
HAL Id: hal-00189452
https://hal.science/hal-00189452

Submitted on 21 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Sissy Electro-thermal Simulation System - Based on
Modern Software Technologies

G. Horvath, A. Poppe

To cite this version:
G. Horvath, A. Poppe. The Sissy Electro-thermal Simulation System - Based on Modern Software
Technologies. THERMINIC 2005, Sep 2005, Belgirate, Lago Maggiore, Italy. pp.51-54. �hal-00189452�

https://hal.science/hal-00189452
https://hal.archives-ouvertes.fr

 Belgirate, Italy, 28-30 September 2005

THE SISSY ELECTRO-THERMAL SIMULATION SYSTEM – BASED ON MODERN

SOFTWARE TECHNOLOGIES

György Horváth, András Poppe

Budapest University of Technology and Economics,
Department of Electron Devices

gyuri@eet.bme.hu, poppe@eet.bme.hu

ABSTRACT

Due to the increasing component density and operational
speed of today's integrated circuits the dissipated power
and the chip temperature increases as well. Designers have
to consider the thermal effect of the layout already in the
conceptual design, when usually the circuit schematic is
available only. This paper presents an easy-to-maintain
simulation system which provides electro-thermal
simulation already in the conceptual design either on chip
or on board level.

1. INTRODUCTION
In the early 1970-ies at the Department of Electron Devices
of BUTE the TRANS-TRAN circuit simulator has been
completed with the treatment of thermal effects [1]
resulting in a solution method known as simultaneous
iteration [2]. This type of self-consistent electro-thermal
simulation needs a model of the thermal side that can be
treated by the circuit simulator. In our program package
this thermal model is generated by the thermal
characterization of the chip (PCB) layout, performed by a
thermal simulator [3]. The recent system is called Sissy
(previous implementations were called SISSI). In electro-
thermal simulations different programs (solvers) need to be
used for the same objects. The components have electrical
models and they also have a layout representation. This
heterogeneous description of the same object however, has
to be treated in the simulation environment in a
homogeneous way. To resolve this contradiction we
developed a new technology: separating data structures
from algorithms and from user interfaces (see Figure 1).
For that purpose an appropriate extension of the JAVA
language is used: we call the system xJ and put classes into
a new package called xj. This way we realized a flexible,
easy-to-maintain simulation package that supports different
types of electro-thermal simulation tasks either on chip or
on board level.

2. THE TECHNOLOGY

As shown in Figure 1 the data structure and user interface
can be designed separately by the appropriate tools. Only
the necessary event handler code segments should be
written by hand.

The XML descriptions are read by the xJ system at
runtime. Data structure segments are created on the fly
from the templates defined in the XML files. Extending the
data structure, for example add new parameters to a
component, is simple and fast because only the definition
XML files have to be edited, recompilation is not
necessary. Since no program code is generated by this
technology during the development the later refinement of
the program architecture is easy and needs minimum extra
coding time.

Figure 1: Major components of the software model
used in SISSY

The connection between XML data definitions and JAVA
classes is established through class names. Class hierarchy
is defined in the program code, data type hierarchy follows
this through constructors.
The following figure illustrates the data structure creation
from template sub-structures.

Figure 2: Data structure hierarchy in SISSY

Data structure elements have the following hierarchy
– Data atoms are leafs in the data tree. Each of them has

one unique class that manages it when the program

 TIMA EDITIONS / THERMINIC 2005 ISBN 2-916187-01-4 51

György Horváth, András Poppe
THE SISSY ELECTRO-THERMAL SIMULATION SYSTEM

runs. This class implements the xj.DataAtom
interface.

– Data items are aggregated types: built up from data
atoms and data items. They have name and description
attributes. They are managed by subclasses of
xj.DataItem.

– Data vectors are data items with the possibility to
connect several data item instances to one data vector
instance. This is the way of instancing. They are
managed by subclasses of xj.DataVector.

In a program using xJ there exists always a root data
vector. All data items can be accessed from this root node.
We use path expressions similar to file systems.
The / path refers to the root data vector. New data item
instances are connected to this node by default. To access a
child in a vector we use the child's name, to access a data
item child we use the field name. The separator is /. In
data vectors we can access vector items with indexing, the
syntax is # sign concatenated with a non-negative integer.
To access a data atom from a data item the same method is
used: separator plus fieldname. Accessing a parent is
possible with the .. path expression. Examples with these
type definitions:
– /: access the root vector
– /TestIC: access the project called "TestIC"
– /TestIC/schematic/components/C0/rot:

access the rotation angle of the component called C0 in
the schematic of project TestIC. Name C0 is given by
the xJ naming system since the component type
defined prefix C.

