fast computations for devices
composed with magnets and with a high leakage field (mag-
netic micro-actuator for example), for which a high density of
mesh is needed in FEM modelings. Let us notice that the use of
Maxwell’s tensor integration on a surface surrounding the re-
gion can reduce the computation time significantly.

VI. SOME NUMERICAL EXAMPLES

A. Modeling of an Actuator

In this section, we present a classical application of mag-
netostatic moment method. Let us consider an actuator. It is
composed by two ferromagnetic cylindrical columns carrying
two inductor coils. Between these two columns, another one,
with a rectangular section, is composed by a permanent magnet
and ferromagnetic material. A bottom support and a top pallet

Fig. 4. Magnetization distribution (A/m) obtained with a standard mesh.
Moments directions are not represented (� = 2000).

channel the induction. The goal of this section is to compute the
force acting on the pallet without any current in coils. Let us no-
tice that the device has a symmetry plan. The problem is solved
with the 3-D commercial software Flux3D. The force obtained
is 25.24 N.

The actuator is now modeled by moment method. The first
step is to mesh the active ferromagnetic parts and the magnet by
volume elements. A standard FEM mesh generator is used. It is
usual to use mapped elements (hexahedral and prism elements).
In fact, in the magnetostatic moment method relevant elements
must be used. Their shape must be chosen to ensure that the flux
will be well-channeled. Indeed, tetrahedral elements often lead
to numerical difficulties (bad condition number of the matrix
obtained). With such a mapped mesh, the integration is made
and the problem solved. The force is computed thanks to (24).
It is equal to 22.88 N. The method provides an error of 10%.

Even if the error provided by MoM is not so bad (less than
10% with few elements), the result cannot be considered as sat-
isfying and must be improved. In fact, this result has mainly two
causes. The first one deals with the mesh at the interface between
cylindrical columns and the bottom support. As we can see in
Fig. 4, some prism elements have a very high magnetization in
comparison with their neighbors. A numerical problem seems
to occur there. In fact, in this area, the flux makes a strong di-
rection change (90 ). As we have already said, the shape of el-
ements must help the flux to have a good direction and prism
element, in this device, does not. A simple solution consists in
changing both cylindrical columns in equivalent ones with the
same square sections. In fact, the reluctance of the circuit will be
not modified (nor the flux), and the force will be the same. This
result has been verified with FEM modeling. With this assump-
tion, only hexahedral elements can be used. However, this nu-
merical trick is not sufficient, because another main problem oc-
curs. Let us remember that the magnetic field (and so the force)
is calculated thanks to equivalent charge distribution. In fact,
charges are a representation of the flux [see (13)]. A good way
to apply moment method is to imagine where these charges are
going to have the highest variation and then to refine the mesh
in this area and not elsewhere. It allows to keep an acceptable
number of elements. In our device, the permeability is high, thus
induction flux is well-channeled by the ferromagnetic material.
Charges on most part of interfaces between elements are going
to cancel themselves (the external normal are in opposite direc-
tions) except where the flux goes through the columns to join
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Fig. 5. Magnetization distribution (A/m) obtained with an adapted mesh.

Fig. 6. Mesh of a currents transformer with eight volume elements. Only seven
unknowns are necessary to describe the problem (symmetries).

the pallet (air gap of the actuator). It is thus a good solution to
refine the mesh there (top of the two square equivalent columns
and bottom of the pallet). Let us notice that the magnetization
of magnet being known, no mesh refinement is needed in this
region. The mesh and magnetizations obtained are presented in
Fig. 5. Let us notice also that nonconformal mesh is used. This
is one of the main advantages of the method in comparison with
FEM where the use of nonconformal mesh is not obvious. The
computed force is equal to 25.04 N (less than 1% in comparison
with FEM). This problem is a good example of moment method
use to model devices with complex magnetic circuit geometries.

B. Simplified Moment Method

This section deals with the study of a current transformer
which generates consequent magnetic leakage due to satura-
tion. The goal is to find an electromagnetic model as light as
possible (few unknowns so very fast resolution) to allow a
global optimization strategy (coupling with electronic supply).
The chosen method is the magnetostatic MoM used with very
few elements, in which some directions for magnetizations are
imposed (see Fig. 6). This approach will be called “simplified
moment method.”

