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ABSTRACT 

 

In this paper for the first time a precise theoretical analysis 
of efficiencies and power densities for nano-scaled therm-
ionic vacuum gap devices is presented. Plane electrodes 
with nano-gaps will be treated first. With nonplanar elec-
trodes (nanotips) enhanced electron field emission occurs, 
giving rise to new design options. The theories of field and 
thermionic emission are combined by calculating the 
transmission coefficient for the surface potential barrier ex-
actly numerically for thermionic and tunnelling energies. 
This then is used for current and energy transport determi-
nation and derivation of cooling and generator efficiencies. 
Because of the high work function of metals, efficient 
thermionic electron emission takes place only at high tem-
peratures. At low temperatures also efficiencies near Carnot 
are possible but with very low power densities. The energy 
exchange processes in the cathode during emission are re-
viewed and an improved model is presented.    

 

1. INTRODUCTION 
 
With increasing power densities in micro- and power-
electronic components thermoelectric cooling becomes 
more and more interesting [1], [2]. Contrary to the tradi-
tional cooling of PCBs and modules by fans or radiators, 
thermoelectric devices can cool in a controlled way in the 
immediate neighbourhood of the hot spots of the power dis-
sipating devices. Especially in opto-electronic devices very 
high power densities occur over a small region. However, 
the efficiency (coefficient of performance = CoP) of cool-
ers with bulk thermoelectric materials is still low. The fig-
ure of merit for these materials Z T = S2 σ T /λ  with S the 
thermo-power (Seebeck coefficient), σ the electrical con-
ductivity, λ the thermal conductivity and T the average 
temperature between the high temperature side TH and cold 
temperature side TC of the device does not exceed 1 very 
much [3], [4]. In an inverse mode of operation thermoelec-
tric and thermionic devices can also be used as generators. 
A large demand of micro-structured generators [5] and 
coolers is expected in the telecommunication sector. 
      In recent years considerable progress has been made in 

the development of thermoelectric nano-structured superlat-
tices [1, 6, 7, 8]. ZT values of 2.4 have been achieved for 
phonon blocking lattices [7] (low thermal conductivity) 
with temperature gradient and current flow perpendicular to 
the planes of the multilayer structure. Even higher ZT val-
ues of 3.8 were obtained for quantum well confinement 
multilayer structures with temperature gradient and current 
transport parallel to the planes [8] (low dimensional or 2D 
system).  
    The purpose of this work is to investigate theoretically 
the potential of thermionic vacuum devices with additional 
electron field emission due to non planar electrodes for 
cooling applications. Because of the high work function of 
metals, thermionic electron emission (i.e. by thermal excita-
tion of electrons) takes place only at very high temperatures 
over 1500 K. Thermionic generators, e.g. for space mis-
sions, are known for long [9]. In [10, 11] thermionic de-
vices with plane electrodes were also proposed and calcu-
lated for cooling. Figure 1 shows the band structure over a 
vacuum barrier with applied voltage V between cathode 
and anode and work function W. The electron to be emitted 
must have an energy higher than the electrochemical poten-
tial µ  (equal to the Fermi energy EF at T = 0°K) plus W. 
The line in the vacuum gap indicates the lowest possible 
energy level for the electron there and gives the electric 
field by its gradient. Electrons with high energy, evaporat-
ing from the cathode, reduce the average electron energy 
and cool the cathode. For operation at room temperatures 
work functions as low as 0.3eV are needed, which cannot 
be achieved at present. For operation at 500K 0.7eV would 
be sufficient. The potential barrier W is considerably lower 
in solid state hetero-junctions or for barriers caused by pn-
doping [12, 13, 6]. In case of sufficiently thin barriers bal-
listic electron transport (i.e. without scattering) occurs be-
tween cathode and anode which has been analysed in [14] 
by Monte Carlo simulation. For broader solid state barriers 
there is no clear-cut dividing line between thermionic cool-
ing and thermoelectric Peltier cooling. On the other hand, 
the efficiency of solid state devices is reduced compared to 
vacuum gap devices due to the heat  Fourier current  over  
the  barrier.  In [15] it has been pointed out, that it may be 
important to consider the Joule losses in the cathode and its 
contact resistance for an overall efficiency calculation.  
   When using a vacuum gap, operation at room temperature 
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and below is conceivable by reducing the electrodes spac-
ing to a few nm so that quantum mechanical tunnelling be-
comes possible also for lower cathode temperature. A theo-
retical analysis was presented in [16]. As a result it turned 
out that the electrodes spacing has to be larger than 4nm. 
Otherwise excessive tunnelling of electrons from below the 
Fermi level would occur, which leads to heating of the 
cathode instead of cooling, because then the average elec-
tron energy increases. The CoP of such devices could be 
high and their realisation is pursued since several years [17, 
18]. However, the feasibility of the nano-gap concept with 
planar electrodes is not proved and doubts concerning their 
realisation are not cleared up. 
    We shall analyse vacuum nano-gap devices with plane 
electrodes more precisely in section 5, both, for refrigera-
tion and current generation, following the theory developed 
in section 2 and 3. In section 6 the performance of en-
hanced field emission devices with arrays of nanotips at the 
emitting electrode will be investigated and compared.  
 