In case of heterogeneous vectors explicit indexing is to be
used. The prefix is always specified by the child item
because it is an information specific to the child type, not
to the vector type. Sub-structures are always inserted into
data vectors. The program's data structure can be extended
only this way .

In xJ we use XSL files to provide data import and export
from/to any format. The coder doesn't have to maintain
persistence code segments because xJ manages the
synchronization between data structures in the memory and
XML files on disk. xJ also provides several extra features
to make data structure creation easier: custom atomic
types (for example value range for a floating point field),
description property for all types, shadow vector
mechanism with filtering to access certain parts of the data
structure through another view and persistent data fields,
which keep their values between program sessions.
In a program built with the xJ library functions can be
called from three different sources:
– Constructors. After overriding the default constructor

during object creation the JAVA virtual machine
executes the constructor code.

– Data handlers. After registering data handlers (mainly
in constructors) the corresponding callbacks are called
by xJ on data access. These handlers have several user
areas:
– Check conditions before value setup or insertion.
– Do post operations (example: synchronizations)

after data access.
– Manage cache variables which may speed up user

interface or calculations.
Data handlers are registered to object and field name
pairs, this way extending the appropriate handler class.
The class has a variable called THIS which is set up to
the calling before it starts any handler function. This
allows using the same handler instance for several
objects.

– User interface event handlers. User interactions can
also trigger code segments.

Graphical editors are structured and defined in XML in the
same way as data structures. Every built-in data atom (like
a single number) has a corresponding atomic editor.
Synchronization tasks – such as editor refreshing, field
value dependencies – are managed by xJ.

Package xj.ui contains classes related to user interface
development. These editors edit data atoms, rather than
data items. But an abstract class handles only data items.

This contradiction is resolved by the data structures and
data handlers. Every data atom has a data item parent.
When a data atom changes it means that one of the parent's
setX() methods was called. The parent administrates this
as its own data change and notifies the registered editors.
We set the parent data item as focus item and pass the field
name of the data atom to the editor. This is also useful for
using the same editor set for different data structures at
different times. This is the key of the vector editor.

The persistence support in JAVA is extended by xJ to
provide static data fields. xJ registers all used data types
and instances, allows the programmer to access preference
variables as easy other values and guarantees that if any
static field has been changed all related class instances will
be notified and the corresponding data event handler
functions will be called.

With these programming techniques software development
is reduced to modeling in xJ's XML and JAVA language.
This guarantees the easy maintenance of the program code.
Besides the reasons described so far, we have chosen
JAVA due to the following:
– platform independence is guaranteed, no additional

developer resource needed to keep the source portable,
– the clarity of the language forces the programmer to

create the program from the model,

 TIMA EDITIONS / THERMINIC 2005 ISBN 2-916187-01-4 52

György Horváth, András Poppe
THE SISSY ELECTRO-THERMAL SIMULATION SYSTEM

– reflection support which is essential for xJ's on the fly
type management,

– easy debugging,
– additional portable features: persistence support,

networking, image processing, model oriented 3D
programming,

– professional tools for XML,
– possibility of preparing demos on the web from the

same code.

Most of these advantages listed above are not accessible in
other programming environments or are not stable enough
according to our experience.

Traditional object oriented data structure design would
have requested lots of similar code segments to manage the
heterogeneous data structures: get()/set() methods,
load()/save() functions and import/export functions for
each solver file format. The data event based model of xJ
eliminates these tasks on the cost of a small overhead in
execution.

There is no doubt that JAVA programs are slower than
native codes. In Sissy the all solvers (written in C/C++) are
strictly separated from the GUI. That is why lower
performance of the graphical user interface is not relevant
in this simulation system. The connection between the user
interface and the solvers is provided by the Sissy Solver
Server (SSS).

Figure 3: The structure of the solver server

4. THE SSS ARCHITECTURE

In the recent Sissy implementation we split the program
into two parts, based on the classical thin client model: the
Graphical User Interface manages problem definition,
simulation flow control and the Sissy Solver Server
connects multiple GUI clients and the solver programs.
The following figure illustrates the separation of the user
interface and solver programs connected through the SSS
module (Figure 3). This method has several advantages:
– Running SSS on a fast server computer and using GUI

client on slower computers results in better resource
management. While simulations run in background, the
designers can work on other tasks.

– A company may provide SSS service on the web on
commercial basis. The vendor has to develop and

maintain only the solver programs and keep them on
the server side. The customers do not have to upgrade
their simulation systems with newer solver releases.

The SSS protocol has version checking which controls the
communication in three levels:
– Protocol version. This changes when new commands

have been introduced into the SSS protocol. The GUI
must check this version on new connections.