Simultaneous resolutions of (9) with a nonlinear material law
(see Section II-C2) make it possible for a couple of current cur-
rents to determine magnetic state of the device. Then,
we can deduce the flux under the secondary coil. A response
surface of this flux can thus be built. Each time step, is ob-
tained reading . Due to physical relation connecting
current transformer variables, can be deduced from . Let us
notice that the use of “light” moment method leads to an accept-
able response surface time computation.

This approach is reliable and accurate while the magnetiza-
tion can be considered as constant in each element (this is the
case for high saturation level in the magnetic circuit). However,
for low current values, magnetizations will be not uniform. Ac-
cording to our own experience, to refine the mesh in the current

Fig. 7. Comparison with the results obtained by MoM, FEM, and
measurements for the currents transformer. Computation times of MMM
are divided per 10 in comparison of FEM.

Fig. 8. Localization and direction of the magnetization anomaly created by the
SmCo magnet.

transformer could lead to accurate results but this solution is too
time consuming to build the response surface.

To improve the results at low currents, the main idea is to
combine moment method with reluctance network method,
well-known for its accuracy in linear cases. This approach is
equivalent to restore the Ampere’s law in the matrix and vector
coefficient of (9) and is explained in [14]. The combination of
two very simple models (a reluctance network and a MoM) for
two different cases of operation modes (saturated and nonsatu-
rated) can thus lead to accurate modeling of complex devices.
Fig. 7 shows results obtained with this approach and compares
them with classical FEM and measurements.

C. Moment Method in Inverse Problems

Another interesting numerical application of magnetostatic
moment method deals with magnetization identification. This
approach is an inverse problem, i.e., the determination of the
sources (magnetizations) by knowing the effect (the magnetic
field measured on a limited number of a sensor around the de-
vice). The problem is the following. We consider a ferromag-
netic sheet placed in the earth magnetic field . This sheet has
an unknown permanent magnetization. In order to increase it
and to be more explicit, we create a strong magnetic anomaly in
the thin plate with a SmCo permanent magnet (see Fig. 8).

Equations governing the problem are similar to those ob-
tained in (11). The only difference is that each element has un-
known magnetizations and . By rewriting (11) and
by noticing that in this case , we obtain the fol-
lowing system:

(25)

This system is not square. It has twice more unknowns than
equations. It solution is thus not unique. We have thus to add
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Fig. 9. Ferromagnetic sheet 900� 500� 1.4 mm, � = 96 with mesh and
sensor locations.

Fig. 10. Identification of the total magnetization of the sheet obtained (A/m).

measurements information. Twenty-seven tri-axis sensors are
placed above the ferromagnetic sheet (see Fig. 9).

The relation linking the measured field to the unknown mag-
netizations can easily be expressed thanks to (9), the matching
point being the sensor location and being the measured
magnetic field

(26)

It remains to solve both system (25) and (26) in the same time
with a pseudo-inverse resolution. Then, we get the unknown
magnetizations. Many others details about the method are given
in [15].

VII. CONCLUSION

In this paper, we have shown different potentialities of the
magnetostatic moment method. Based on a point matching ap-
proach of the material law, this numerical method is easy to im-
plement and lead to small matrix systems and therefore to fast
resolutions. The approach has demonstrated its ability to accu-
rately solve problems with consequent magnetic leakage (per-
manent-magnet structures like microsytems, magnetic shield-
ings, etc.). However, for devices with complex magnetic circuit,
a good knowledge of the numerical approach is needed to avoid
high mesh density which leads to an unacceptable increase of
the memory space.

Moreover, according to us, one of the main advantages of the
method is to allow inverse modeling easier than with traditional
FEM. Because the models are very light, optimization strategies
and identifications can be advantageously provided.

All the numerical examples showed in this paper have been
solved with a software package implementing the magnetic mo-
ment method and called LOCAPI.
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