2. THEORY OF ELECTRON EMISSION 
 
In the usual theory of electron field emission [27, 28, 29] 
the Sommerfeld free electron model is used, which is a 
good approximation for metals. To treat semiconductors 
this formalism should be extended to electrons in a periodic 
effective crystal potential using Bloch wave functions. The 
energy bands �n(k) can in principle be obtained by band-
structure calculations. Here n denotes the band index and 

�
k the crystal momentum of the single electron, not to be 

confused with its real momentum. In the interior of the ma-
terial at thermal equilibrium the number of electrons per 
unit volume in states around k in a volume element d3k is 
according to Fermi-Dirac statistics: 

( ) 33133 4/1)/))(exp(4/))(( πµπ kdTkkdf Bnn
−+−= kk ��   (1) 

where 1/ 8π 3 is the density of levels for the unit k-volume. 
(Each level can be occupied by two electrons.) For current 
transport in the presence of electric fields and temperature 
gradients the Fermi distribution would have to be replaced 
by a non-equilibrium distribution function g(r, k) depend-
ing generally also on position r. Often the relaxation time 
approximation with a semiclassical model of electron dy-
namics is used in calculating g [30, p. 244]: 
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where F is the applied external electric field, νννν is the expec-
tation value of the electron’s velocity, τ (�) is the relaxation 
time and ∇T is the temperature gradient. e denotes the 
magnitude of the electron charge. Expression (2) can be 
justified, when the single electron is described by a wave 
packet of Bloch wave functions extending over many crys-
tal grid cells. On the other hand the extension of the wave 
packet has to be smaller than the length over which the ex-
ternal electric field varies appreciably. These conditions are 
no longer satisfied at the surface, where strong potential 
variations according to fig.1 occur on a scale of the lattice 
constant.  
    The concept of effective electron mass and crystal mo-
mentum are attributes of a quasi-particle not subject to the 
crystal potential - which has been accounted for by use of 
the Bloch waves - but only to a slowly varying external po-
tential. The potential step W at the surface is caused by a 
dipole layer of width not more than a lattice constant. In 
calculating the transmission of the electrons through this 
barrier the original crystal potential is essential and the ef-
fective mass concept cannot be used any longer. For the 
electrons impinging on the surface barrier from inside the 
metal therefore the real electron mass has to be used. In 
[31] it is argued, that in the transmission of heterojunction 
potential barriers the smaller effective mass of the two ma-
terials has to be used. 
   Since there is no consistent theory for current and energy 
transport over the surface barrier, several heuristic ap-
proaches are used in the literature. We start on a more gen-
eral basis by considering an electron current impinging on a 
surface element dS from inside the material. The normal di-
rection perpendicular to dS will be denoted in local coordi-
nates as x-direction. The probability for an electron imping-
ing with velocity component vx  > 0 to tunnel through the 
surface potential barrier V(r) will be denoted by D(vx), 
where vx is the x-component of the expectation value of the 
velocity. According to Bloch’s theory:  v(k) = ∇k �n(k) /

�
. 

