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Abstract — A novel approach is presented for gen-
erating compact dynamic thermal networks having
large numbers of power sources. The achievable ac-
curacy of the compact model is controllable. The
number of elements of the compact model linearly
increases with the number of power sources.

1 Introduction
Various techniques are reported in literature for
generating compact models whose responses ap-
proximate the responses of large thermal networks
having multiple power sources [1-5]. With such
techniques, a compact model can be determined by
modeling the thermal problem as a whole. Usually,
very accurate compact models are generated in this
manner. However they have a number of compo-
nents quadratically increasing with the number n
of power sources in the thermal network. That is
because distinct components are introduced in the
compact models in order to represent each inter-
action among the n power sources. Thus the re-
sulting compact models are actually compact only
for small n. These techniques cannot be applied to
generate compact models of thermal networks hav-
ing large numbers of power sources. For instance,
these techniques cannot be applied for generating
compact models, at the transistor level, for elec-
tronic circuits with many electrical devices and, at
the package levels, for modules with many dies.
However, a compact model of a thermal network
having a large number of power sources can be ob-
tained as proposed in [2,4]. Firstly the spatial do-
main of the thermal problem is partitioned into sub-
domains in such a way that only few power sources
are in each sub-domain. Secondly the thermal prob-
lem in each of these sub-domains is represented by a
boundary conditions independent compact model.
Lastly, by interconnecting the obtained boundary
conditions independent compact models, a compact
model of the whole thermal network is obtained.
Since each boundary condition independent com-
pact model has a number of components indepen-
dent from n, and since the number of the boundary
condition independent compact models is propor-
tional to n, the composite model has a number of
components proportional to n. However, this com-
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pact model is not assured to be accurate, since the
boundary conditions accurately modeled by each
boundary condition independent compact model,
in general cannot model the actual boundary con-
ditions of the thermal problem.

In this paper a novel technique is proposed for
generating dynamic compact models of discretized
thermal networks having large numbers of power
sources. A compact model generated in this man-
ner assures a desired accuracy. Moreover it has a
number of components proportional to the number
n of the power sources. Such a compact model is
the interconnection of boundary condition indepen-
dent compact thermal networks. Each boundary
condition independent compact thermal network is
generated in such a way that a desired accuracy is
assured. This is achieved by exploiting the projec-
tion vectors of the Multipoint Moment Matching
Method. In this sense the novel method is an hy-
brid of the approach based on boundary condition
independent models and of the Multipoint Moment
Matching approach.

The rest of this paper is organized as follows.
In section 2, dynamic thermal networks are intro-
duced. The Multipoint Moment Matching method
and the use of boundary condition independent
models are revised in sections 3 and 4. The novel
hybrid method is presented in section 5. The appli-
cation of this technique to a power DMOS is pre-
sented in section 6.

2 Dynamic Thermal Networks

We refer to a generic heat diffusion problem in the
bounded spatial region €2. The relation between
the power density F(r,t) and the temperature rise
x(r,t) with respect to the ambient temperature is
modeled by the heat diffusion equation

oz

¢(r) 5 (r,t) + V- (=k(r)Va(r,t)) = F(r,t)

(1)
in which k(r) is the thermal conductivity and ¢(r) is
the volumetric heat capacity. Boundary conditions
are
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in which h(r) is the heat exchange coefficient and
v(r) is the unit vector outward normal to the
boundary 0f2.

A dynamic thermal network N is introduced as
follows. The power density is limited to the form

F(r,t) = Zl fi(r)Pi(t)

3)

in which P;(t), i-th element of the nx 1 vector P(t),
is the power of the i-th power source measured at
the i-th port of the thermal network and f;(r) is a
volumetric density function of support =;. As in [5]
it is assumed

Ti(t)zllfi(r)x(r,t) dr, (4)

in which T;(¢), i-th element of the n x 1 vector T(t),
is the temperature rise of the i-th power source
measured at the i-th port of the thermal network.
The only assumption on the f;(r) volumetric den-
sity functions is that they are linearly independent.
In this manner the dynamic thermal network has
the generalized form introduced in [6,7]. This dy-
namic thermal network preserves the main physical
properties of the heat diffusion problem, in partic-
ular passivity.

