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Abstract— The subject of this paper is the temperature dis-
tribution in ASICs generated by multiple rectangular stripe
sources on the surface of the ASIC calculated with conformal
mapping theory. All presented solutions are fully analytical,
and contain geometrical and heat power parameters, only.
The influence of these parameters and the temperature
distribution strategies can therefore be examined directly and
easily, as is e.g. necessary for placement optimization.

The solutions are applied to two examples with multifinger
structures. In the first, the sources consist of power DMOS
transistors that exhibit thin and long fingers. The results
are compared with equivalent ANSYS simulations, and show
a very good agreement. In the other example used in
high frequency applications, the source length is shorter,
making an appropriate correction for the three-dimensional
effects necessary. For both applications, the temperature
distribution is shown for different layers on top and inside
the chip.

I. INTRODUCTION

In many applications, the interest in temperature dis-
tribution within semiconductor chips is focused on the
upper surface of such devices, since the heat sources
are positioned there and the highest temperatures are
expected. When the sources are placed near to each other,
a strong interaction between them can be noticed, which is
mainly depending on the dissipated power density within
the sources and the distance between them. Numerical
approaches like the finite elements method make it difficult
to vary the geometrical model parameters and process
the calculations in a short period of time. An analytical
model, which is developed in this paper with the help
of conformal mapping techniques, offers here decisive ad-
vantages calculating the temperature, since all geometrical
parameters are included in such models. So, the source
interaction can be verified easily and fast.

Conformal mapping theory has been extensively used
to calculate electro-magnetic fields [1], [2], and more

recently to determine carrier distributions. Connected with
this, the electrical currents [3]–[6] in semiconductor de-
vices, and capacitances of complicated geometries [7]
have been determined. Though the physical description of
thermal problems is based on the Laplace equation, too,
the method of conformal transformation has not been used
to calculate thermal problems, although some suggestions
are made in [8], and in [1] presented in details. By
choosing an appropriate conformal transformation, it can
be guaranteed that all necessary mapping functions remain
analytical, which is a big advantage for computation.

In previous work of the authors [9] the conformal map-
ping method was introduced to calculate steady state tem-
perature fields on surfaces of ASICs. With the presented
solutions it is possible to calculate the temperature field
in the vicinity of a heat source with constant temperature
positioned inside the chip or near the chip edge. The work
presented in this paper improves the applicability to real
world problems by allowing multiple heat sources with
arbitrary power dissipations, on multi-layer substrates.

In high frequency and power applications, multifinger
devices like bipolar or MOS transistors can be found
very often. For example, in [10] and [11] the temperature
distribution within such structures is discussed. For ex-
ample, in [11] the temperatures for a multigate MESFET
in a multi-layer structure are calculated. Because of the
very complex numerical calculations, the solution had to
be restricted to five layers and five fingers. By using
the analytical solutions presented in this paper, such a
restriction would not have been necessary.

The structure of this paper is as follows. In section II
a short summary of the most important parts of the
conformal mapping theory, needed in this paper, will be
presented. In section III, solutions of the Laplace equation
will be shown, which will be used in section IV, where
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a suitable conformal transformation for the multi-source
ASIC problem will be developed. In section V, results for
two multifinger multi-layer problems will be presented and
discussed. Finally, in section VI some concluding remarks
will be made.

II. MATHEMATICAL BASICS

If the source geometry is of such a kind that a simpli-
fication into a two-dimensional problem can be made, the
steady state differential heat conduction equation simpli-
fies to a two-dimensional Laplace equation

∆P =
∂2P (x, y)

∂x2
+

∂2P (x, y)

∂y2
= 0 (1)

and conformal mapping techniques can be used to solve
it [8]. Using conformal mapping requires that all heat
sources or sinks are positioned at the boundaries of the
examined area, and the temperature distribution is not
time dependent. This is the case for planar semiconductor
devices used under static operating conditions.

The aim of the transformation of thermal problems with
help of conformal mapping is to transform a given geome-
try (in the z-plane) which is not elementarily solvable, into
a solvable geometry (in the w-plane) and to calculate the
necessary parameters there. This procedure is described in
detail in [9]; its most important parts are repeated here
in the following section, for completeness and ease of
understanding.