Since electron density times vx gives the current density 
normal to the surface, the total emission current density can 
be written with the help of (1) by integration over all elec-
tron states in k-space with   vx(k)  > 0  :  
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In this work electron current will be defined to be in the di-
rection of the particle flow, opposite to the technical direc-
tion of electrical current. In (3) the non-equilibrium distri-
bution g can be approximated by the equilibrium  f near the 
surface, which is a good approximation.  
    Restricting for the time being to the free electron model 
with real electron mass m and real momentum 

�
k, because 

of lack of bandstructure data, �n(k) reduces to  
  

�������������������������������������������������������������������������������������������������������������������������n(k) = EC + (
�

k)2/2m  ,                   (4) 
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Figure 1: Thermionic em-
ission over vacuum po-
tential barrier with ap-
plied voltage V. EC is the 
bottom of the conduction 
band, µ the Fermi-level, 
W workfunction.     
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where EC is the energy of the bottom of the conduction 
band which can be chosen to be zero.  
     By use of the expression (4) in (3) the electron’s veloc-
ity in x-direction becomes:  vx = 

�
 kx /m . Ex will denote the 

x-component m vx
2 /2 = (

�
kx)

2/2m of the total kinetic energy 
E(k) = mv2/ 2 = (

�
k)2/2m. The integration in (3) is thus re-

duced to k-values with  kx > 0 . With  k2 = kx
2 + ky

2 + kz
2 :  
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   The 3D integral in (5) can be simplified by a suitable pa-
rameter transformation using kinetic energy E and its x-
component Ex as independent variables. Eq. (5) then reads: 
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This result was also obtained in other context in [28] and is 
used in [32]. It can be proved in a more compact way by 
rewriting d3k in polar coordinates and using the definitions 
of E(k) and Ex . The integrand of (6) is the differential 
emission current density 
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and can be interpreted as the current density j(E) dE in the 
energy range between E and E+dE originating from all 
electron directions inside the material. The corresponding 
particle flux is obtained by division by  e .  
   In order to obtain the emitted energy current density, the 
particle flux is weighted with the total energy E +EC : 
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    The classical work of [29] considered one dimensional 
electron emission in the free electron model from a plane 
surface with constant external electric field F thus resulting 
in a triangular shaped potential vacuum barrier:  V(x) = (W 
+µ) – e F x, where x is the distance from the surface. Nowa-
days the term Fowler-Nordheim tunnelling is often used 
generally for tunnelling across triangular shaped barriers. It 
is essential to include in V(x) also the Schottky image po-
tential –e2/ 4x caused by the redistribution of charges on the 
metal surface induced by a single electron in the vacuum, 
which lowers the maximum W +µ  of  V  to a certain degree.  
   Both, for tunnelling and pure thermionic emission at high 
energies (temperatures), the transmission coefficient D(Ex) 
for a potential barrier V(x) depending only on x, can be ob-
tained by solution of the 3D Schrödinger equation 
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when the extension of the surface element dS can be con-
sidered to be infinite compared to atomic dimensions. In 
that case the 3D equation is separable with  ψ(x, y, z) = u(x) 
υ(y) w(z) and for u(x) : 
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and (–
� 2/2m  d 2/dy2 ) υ(y) = Ey υ(y). Similarly (–

� 2/2m  
d2/dz2 ) w(z) = Ez w(z).  Ex , Ey , Ez denote the components 
(

�
kx)

2/2m, … of the total kinetic energy E(k) = (
�

k)2/2m.  
EC defines the zero point for the potential V(x). 
    For nonplanar surface tip radii approaching atomic di-
mensions it is more appropriate to consider instead of (8) 
the full 3D Schrödinger eq. with the radial symmetry of the 
problem and spherically symmetric V(r).  Future work of us 
will deal with this situation more thoroughly. Tip radii as 
small as 5nm have already been reported. 