The discretization of Egs. (1), (2) by any proper
discretization technique has the form

o dx

(1) + Kx(t) = £()

(5)
in which x(t) is the M x 1 vector of freedom degrees,
f(t) is the M x 1 source vector, C and K are M x M
matrices. The discretized forms of Egs. (3) and (4)
are

(6)
(7)

in which F is an M x n matrix. Egs. (5)-(7) de-
fine a discretized dynamic thermal network. Also
this discretized dynamic thermal network preserves
the main physical properties of the heat diffusion
problem, in particular passivity.

A compact dynamic thermal network is a lumped
network that is simpler than a discretized dynamic
thermal network but is able to accurately approx-
imate the relation between the powers and the
temperature rises at the ports of a dynamic ther-
mal network. Hereafter the problem of generating
a compact dynamic thermal network from a dis-
cretized dynamic thermal network is tackled.
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3 Compact Dynamic Thermal Networks by
Multipoint Moment Matching

A very accurate and efficient technique for gener-
ating a compact dynamic thermal network is the
multipoint moment matching method [5], hereafter
revised. In this technique, x(t) is approximated by

m
1
in which v; are basis vectors and Z;(t) are freedom

degrees, with j = 1,...m. Equivalently

~
~

x(t) (®)

Vi ()
J

x(t) ~ V&(t) (9)

in which
V= [V17 7V7:r1]7
1
x(t)=|
T
Firstly the basis vectors v;, with j = 1,... 7, are

determined. To this aim the g problems
(,C+K)V,.=F

are solved for the M X n rectangular matrices V.,
with r = 1,...q. Here the o, matching points are

2r —1 }

— K,k
21 ’
in which K is the complete elliptic integral of first
kind of modulus k, dn is the elliptic dn function of
modulus k. Besides

k=1 k2

k' =X/,

ar = Aprdn [ (10)

in which A\; and \; are the minimum and maxi-
mum eigenvalues of matrix C™1K. It is set

V=I[Vy,..., V]

having m = nqg columns.

Secondly the freedom degrees Z;(¢t) with j =
1,...,m are determined by means of Galerkin’s
method. To this aim Egs. (5)-(7) are projected
onto the space spanned by the vectors v; with
7 =1,...,m. It results in

. dx . R
C () + Rx(t) = (1), (11)

with
f(t) = FP(t) (12)
T(t) = FTx(1), (13)
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in which

C=vTcv, (14)
K =VTKV, (15)
F=VTF (16)

Egs. (11), (13) determine X(t).

As proved in [8], with this choice of the bagis

vectors v; and of the freedom degrees &;, with
j =1,...,m, the expansion given by Eq. (9) ap-
proximates x(¢), with a relative error in the energy
norm ¢ exponentially decreasing with ¢q. Thus q is
of order O(—loge).

As a result multipoint moment matching can be
interpreted as an effective method for generating
basis vectors v;, with j = 1,...,m, in such a way
that a linear combination of such basis vectors can
approximate x(t) with an error exponentially con-
verging to zero with the number 1 of basis vectors.

Egs. (11), (13) accurately approximate also the
relation between the port powers P;(t) and the port
temperature rises T;(t), with ¢ = 1,...,n. Thus
they define a compact dynamic thermal network
N of state-space dimension m. This compact dy-
namic thermal network preserves the main physical
properties of the heat diffusion problem, in partic-
ular passivity. Also such compact dynamic thermal
network can be synthesized by means of passive ele-
ments proceeding as follows. The generalized eigen-
value problem

KU = CUA,
UTCU =1,
is solved for the eigenvectors matrix U and for the

diagonal eigenvalue matrix A. The transformation
of variables is then introducing

%(t) = Ua),
by which Egs. (11), (13) are transformed into the
equivalent form

da, . . )
= (0 + Aa() = TP(1),

T(t) = T7Ta(t)
where
I'=U"F.