– Solver version. Describes the state of the solver
program group. If any solver component changes this
number should indicate that change.

– Little/big endian. Since both GUI and SSS are platform
independent they have to check byte order before
binary transfers. SSS determines the byte order, the
GUI performs necessary conversions.

There is also the possibility of standalone installation:
install server and client transparently on the same
computer. The user feels that (s)he runs only one CAD
program. This allows vendors to offer the Sissy system in
standalone or client-server versions.

Applet version of Sissy would be impossible without SSS.
Creating small JAVA applets with prepared examples
(preloaded templates) is good for demonstration.

5. THE SISSY SIMULATION SYSTEM

The simulation system consists of the following parts:
– CTM (Compact Thermal Model) library editor. Sissy is

the first trial implementation of a new XML based
neutral semiconductor package compact thermal model
(CTM) library file format that has been recently
proposed in the JEDEC JC15.1 committee. In CTM
library editor mode of Sissy the project contains one or
more compact thermal model libraries. Each library
contains general information (name, description,
version, creator, date, etc.) and package types with the
following components:
– general settings (e.g name, description)
– physical structure: description of the IC package

geometry (like outline, footprints, surfaces)
– the compact thermal model of the package itself in

form of a thermal "netlist".
– Thermal structure editor and simulator. This project

contains all information needed to perform thermal
simulations of an IC chip, MCM or printed circuit
board:
– material catalog
– CTM library (if PCB-s are analyzed)
– Heat sink library if CTM library is present
– Physical structure: 3D arrangement (layout) of

dissipating elements, boundary conditions
– Analysis conditions

 TIMA EDITIONS / THERMINIC 2005 ISBN 2-916187-01-4 53

György Horváth, András Poppe
THE SISSY ELECTRO-THERMAL SIMULATION SYSTEM

– Electrical network editor and circuit simulator. The
skeleton of a circuit simulation project tree is the
following:
– Semiconductor library (semiconductor catalogs) with

a link to CTM library items in case of discrete
semiconductors to provide full set of information for
board-level simulation (electrical parameters of chips
plus package thermal model). Instances in this library
are sets of parameters for the different semiconductor
model equations of the circuit simulation program in
use.

– Component library: set of component types and
models. Components in the network schematic are
instances of models. Types are only groups of
models, like Gummel-Poon model for BJT-s. Model
instances may refer to different parameter sets defined
in the semiconductor library. Since the component
library is editable it is easy to interface any circuit
simulator to the system by changing the set of
component supported by the simulator used.

– Circuit schematic: built of instances of different
elements of the component library

– Analysis conditions
– Electro-thermal system editor and simulator. The

electro-thermal project is the union of the previous
two projects, except analysis settings, providing
means of editing both the physical structure and the
circuit schematic (Figure 4).

In an analysis session the GUI creates an XML description
of the necessary data structures, transforms it into the input
file formats of the solver through XSL files, transfers input
files to the SSS and instructs SSS to run the required solver
programs, checks existence of the results and retrieves

them and finally parses and displays the simulation results
in the format requested by the user.

6. CONCLUSIONS

In this paper we presented a novel solution in software
technologies – an extension of the JAVA language – that
allowed a clear, platform independent and easy-to-maintain
implementation of an electro-thermal simulation system
that supports both chip and board level simulation. For
board level simulation we realized the first pilot
implementation of a neutral, vendor independent
semiconductor package compact thermal model library
format based on XML. The Sissy Solver Server allows
decoupling the actual simulator solvers used and the
graphical user interface and supports using a
heterogeneous computer environment,

7. REFERENCES

[1] V. Székely: Accurate calculation of device heat dynamics: a
special feature of the TRANS-TRAN circuit analysis program,
Electronics Letters, vol. 9, no. 6, pp. 132--134, 1973.
[2] V. Székely, A. Poppe, M. Rencz, A. Csendes, A. Pahi: Self-
consistent electro-thermal simulation: fundamentals and practice,
Microelectronics Journal, vol. 28, pp. 247--262, 1997.
[3] V. Székely, A. Poppe, M. Rencz, M. Rosental, T. Teszéri:
THERMAN: a thermal simulation tool for IC chips,
microstructures and PW boards. Microelectronics Reliability,
Vol. 40, pp. 517-524, 2000
[4] M. Kuuse, M. Loikannen, G. Bognar: Theoretical
investigation of thermal feedback effect in low-power circuits, In
this volume
[5] A. Poppe: Draft for a standardized description of dynamic
CTM-s of semiconductor devices packages for board level
thermal simulation

Figure 4: Sissy project bar and editors in case of an electro-thermal project

 TIMA EDITIONS / THERMINIC 2005 ISBN 2-916187-01-4 54