 
3. ENERGY BALANCE IN ELECTRODES  

 
The emitted electrons are replaced by electrons from a res-
ervoir inside the cathode or circuit of temperature TC . The 
replacement electrons are scattered into unoccupied levels 
near the surface. The average electron replacement energy 
εr  determines whether heating or cooling of the electrode 
occurs. If εr is lower than the average emitted electron en-
ergy, the cathode is cooled during emission, otherwise it is 
heated by emission. There is an old debate originating from 
[35] and [36] concerning the average electron replacement 
energy. In [35] it was argued that εr should be slightly be-
low the Fermi-level µ , whereas [36] assumed εr to be equal 
to µ . The theory of [35] was improved in [32] and also re-
sults in εr  < µ . In [35] and [32] the cathode reservoir tem-
perature is restricted to 0°K.  
   A further problem with the theory of [35], [32] is the use 
of the equilibrium distribution f(E) inside the emitting cath-
ode for replacement energy current determination. The use 
of  f(E) inside the material must strictly lead to zero elec-
tron and energy current, since then the integration in (5) 
(without the factor D(Ex)) is not restricted to kx > 0 and all 
electrons contributing to the current with kx > 0 are exactly 
cancelled by the same number of electrons with kx < 0. We 
therefore make use of the non-equilibrium distribution g(k) 
presented in (2), which leads to nonzero electron and en-
ergy current depending on the weak applied electric field 
and temperature gradient inside the material. The unnatural 
assumption of zero reservoir temperature then also is not 
necessary. Similar to (5) the replacement electron current is 
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and now includes full integration over k. Inserting (2) with 
neglected temperature gradient and E-field Fx in x-direction 
and using the same variable transformation as in (6) leads 
with the convention EC = 0  to  
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Again as in (7) the energy replacement current is obtained 
by weighting the integrand of Jr  by E and dividing by e:  

 TIMA EDITIONS / THERMINIC 2005 ISBN 2-916187-01-4 272



Y.C. Gerstenmaier and G. Wachutka 
Thermionic Refrigeration with Planar and Nonplanar Electrodes - Chances and Limits - 

 
 

   �
∞

�
�

�
�
�

�

∂
∂−=

0
2/5

3
)(

)(
3

28
dE

E

Ef
EEF

me
J xrE τπ

�

           (9) 

The average electron replacement energy is given by          
e JEr /Jr :   
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The expression (−∂f(E)/∂E) is a delta-shaped function 
around µ  with a peak of small width also for high tempera-
tures. Thus the integrals for εr can be restricted to a small 
interval around µ  where the τ (E) are essentially constant 
and therefore cancel. The integrals can then be expanded in 
a series in T around T = 0 by using an expansion of E5/2 and 
E3/2 in powers of (E−µ) of the form �n H

(n)(µ) (E−µ)n /n! . 
With this  � H(E) (−∂f(E)/∂E) dE can be evaluated to be 
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where ζ is the Riemann Zeta-function. The lower integra-
tion limit has been extended to −∞ with negligible error. 
With H(E) = E5/2 and E3/2 a series expansion in kB T of the 
nominator and denominator of εr is obtained and the rapidly 
converging series expansion for the fraction εr  is: 
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For reasonable temperatures up to 8000 K only the first two 
terms are significant. This is to be compared with [35]:     εr  
= µ – π2 kB T /(12 ln(2))  – O((kB T)2).  Due to our result εr 