By interpreting Eqgs. (19), (20) as the modified
nodal analysis equations of a thermal network, the
compact dynamic thermal network is synthesized
by the canonical form [5] shown in Fig. 1. This
canonical form has m capacitors of positive capac-
itances, Mm resistors of positive conductances and
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Figure 1: Equivalent network of an n-port compact
dynamic thermal network N. Parameter 4;; is the
coefficient at the i-th row and j-th column of T'.

m x n ideal transformers. Thus the number of ele-
ments in such a thermal network is O(n?), prevent-
ing its use for large n.

4 Compact Dynamic Thermal Networks by
Boundary Condition Independent Mod-
els

As shown in [9] the dynamic thermal networks in-
troduced in section 2 can be generated in such a
way that they mimic boundary condition indepen-
dent models. This is achieved by assuming that
the F'(r,t) function in Eq. (1) does not only model
a volume power density but also models a surface
power density over the boundary 02 and by as-
suming that the heat exchange coefficient h(r) in
Eq. (2) is zero on the boundary 9. In this way
some of the f;(r) functions of Egs. (3), (4) are as-
sumed to be surface power density functions whose
supports are on the boundary 0€2. With a proper
choice of the surface density functions such a dy-
namic thermal network mimics a boundary condi-
tion independent model. It is thus referred to as
a boundary condition indepedent dynamic thermal
network.

Such a boundary condition indepedent dynamic
thermal network can still be discretized as shown in
section 2. Besides the multipoint moment match-
ing method can still be used with a slight modi-
fication for generating a boundary condition inde-
pendent compact dynamic thermal network from
the boundary condition independent discretized dy-
namic thermal network. Precisely the V matrix is
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assumed as

V=le, V...,V

in which e is an M x 1 vector of ones. Moreover
k" = Xa/An, being A1 = 0. This compact thermal
network still admits the canonical form of section
3. One resistor has conductance 5\1 =0.

By generalizing the approach proposed in [2],
such boundary condition independent compact dy-
namic thermal networks can be exploited for gen-
erating a compact model of the dynamic thermal
network A of Egs. (1)-(4). Precisely

1. The Q region is partitioned into the parts ;,
with ¢ = 1,...,v. The non-empty intersections
of these parts define the surfaces 3;, with 4

1,..., f, as shown in Fig. 2.

The volume power densities in Egs. (3), (4)
are introduced. Proper surface power densities
having supports on the ¥; surfaces, with i =
1,..., f, are also introduced.

The Q; parts, with¢ = 1,..., v, are modeled by
boundary condition independent compact dy-
namic thermal networks J\7;-, withi=1,...,v.
Each M, with ¢ = 1,...,v, has one port for
each volume power density whose support is
in ; and has one port for each surface power
density whose support is on the boundary 0¢2;.

. The ports which correspond to one surface
power density are interconnected, as shown in
Fig. 2.

Since the connection of passive thermal networks is
passive the determined composite thermal network
is passive and thus also stable.

If the partition is such that each of the €2; parts,
with ¢ = 1,...,v, contains only few of the supports
=i, withi =1,...,n, and has on the boundary only
few of the surfaces ¥;, with ¢ = 1,..., f, then the
generated compact dynamic thermal network has
only O(n) components and thus can be used also
for large n. As it is well known, the drawback of
this approach is that the achievable accuracy is not
well controllable.

5 Compact Dynamic Thermal Network by
Hybrid Approach

A compact dynamic thermal network composed of
boundary condition independent models is accurate
only if the restrictions of the heat flux density of
Egs. (1)-(4) to the %; surfaces, with ¢ = 1,..., f,
are accurately approximated by linear combina-
tions of the surface power density functions. This
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Figure 2: (a) Partition of the Q region. (b)
Compact Dynamic Thermal Network Composed of
Boundary Condition Independent Models.

is assured if the surface power density functions are
the restrictions to the ¥; surfaces, withi =1,..., f,
of the heat flux densities due to the temperature
rises v;, with j = 1,...ng, determined by means of
the multipoint moment matching method for Eqgs.
(1)-(4).