Conformal mapping

The geometries analysed in this paper are bounded by
polygons, so that the Schwarz-Christoffel transformation
can be applied [1], [8]. With the help of the Schwarz-
Christoffel transformation it is possible to map the interior
of a polygon in the z-plane into the upper half of the
w-plane. In doing so, the polygon itself will be mapped
on the real axis in the w-plane. The transformation which
does this is obtained from the relation [1]

dz

dw
= C

N
∏

i=1

(w − wi)
−γi . (2)

Integrating Eq. (2) one will obtain the wanted conformal
mapping

f(w) = C

∫ N
∏

i=1

(w − wi)
−γi dw + D (3)

where πγi are the interior angles of the polygon wi are
the points on the real axis into which the angular points
transform C and D are constants, whereof D defines the
point of origin in the z-plane. As one moves along the
boundary of the polygon counter clockwise, all points
inside the polygon are mapped onto the upper half of the
plane. Additionally, in order to calculate all parameters
of the conformal mapping, some of the relations of the
geometry in the z-plane including the behavior of the

infinite points are needed. Especially, the angle πγj = π
represents a vertex at zj = ±∞, or the intersection of two
parallel lines with a distance of [1]

z′′j − z′j = −iπC

N
∏

i6=j

(wj − wi)
−γi . (4)

If additionally wj = ∞, then the distance can easily be
written as

z′′j − z′j = iπC . (5)

If N represents the number of the vertices of the polygon,
then, with the points wi and the integration constants C
and D, one arrives at N+2 constants, whereof a maximum
of three can be chosen arbitrarily. With three points chosen
on the boundary of the polygon along with the arbitration,
where these points will be mapped onto the w-plane, the
conformal mapping is determined. The remaining N − 1
constants can then be calculated through (4), (5) or other
geometrical relations (e.g. symmetries) in order to solve
the mapping problem completely.

The mapping of the polygon in the z-plane onto the
upper w-plane is conformal at all points except at the
vertices themselves. These vertices however, are isolated
points of non-conformity and can be arbitrarily closely
approached.

A function with continuous second partial derivatives
which satisfies (1) is called a potential function. An inter-
esting property of the complex potential function should
be pointed out. It is true, with z = x + i y, for a complex
potential function

P (x, y) = T (x, y) + iΞ(x, y) (6)

that if the real part T describes the temperature distri-
bution, then the thermal flux is given by the imaginary
part Ξ [1].

III. SOLUTION FOR ONE HEAT SOURCE OF ARBITRARY

POWER DISSIPATION

Fig. 1 shows a typical situation for an ASIC with a
heat source placed on the top surface. The solution will

∂T

∂n
= 0∂T

∂n
= 0

T0 = 0

PS

d

2 a

Fig. 1. Cross-section of an ASIC with one source of arbitrary power
dissipation PS , width 2a, and infinite length (perpendicular to the figure
plane)

be derived in two steps. In the first, a heat source placed
on a semi-infinite area with boundary conditions as on
the upper surface of Fig. 1 is treated. In the second, the
solution for the original geometry including the lower
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surface with T0 = 0, will come out using an appropriate
conformal mapping.

A. Solution for one heat source

For a finite heat source placed in an elsewhere adiabatic
semi-infinite area, the complex solution of the Laplace
equation (1) with w = u + i v is given by [1]

P (u, v) = −
PS

2πλ
arccosh

(w

a

)

, (7)

where λ denotes the thermal conductivity, and PS denotes
an arbitrary power dissipation per unit length dissipated
inside the source with width 2a into the upper half of
the w-plane. Fig. 2 shows a two-dimensional plot of
solution (7). This solution satisfies the boundary conditions

u

i v

2a

PS

adiabatic

Fig. 2. Solution for a heat source of width 2a with arbitrary power
dissipation, and constant temperature with the source. Solid lines are
indicating the isothermals, dashed lines show the current flow

of adiabaticity outside and given total power dissipation
PS within the source. Analyzing solution (7) for the power
dissipation density and the temperature variation within the
source delivers the results that the temperature is constant
and the heat flow density continuously increasing from the
middle to source edges. In most applications, this is not the
case, because the power dissipation there is homogenously
distributed over the entire source. In cases where this effect
strongly influences the results, corrections for it have to be
applied (see next section). On the other hand, where the
power dissipation density within the source is not a critical
fact, in some distance from the source, the solution (7)
provides a good approximation to reality.