(µ , T ) is a slowly increasing function of T and for T >0 
slightly above the Fermi-level µ , contrary to [35], [32]. µ  
itself may also depend on temperature. According to our 
analysis the approximation εr  ≈ µ , as e.g. used in [16], 
seems to be correct.  
   The heat current JQ due to electrons flowing from the 
cathode is given by the difference in average energy be-
tween emitted and replacement electrons and therefore by 
the difference of (7) and (9): JE – JE r . Since the electron 
replacement current Jr must be equal to the emission cur-
rent (6) by reason of continuity, we have JE r  = εr  Je /e and:  
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    For the complete thermionic converter it is important to 
take into account also the electron current from the right 
hand side electrode 2 to electrode 1 in fig.1. This is espe-
cially important for low applied voltage V, since for T2 > T1 
a strong backward current can occur. The net electron cur-
rent Jen between the electrodes is obtained by using (6) for 
the different values µ1, T1 and µ2, T2 of the electrodes and 
performing a variable substitution E+EC1,2 → E in the inte-
grals. The difference of both expressions leads to:        (10) 
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The transmission D(Ea) is here expressed as function of the 
absolute electron energy Ea= EC+Ex in x-direction. EC de-
notes the maximum of both electrodes conduction band 
edges: EC = Max(EC 1 , EC 2). Also use has been made of the 
independence of D(Ea) on the electron’s direction, which is 
true for any shape of the potential barrier provided Ea is the 
same for both directions [37]. D(Ea) is zero for Ea < EC , 
since no transmission is possible in this case. When consid-
ering only Je without backward current, strictly speaking an 
additional factor (1 − fµ2, T2 ) should be included in (6) to 
take into account the occupied electron levels in the collec-
tor electrode. However, for the net current (10) this factor 
cancels, since  f1 (1 − f2 ) − f2 (1 − f1 ) = f1 − f2 . Jen depends 
on V through the the Fermi-level µ2 = µ1− e V (see fig.1, V 
in Volt) and the function D(Ea), since V influences the bar-
rier V(x) and the barrier in turn D.  
    Now it is easy to gain the net heat flow from electrode 1 
to 2 by weighting the net current (10) with (E−εr) and di-
viding by e : 
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This is the cooling power (in [W/m2]) for electrode 1 or the 
heat current density leaving electrode 1. The heat current 
which arrives at electrode 2 is obtained by replacing in (11) 
εr(µ1, T1) by εr(µ2, T2). The difference of both currents is P 
= V |Jen|, the electrical power (in [W/m2]) needed for the 
operation of the thermionic converter as refrigerator. In sec-
tion 5  Joule heating in the electrodes and contact resis-
tances will also be included. 
 

4. PURE THERMIONIC EMISSION 
 

For thermionic emission it is assumed that no tunnelling of 
particles occurs. All emitted electrons have to have a en-
ergy higher than the maximum Vmax (in eV) of the potential 
surface barrier. In this classical approximation the transmis-
sion coefficient D(E) is always zero for E < Vmax  and D(E) 
= 1 for E ≥ Vmax . Inserting these values for D(E) into (10), 
(11) the integration can be performed exactly analytically. 
The result is expressed by polylogarithm functions Lin[z] = 
�i =1 z

i /i n with z = −exp(−(Vmax−µ1,2)/kBT1,2). We derived 
the following formulas, which are probably known and 
valid for all real x, to obtain that result:  
 

Li2[−exp(−x)] = −(π2 + 3 x2 + 6 Li2[−exp(+x)])/ 6 
Li3[−exp(−x)] = +(π2 x + x3 + 6 Li3[−exp(+x)])/ 6 
 

For (Vmax−µ1,2) on the order of material workfunctions and 
T below several 1000 K the magnitude of z is so small that 
the Li(z) functions can be very accurately approximated by 
z. Then the result for the net electron and heat current is: 
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  The first term of Jen (current from electrode 1 to 2) is for 
Vmax = W+µ1,2 the traditional thermionic Richardson cur-
rent, which is usually inferred in another way. The expres-
sion for JQn corresponds, likewise for Vmax = W+µ1,2 , to the 
result in [10], however, (12) is more general. Very low Vmax 
can be obtained for increased voltages in nano-gap devices. 
Our analysis suggests that in this case our original analyti-
cal formulas with polylogarithms should be used. On the 
other hand, the tunnelling contribution in nano-gap devices 
is not negligible, so that the premises D(E) = Θ(E − Vmax) is 
not fulfilled. 
 