Let Qi be the matrix whose columns are the re-
striction of such heat flux densities to the X, sur-
face, with £k = 1,..., f. The question of approxi-
mating the linear combinations of the ng columns
of Qi by linear combinations of pr < nq vectors
is here considered. It is well known [10] that by
determining the Singular Value Decomposition of

Qx,
Qi = Up T, WY,

and by choosing the p; vectors as the first py
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columns of Uy, the relative error in the energy norm
reaches its minimum given by the pi + 1-th sin-
gular value. The following procedure for choosing
the surface power density functions is thus deduced.
The first pi step of the Singular Value Decomposi-
tion of Qy, are performed, stopping when the pg+1-
th singular value is smaller that the desired accu-
racy €. The surface power density functions are
then chosen equal to the first p; columns of Uy.
The Multipole Algorithm [11] suggests that for a
heat diffusion problem the singular values exponen-
tially decrease with pg. As a result only O(—loge)
surface power density functions are introduced in
this manner for each ¥ surface, with k =1,..., f.

Similar considerations can be made for deter-
mining the projection vectors for generating the

boundary condition independent compact dyihtsgetaccments

thermal networks. Let V. be the matrix whose
columns are the restriction to the ) region, with
k = 1,...,v, of the temperature rises v;, with
j = 1,...nq, determined by means of the multi-
point moment matching method for Eqs. (1)-(4).
The question of approximating the linear combi-
nations of the ng columns of Vy by linear combi-
nations of rp < ng vectors is considered. Again
by detemining the Singular Value Decomposition
of Vk,

Vi =UpZ, W7,

and by choosing the r; vectors as the first
columns of Uy, the relative error in the energy norm
reaches its mimimum given by the r; + 1-th singu-
lar value. The following procedure for choosing the
projection vectors is thus deduced. The first r step
of the Singular Value Decomposition of Vj, are per-
formed, stopping when the 7 4+ 1-th singular value
is smaller that the desired accuracy €. The projec-
tion vectors are chosen equal to the first r; columns
of Uy. Again the Multipole Algorithm [11] suggests
that for a heat diffusion problem the singular val-
ues exponentially decrease with rg. As a result only
O(—loge) projection vectors are introduced in this
manner for each 0y region, with £ = 1,...,v. Since
only O(—loge) surface power density functions are
introduced for each ¥y surface, with k =1,..., f,
and only O(—loge) projection vectors are intro-
duced for each € region, with k = 1,...,v, the
generated compact dynamic thermal network has
only O(n) components and thus can be used also
for large n. Moreover the achievable accuracy ¢ is
controllable.

6 Numerical Example

The heat diffusion problem for two fingers of a
power DMOS is considered. All 96 channel re-
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Figure 3: Partition of the 2 region.

gions are assumed as independent power sources.
Firstly a compact dynamic thermal network is gen-
erated by means of the Multipoint Moment Match-
ing method with € = 10™%. The relative error, both
in the time and in the frequency domains, is below
0.1%. The number of elements in the thermal net-
work is 112 896.

Secondly a compact dynamic thermal network is
generated by means of a boundary condition inde-
pendent model. The 2 region is partitioned into the
parts Qg, with £ =1,...,96 as shown in Fig. 3. A
single uniform surface power density function is in-
troduced for each ¥y surface, with £ = 1,...,164.
The relative error, both in the time and in the fre-
quency domains, is above 15%, as shown in Figs. 4,
5. The number of elements in the thermal network
is 33024.

Lastly a compact dynamic thermal network is
generated by means of the hybrid method with
¢ = 107 The partition of Fig. 3 is still used.
The relative error, both in the time and in the fre-
quency domains, is below 0.1%, as shown in Figs. 6,
7. The number of elements in the thermal network
is 12 832.

7 Conclusion

In this paper a novel approach has been presented
for generating compact dynamic thermal networks
modeling heat diffusion problems with large num-
bers of power sources. As in the multipoint moment
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the compact dynamic thermal network composed the compact dynamic thermal network derived by
of boundary condition independent models. the hybrid method.
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matching approach, the achievable accuracy of the [10] G. H. Golub, C. F. Van Loan, Matriz compu-
model is controllable. As in the approach based tations, Johns Hopkins University Press, 3rd
on boundary condition independent approach, the Edition, 1996.

number of elements of the compact thermal net-
work linearly increases with the number of power
sources.

[11] L. Greengard, The Rapid Ewvaluation of Po-
tential Fields in Particle Systems, MIT Press,
1988.
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