B. Corrections within the heat source

For a better approximation of constant flow density
within the source, the temperature should decrease from
the center to the edges. This was addressed by adding
corrections to solution (7). In search for potential functions
following such a boundary condition within the source, the
function

PA(u, v = 0) = −f
PS

2πλ
arctan

(

√

1− (w/a)2

(w/a)

)

(8)

provides help. With this, the distribution of the power
dissipation over the entire heat source can be changed.
This asymmetric function is another solution of Eq. (1)

with other boundary conditions: constant heat flow within
the heat source, and constant temperature outside the heat
source. When adding Eq. (7) and Eq. (8), a corresponding
correction of the power PS dissipated within the source
can be made, whose amount is considered by an appro-
priate parameter f . The value of f is depending on two
facts: the dissipated power PS and the source width 2a.
Comparison with numerical results, and physical insight
show that f rises as a rises and PS falls.

Because of the asymmetric nature of Eq. (8), only the
use of one half of this solution is useful. Therefore, a
suitable conformal mapping, as presented in section IV is
necessary to mask out the undesirable part of the solution.
Because of this procedure (Eq. (8) together with a suitable
map) the use of the sum is restricted only to the top surface
of the chip in Fig. 1. This is the reason why v = 0 is
suggested in Eq. (8).

C. Hetero-layer structures

Using the technique of equivalent-material substitution,
a solution of a static problem can be used to describe
multi-layer structures, too. Hetero-layer structures can be
examined as one material if equivalent thicknesses are
introduced depending on thermal conductivity.

dequivalent =
dmat

λmat

λSi . (9)

With these conversions it is guaranteed that the thermal
resistance for each substituted layer stays the same as for
the original material. The thermal conductivity λSi stands
here for silicon as the replacing material. Obviously, using
this procedure there are no limitations in number of layers.

D. Multifinger sources

The analytical solutions like Eq. (7) or
Eq. (7) + Eq. (8), can be used to calculate temperature
distributions for multifinger structures, too. Because of
the linearity of the problem, the solutions for different
sources must only be shifted to the right spots, and added
up. Thus, the solution for n fingers of equal width (2a)
and distance s can be written in the z-plane as

Pn(x, y) =

n
∑

i=1

P (x + s · (i− 1), y) . (10)

using the parameter s for the distance between the middle
lines of the sources.

IV. A SUITABLE CONFORMAL MAPPING

When the solutions for symmetrical structures like that
in Fig. 2 are already known (Eq. (7)), the finding of the
mapping transformation together with its inverse is the
main concern for the solution of the complete problem. If
one is to arrive at analytical results in elementary form, the
existence of an elementary inverse to the transformation
is essential. Without it, the Laplace equation (1) can be
solved, but the influence of the different parameters on
the results can only be interpreted numerically.
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To allow the use of the solutions presented in the
previous section, the chip structure, shown as a cross-
section in Fig. 1, must be expanded in such a way, that
the polygon in the z-plane, which will be mapped onto
the real axis of the w-plane, does not include boundaries
with constant temperature (the lower surface). For this,
the entire chip is mirrored on the bottom side (y = d in
Fig. 3) with a change in sign for temperature and powers.
Because of the symmetry it is sufficient (and because
of the asymmetry of Eq. (8) necessary) to examine only
one half of the problem (x ≥ 0 in Fig 3). The resulting
geometry in the z-plane is shown in Fig. 3 together with
the corresponding w-plane. The upper half of the structure
in the z-plane represents the right half of the chip from
Fig. 1.

1′

1′

1′′

1′′23

4

5a

a

i d

i d

0

0 x

i y

∂T

∂n
= 0 ∂T

∂n
= 0

∂T

∂n
= 0

∂T

∂n
= 0

∂T

∂n
= 0

T0 = 0

PS

PS

−PS

−PS

z-plane

f−1(z) f(w)

2 3 4 5

1−1 u

i v
w-plane

Fig. 3. z- and w-plane with all important points for the transformation

TABLE I

MAPPING OF ALL POINTS FROM FIG. 3. ITALIC HIGHLIGHTED POINTS

ARE CHOSEN ARBITRARILY

i 1 2 3 4 5

z′
1

=∞
zi

z′′
1

=∞+ i 2d
z2 = a + i 2d z3 = i 2d z4 = 0 z5 = a

γi 1 - 1/2 1/2 -

w′

1
=∞ w2 see w5 see

wi
w′′

1
= −∞ Eq. (14)

w3 = −1 w4 = 1
Eq. (14)

Table I summarizes all necessary information to de-
termine the mapping function following the procedure
described in section II. With Eq. (3) one gets [12]

z = C

∫

1√
w2 − 1

dw = C arccosh(w) + D . (11)