5. COMBINED FIELD AND THERMIONIC 
EMISSION - NANOMETER GAP DESIGN - 

 

In ref. [16] a theoretical investigation of nano-gap therm-
ionic devices was performed. For nanometer distances d of 
the plane electrodes multiple image forces become impor-
tant. One free electron in the vacuum gap causes an image 
of opposite charge in electrode 1 and 2. The images them-
selves cause other image charges in the electrodes which 
then cause new image forces. Thus an infinite series is ob-
tained for the gap potential with applied voltage Vbias: 
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A factor ½ has to be incorporated, because the mirror 
charge position is not constant, when the electron’s position 
x varies. We included the workfunction of the second elec-
trode W2 and succeeded to sum the infinite series exactly 
analytical. Vd  then reads:  
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Here C = 0.5772… denotes Euler’s constant, ψ is the di-
gamma function (logarithmic derivative of the gamma-
function). The potential exhibits singularities at both elec-
trodes at x =0 and x =d, which are not real. We therefore 
limit the potential to EC 1 near x =0 for Vd (x)< EC 1 , and to  
EC 2 near x =d for Vd (x) < EC 2 . Figure 2 shows as an ex-
ample the potential shape for d = 6 nm. As can be seen 
from fig. 2 a considerable reduction of the potential maxi-
mum from originally 2 V to Vmax = 1.375 V occurs, which 
is due to the image forces (the 2nd line in (13)).  This effect 
is for similar Vbias nearly negligible in case of large gaps 
with d in the region of µm or mm.  
     The electron transmission probabilities D(E) are needed 
in the expressions (10), (11) for the currents, in order to 
calculate the device performance. The theory of field and  

 

 
 
thermionic emission are combined by calculating D(E) pre-
cisely numerically from (8) as interpolated function. Using 
(13) for the Schrödinger-equation (8), the wave function 
u(x) can be obtained for any given electron energy E = EC 
+Ex in the x-interval (0, d). In the electrodes region x < 0 
and x > d , V(x) is constant (= EC 1 , EC 2 ) with plane wave 
functions u(x), due to the free electron model. A transmitted 
wave for an incident electron from right to left is of the 
form in x < 0 : )/)(2exp( 1 �CEEmxiS −− . This gives 

with S = 1 at x = 0 the start condition for u(x) in (8).  For x 
> d a superposition of incident and reflected wave is used: 

)/)(2exp()/)(2exp( 22 �� CC EEmxiREEmxiY −+−− . 

Y and R are determined by the continuity condition for u(x) 
and u’(x) at x = d. The transmission coefficient then is 
given by D(E) = 1−|R/Y| 2 .   
    In fig.3 a result of this calculation is displayed. For every 
value E the differential equation (8) was solved numerically 
with a standard package and D(E) calculated subsequently. 
The complete function D(E) in fig.3 is created as interpo-
lated function within 16 sec on a 3 GHz PC.   
     The Wentzel-Kramers-Brillouin method (WKB, [34]) is 
often used for an approximate solution of the 1D eq. (8). 
Within this approximation D(E) can be represented as:   
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x1 and x2 are the turning points of the problem, i.e.      
V(x1, x2) = E . For E exceeding the potential maximum 
Vmax ,  x1 equals x2 and D(E) is set to the classical value 1. 
In that region the WKB approximation is no longer valid. 
Contrary to classical mechanics there is a non vanishing 
probability for the electron to be reflected, also when E > 
Vmax , in the same way as there is a non vanishing probabil-
ity for transmission, when E < Vmax . Therefore D(E) < 1 
also for E > Vmax. The WKB-approximation in fig.3 is not 
bad. Its threshold voltage is near to Vmax = 1.375 V. Sur-
prisingly the threshold of the exact curve is higher, above  
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Figure 2: Potential profile (13) in d = 6nm vacuum gap with 
voltage Vbias=1.6V, W1, W2 = 1eV, EC 1=0, EC 2=EC 1−e Vbias, 
µ1=1eV. Top curve represents the first two terms of (13). 
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1.4V. For other barrier shapes the WKB approximation can 
fail severely, as can easily be shown by comparison with 
analytical solvable cases. 
   The standard numerical algorithm for solving the 
Schrödinger eq. (8) fails, if the gap width d increases. In the 
regions with E > e V(x) the wave function u(x) is highly os-
cillatory, which necessitates an extraordinarily large num-
ber of x-steps. Therefore V(x) is approximated by a piece-
wise constant function and (8) is solved analytically in each 
constant interval with continuity conditions for u(x), u’(x) 
at the borders of the intervals. The solution is obtained re-
cursively very rapidly, so that the D(E) function in fig.3 can 
be calculated within 1 sec with nearly equal accuracy. How-
ever, this method fails again for other barrier shapes to be 
considered later. So a similar method was developed with 
piecewise linear approximation to V(x). The solution in 
each linear interval of V(x) is given by Airy-functions 
which bears some numerical subtleties. Nevertheless, with 
this the most reliable method was obtained for solving (8) 
for all geometry and bias conditions. The D(E) function can 
be calculated in typically less than 3 sec with this method. 
   In fig.4 the net heat current from electrode 1 (cooling 
power) according to (11) is shown for different separations 
of the electrodes and different bias voltages. The result 
looks promising and is qualitatively similar to [16]. Our re-
sult includes exact D(E) functions instead of WKB ap-
proximations, the presence of the backward current from 
the 2nd electrode and a precise consideration of all emission 
directions because of (6), instead of effectively considering 
lateral currents by a term kB T. The temperature of elecrode 
1 to be cooled is 405°K, and of the collector electrode 2:  
T2 = 450 °K.  
    Essential for the assessment of the thermionic refrigera-
tor performance, however, is the relation of the cooling 
power to the electrical power P = Vbias |Jen| needed for de-
vice operation, which is expressed by the “coefficient of 
performance”   φ  = JQ / P.   φ  is limited by the Carnot-
efficiency  φC = T2 /(T2 −T1) ( = 9 for fig.5). Figure 5 shows  

 

 
the CoP plotted against the cooling power for the different 
electrode separations. Very high CoP near Carnot effi-
ciency, much higher than for thermoelectric devices, can be 
obtained for extremely low cooling powers < 10−1 W/cm2 . 
However, for cooling powers of technical interest > 1 
W/cm2 the CoP is below or at best similar to what can be 
achieved by conventional bulk-material thermoelectric de-
vices.  
     Additional Joule heating JJ in the cathode and its contact 
resistance has also been taken into account in the CoP in 
fig.5. For a contact resistance and internal electrode resis-
tance R the cooling power is reduced to JQ – JJ = JQ – R 
Jen

2 and the operation power is increased by R Jen
2. Thus:       

φ  = (JQ – R Jen
2) / (Vbias |Jen| + R Jen

2) .  We assumed an ef-
fective R of  10–6 Ω for 1 cm2 device area. The Joule losses 
have little or negligible influence except for extremely 
small spacing of  d = 2 nm, when very high electrical cur-
rent densities occur. The CoP is of negative sign in this 
case (Joule heating larger than cooling) and therefore not 
represented in fig.5.  
    Figure 6 shows the same as in fig.5 for largely increased 
temperatures of T1 = 900 °K and T2 = 1000 °K. The Carnot-
efficiency is again 9. Now very large CoP at much higher  
cooling powers result. The CoP are even better than for ad-
vanced nanostructured thermoelectric devices. (Again the 
performance ford = 2 nm is destroyed by Joule heating.)  
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Figure 5: CoP of thermionic refrigerator for plane elect. dis-
tance: 3, 4, 6, 8, 15, 30, 60 nm.  T1=405 K, T2=450 K. 
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Figure 4: Cooling power of thermionic refrigerator for plane 
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However, this temperature region is not suited for elec-
tronic cooling applications. Our theory allows for a calcula-
tion of the generator efficiency by the same set of data as 
obtained for cooling. For the same electrode temperatures 
the current reverses in the generator mode for very low 
positive bias voltage, because of T2 > T1 . The device then 
delivers power to the external circuit. The generator effi-
ciency η is defined as delivered power P = Vbias |Jen| di-
vided by the heat current from the 2nd (hot) electrode. The 
Carnot efficiency is ηC = (T2 − T1) /T2 . As in the cooling 
case η is near ηC  with generated powers up to 500 W/cm2. 
However, for the more interesting low temperature case (T1 
= 405 K, T2 = 450 K) the generated power-densities are 
very small (< 10−2 W/cm2), when good efficiencies are to 
be obtained.  
 