The constants C and D can be calculated using z1 and
z3, so that with C = 2d

π
and D = 0 it arise for the

transformation

z = f(w) =
2d

π
arccosh(w) (12)

and for the reverse function

w = f−1(z) = cosh
(π

2

z

d

)

. (13)

For the unknown points w2 and w5 it follows now

w5 = −w2 = cosh
(π

2

a

d

)

. (14)

A. Solution for the top surface

Now, the solution for the problem in the w-plane of
Fig. 3 can be made using functions (7) and (8). The
complete solution in the w-plane comes out by shifting (7)
and (8) to their proper location:

P (w)top = −
PS

2πλ
arccosh

(

w + w5+1

2

w5−1

2

)

+
PS

2πλ
arccosh

(

w − w5+1

2

w5−1

2

)

(15)

− f
PS

2πλ
arctan









√

1−
(

w+1

w5−1

)2

w+1

w5−1









+ f
PS

2πλ
arctan









√

1−
(

w−1

w5−1

)2

w−1

w5−1









.

The first expression stands for the positive left source,
the second for the negative right source (both sources
regarded as entire), the third term corrects the temperature
distribution within the left source and the last term is
correcting within the right source. For the asymmetric
solution (8) the points w3 and w4 must be regarded as
middle points of the sources. Therefore, the entire solution
for the left part in the w-plane is a composition of half
and full source solutions. The left source in the w-plane
of Fig. 3 is representing the heat source on the chip in
the z-plane, because the real part of Eq. (8) (stands for
the temperature) for v = 0 is zero outside the sources, the
last term in Eq. (15) can be neglected. Now, by inserting
the conformal mapping (13) the solution for the original
geometry will be obtained.

Formula (15) (with (13)) is usable only for the top
surface of the chip (y = 2d in Fig. 3) in the z-plane,
because of the special treatment of Eq. (8). For the region
inside the chips the solution is presented in the next
section.

 TIMA EDITIONS / THERMINIC 2005 ISBN 2-916187-01-4 20



B. Solution within the chip

To obtain the solution for the region within the chip the
correcting parameter f in Eq. (15) must be set to zero. This
is necessary, because of the special treatment of the cor-
recting function (8) by the conformal transformation (13).
So, for the solution within the chip it follows

P (w)inside = −
PS

2πλ
arccosh

(

w + w5+1

2

w5−1

2

)

+
PS

2πλ
arccosh

(

w − w5+1

2

w5−1

2

)

. (16)

Again, with Eq. (13) the solution for the original geometry
in the z-plane will be obtained.

V. APPLICATION ON MULTIFINGER, MULTI-LAYER

DEVICES

In many practical cases of power devices within ASICs,
the length of the source is large compared to its width,
and to the thickness of the chip, what then allows a two-
dimensional representation of the temperature field below
and beside it. For shorter length, and thicker chips two-
dimensional solutions may be regarded as approximation.

In [9] the authors have presented an application of the
conformal mapping technique on two examples. First, a
temperature rise which will be detected by a sensor near
a long heat source was examined. This typical kind of
sensing is often used to monitor the temperature near
expected hot spots within an ASIC with power DMOS-
arrays. Second, calculations for heat sources near the chip
edge where the influence of an adiabatic edge can not
be neglected, were presented. The solutions presented
in this paper can also be used to calculate the same
problems, but with the deciding improvement that the
controlling parameter, temperature within the sources, has
been replaced by an arbitrary power dissipation, i.e. the
boundary conditions for the heat sources are more realistic,
now.

In the following sections, we analyze two examples
of multifinger heat sources on chips regarded as multi-
layer structures in some detail, using the solutions of
section IV-A and IV-B, and comparing them with numeri-
cal ANSYS results.

A. Multifinger structures in power stages of ASICs

On an ASIC used in automobile applications for braking
systems, there are placed a number of heat sources (up
to twenty), all showing multifinger structures. The heat
sources consisting of DMOS-arrays are used in electronic
breaking systems to drive hydraulic valves controlling the
vehicle deceleration.

A typical example of these sources is a heat source
consisting of 16 fingers with 20µm width and 2000µm
length. The distance between the fingers is 10µm, which
results in s = 30µm. The other data are: Tamb = 375K
and P = 3.2W what leads to PS = 100 W/m per finger.