  6. EMISSION FROM NANOTIP ELECTRODES 
 
    Figure 7 shows a thermionic cooler with numerous metal 
tips on the cathode electrode. Due to the small tip radii the 
electric field is enhanced strongly at the tips.  This leads to 
a deformed electrostatic potential shape with very small 
barrier width, as shown in fig. 9 along the line A-B, so that 
electrons of lower energy can tunnel by field emission in-
stead of thermionic emission.  Devices similar to fig.7 have 
been devised in vacuum microelectronics usually with in-
clusion of a gate electrode to control the current flow [19, 
20, 21]. The advantages of vacuum microelectronics in-
clude high operation temperatures, radiation hardness, and 
use for very high frequencies. Also flat panel displays are 
considered for this technique. Improved properties and long 
term reliability are expected with carbon-nano-tubes [22] or 
diamond coated tips [23, 24], however, our work is re-
stricted to metal and semiconductor field emission surfaces.  
Structures like that in fig.7 have been proposed in [25], 
[26] for cooling applications. In the inverse operation mode 
as generator shown in fig. 8, the electric field exerts a force 
in opposite direction to the electron movement.  
     In case of a cone with tip radius r0  which emits elec-
trons, we assume a 3D radial symmetric potential near the  

  

 
surface of the spherical tip, which leads to [28, 25]:   
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Vr(x) =  EC 1  for  x < 0 , Vr(x) =  EC 2  for  x > d. 
 

x denotes the normal distance from the spherical tip. The 
image potential for the sphere as given by [25, 33] has been 
added and also the image potential for the plane electrode 
in the 2nd line. ε is the dielectric constant of the emitter. In 
case of metals the factor (ε −1)/ (ε +1) has to be omitted. d 
denotes the distance from the tip to the (nearly) plane col-
lector electrode. Contrary to the last section, d now assumes 
values in the µm or mm range, to make possible a techno-
logical realisation. The calculation of the potential for the 
tip array of fig.7 is obviously a 3D problem but at least in a 
neighbourhood along the lines AB Vr(x) gives a useful 1D 
approximation. Figure 9 shows Vr(x) for a tip radius of 10 
nm. The width of the peak at µ1 = 1eV is 20nm, so the re-
duction of the peak height from 2eV to Vmax = 1.572 eV 
may be more important for improved emission.  
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Figure 9: Potential profile (14) for d =4µm and nanotip r0 = 
10nm, bias  Vbias=1.6V, W1, W2 =1eV,  µ1=1eV, µ2= µ1 –e Vbias 
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Figure 6: CoP of thermionic refrigerator for plane elect. dis-
tance: 2, 3, 4, 6, 8, 15, 30, 60 nm.  T1=900 K, T2=1000 K. 
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    We can now apply the same formalism as in section 5 to 
calculate electron and heat currents at the field emitting 
tips. The fraction of the tip area of the array compared to 
the device area is taken into account by a reduction of JQ to 
6% in fig.10. Figure 10 shows the result  for high tempera-
tures (T1 = 900K, T2 = 1000K). The CoP exceeds that of 
thermoelectric devices by far with good power densities. 
For the low temperature case (405K, 450K), similar to fig. 
5, much too small power densities below 10–3 W/cm2 arise. 
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Figure 10: CoP of nanotip thermionic refrigerator for tip ra-
dii: 5, 10, 20, 40, 80, 160 nm.  T1=900 K, T2=1000 K. 
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