TABLE II

LAYER STRUCTURE OF AN ASIC. EQUIVALENT THICKNESS IS

CALCULATED USING SILICON

conductivity thickness equiv. thickness
layer

W/mK at 375 K µm µm

silicon 120 350 350

die attach 4 25 750

lead frame 301 100 40

solder 50 100 240

heat sink 146 500 411

The layer structure of the examined ASIC is shown in
Table II. The non-silicon layers are replaced by silicon of
equivalent thicknesses calculated from Eq. (9). Because
of the symmetry the right side of the heat source (eight
fingers) is shown in Fig. 4, only. The figure shows the

[x] µm

[T ] K

ANSYS

top surface

top die attach

bottom die attach

100 200 300 400 600500

379

381

383

385

387

389

Fig. 4. Temperatur distribution for different layers compared to an
equivalent ANSYS simulation (triangles) for infinite sources

calculated temperature distribution for different layers
compared to an equivalent ANSYS simulation for 16 in-
finite fingers. The solid line indicates the temperature at
the surface of the silicon calculated from Eq. (15) with
f = 0.6. The dashed line (- -) shows the temperature
on the bottom of the chip. The line with the smallest
gradients (– –) indicates the temperature on top side of
the lead frame at the equivalent depth of 1100µm. As can
be seen, the agreement between the two methods is almost
perfect for each layer.

To see what happens on and under the sources directly,
Fig. 5 illustrates the temperature distribution on the surface
and in 5µm depth (– –) compared to the ANSYS simu-
lation. Generally, the behavior of the analytical curves is
very near to the numerical data. At the edges of the sources
the analytical data is not so smooth as ANSYS because
of the slightly different boundary conditions.

For comparison, the temperature on top surface (fine
dashing) is calculated for f = 0 (solution without
corrections within the sources). The uncorrected curve
shows a typical spiky behavior for composed solutions
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[x] µm

[T ] K

ANSYS

5 µm under top surface

top surface Eq. (15)

top surface Eq. (16)

50 100 150 200

387.75

388.00

388.25

388.50

388.75

389.00

Fig. 5. Magnification of the temperature curve from Fig. 4 near the heat
sources compared to an equivalent ANSYS simulation (crosses). Solid
line indicates the temperature on the top surface of silicon calculated with
Eq. (15). To show the influence of the correction function (8) within the
sources, Eq. (16) is plotted for the top surface (fine dashing). Dashed
line shows the layer at 5 µm under silicon top surface

of heat sources with constant temperature. Only by using
the appropriate value for the correcting parameter f in
Eq. (15), a smooth crossing from one source edge to the
other can be achieved.

The temperature rise within the sixteen fingers amounts
to 2K, and the dips between the fingers to about 0.25K, or
12% thereof. Because of this, one could also take a smooth
average for the overall result, which then does describe a
wide source with approximately constant power density.

To realize how big the error is using the infinite source
solutions for the description of the problem with finite
source lengths (L = 2000µm), an additional ANSYS
simulation for the real finite fingers was made. The tem-

[x] µm

[T ] K

infinite sources
2000 µm sources

top surface

top die attach

bottom die attach

100 200 300 400 600500

377

379

381

383

385

387

389

Fig. 6. Comparison of two ANSYS simulations for different layers as
in Fig. 4. Solid lines stand for infinite fingers, and dashed temperature
curves show the gradients in the middle of the finite sources with
2000 µm length

perature distribution of the finite sources is calculated for
a cut in the middle of the sources, for better comparison
and to avoid the influence of edge effects. Fig. 6 shows
the results for the same layers as in Fig. 4. As could
be expected, all temperatures of the infinite multifinger
structure are a bit higher than for the finite sources, so

for this reason, the conformal mapping method can be
used to calculate an upper limit. But, the gradients in each
layer are well comparable (even almost equal). Shifting
the calculated curves by an appropriate value, even an
almost exact temperature distribution in each layer can
be represented by the analytical solution.

B. Multifinger devices for high frequency applications

In [11], a multifinger HF device has been examined.
The heat source consists of a multigate MESFET realized
on a multi-layer chip. Under consideration of different,
temperature dependent thermal conductivities for each
layer material, the temperature distribution within the layer
interfaces was examined. Table III shows the geometrical

TABLE III

GEOMETRICAL PARAMETERS OF A MULTIFINGER GAAS MESFET

parameter value in [11] value here

gate length (source width 2a) 1 µm a = 0.5 µm

unit gate width (source length L) 100 µm infinite

gate to gate spacing 40 µm

number of gates 5

parameters for the multigate structure. The dissipated
power used in [11] is P = 1W in all five MESFETs
together, which leads to PS = 2000 W/m for one finger.

In our analysis, using material substitution, all layers
listed in Table IV are replaced by n-GaAs (the active
layer) of equivalent thicknesses calculated with Eq. (9).
For the total thickness of the resulting single layer problem
consisting of n-GaAs one obtains 1368.82µm. The chip
is covered by epoxy mold compound which causes an
adiabatic top surface of the chip.

Compared to the application of the previous section, the
biggest difference in this section are the relative dimen-
sions of the structures. Here, the distance between the short
fingers is much larger than the width of a single finger,
and three-dimensional effects appear stronger because of
the smaller source length to chip thickness ratio. From all
this, a rather different behavior should be expected.

Fig. 7 shows a cross-section (70 µm high) of the region
near the five heat sources with the calculated isothermals
(solid) and thermal current flow lines (dashed). The shape

Fig. 7. Upper region (70 µm high) near the five heat sources with
isothermals (solid) and current flow lines (dashed)
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TABLE IV

LAYER STRUCTURE OF AN EXAMINED DEVICE. ALL VALUES EXCEPT “EQUIVALENT THICKNESS” ARE TAKEN FORM [11]

thermal conductivity thickness equivalent thickness
layer material

W/mK at 300 K µm µm

metallization gold 317 3 0.53

active layer n-doped GaAs 56.16 0.34 0.34 (unchanged)

epi-bulk undoped GaAs 57.95 100 96.9

die attach epoxy mold compound 4 25 351

lead frame aluminium oxide 36 500 780

heat sink copper 401 1000 140.05

of the isothermals near the surface is undulating around
the separated sources, and there are deep dips between the
sources.

The results are displayed as solid curves in Fig. 8
and magnified in Fig. 9. The temperature dips here are
extremely pronounced, and account for the major part of
the temperature variation. The absolute temperature values
come out about 70K higher than in [11] because of the
neglect of the large three-dimensional effect. Obviously,
this does not much influence the relative values. The

top surface

bottom epi

bottom die attach
[x] µm

[T ] K

100 200 300 400 600500

350

400

450

500

550

Fig. 8. Temperature distribution for different layers at Tamb = 300 K

differences between the maxima within the sources and the
neighbouring regions are quite identical. Both values, as
marked in Fig. 9 are equal to the results presented in [11],
but calculated with a minimum cost of computational time.
In this calculation, the factor f is not very relevant (< 0.1),
or could be even taken to zero, because there is no
significant temperature variation within the thin sources.

Also interesting is the temperature distribution for dif-
ferent depths of the structure. Fig 8 shows such curves,
for the same layers as in [11]. The dotted curve shows
the temperature in 5µm depth, which can be seen more
detailed in Fig. 9. Another temperature path (- -) at the
bottom side of the epi-bulk at 97.77µm equivalent depth
is shown. The smallest gradients shows the curve (– –)

top surface

5 µm depth

46 K

52 K

[x] µm

[T ] K

20 40 60 80 100
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520
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540
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Fig. 9. Magnification of Fig. 8 near the heat sources. Solid line indicates
the temperature on the top surface, dotted line shows the layer 5 µm
under the surface

on the top surface of lead frame, at the equivalent depth
of 448.77µm. All curves show the expected behavior.

VI. CONCLUSIONS

The work presented here introduces an easy to use and
fast method to calculate the temperature in semiconductor
chips. Holding on this, it doesn’t matter, where or for
which position within the chip the temperature has to be
calculated, since all solutions are of analytical kind, and
expressed in elementary functions. Because also the power
dissipation can be found as a parameter, the solutions
provide an improvement of [9]. The analytical kind of
the solutions allows for a very easy and straight forward
implementation into software projects.

Despite the two-dimensional character of the method,
the solutions provide a good approximation for quasi two-
dimensional problems, as could be verified by two differ-
ent examples presented in section V. In the first example
in section V-A, the method provides good results already
for ratios L/d ≥ 1.1 (with the source length L and chip
thickness d), although the sources are finite. For shorter
sources on the other hand, as seen in section V-B, the ap-
proximation is not so good with respect to absolute values,
but it provides very realistic temperature distributions, and
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exact temperature gradients on the top surface, which can
be used to optimize the source distances with respect to
all parameters, especially the power dissipation PS , source
width a and distance s between the sources. In any case,
for finite source problems the solutions can always be used
as upper limits with a minimum cost in computational
time.
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