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ABSTRACT 
 
This paper presents a method for the analysis of transient 
thermal states in electronic circuits using an analytical 
solution of the heat equation. The time dependent, three-
dimensional temperature fields in multilayered structures 
can be computed analytically using the Green’s functions. 
The proposed method is illustrated based on a practical 
example, where the results of thermal simulations of a real 
hybrid module are compared with infrared temperature 
measurements. Additionally, the discussion of simulation 
errors caused mainly by different non-linear phenomena  
is included. 

 

1. INTRODUCTION 
 
Owing to the latest technological advances it was possible 
to miniaturize electronic devices and drastically increase 
their operating frequency thus augmenting the dissipated 
power density and as a result circuit temperature. Because 
elevated operating temperatures can have serious impact 
on circuit performance or even can lead to its destruction, 
the analysis of thermal phenomena has become a very 
important issue in modern electronics. Consequently, the 
urgent need has arisen for reliable circuit thermal models 
and simulation tools capable of performing relatively fast 
but accurate thermal analyses of electronic circuits, which 
are required both in the process of circuit design and for 
the on-line circuit temperature monitoring purposes. One 
of such models was employed in this paper by the authors 
for thermal simulations of a power hybrid module. 

Most commercial electro-thermal simulators employ 
various numerical methods for the solution of the heat 
equation resulting from the adopted circuit thermal model. 
In order to obtain exact results using numerical methods, 
it is necessary to apply a sufficiently dense discretisation 
mesh especially where the temperature gradient values are 
important. This, however, significantly increases both the 

memory demand and the simulation time. Thus, regarding 
costs and the time of an entire circuit design process, the 
analytical solutions yielding explicit formulas relating the 
dissipated power density to the temperature rise at any 
point of a circuit are much more desirable, but in most 
cases they are difficult to find.  

Fortunately, there exists a large variety of circuits 
having simple geometrical shapes, which can be simulated 
with satisfactory accuracy employing thermal models, for 
which it is possible to find analytical solutions of the heat 
equation. Then, when the thermal model is not excessively 
simplified, the analytical solutions produce more accurate 
results than the numerical ones, which are inherently not 
exact and depend on the choice of the discretisation mesh. 
The main goal of this paper is to present a thermal model 
allowing analytical solutions of the heat equation suitable 
for fast circuit thermal simulation purposes. 

The contents of the paper can be divided into two 
main parts: the theoretical and the experimental ones. The 
first part covers the theory concerning the methodology  
of solving the heat equation in non-homogeneous solids 
using the analytical Green’s functions. This is followed  
by the description of the particular circuit thermal model 
used in the subsequent simulations and its solution. Next, 
in the experimental part of the paper, all the mathematical 
apparatus is employed for thermal simulations of transient 
processes occurring in a real hybrid power module. The 
transient thermal simulations are compared with infrared 
measurements providing some important conclusions and 
indications for future work. 
 

2. CIRCUIT THERMAL MODELLING 
 
The main purpose of this theoretical part is to introduce  
a methodology for solving analytically transient thermal 
problems in multilayered structures. This part of the paper 
will be divided into several subsections. First, the three-
dimensional heat equation, modelling thermal processes 
occurring in solids, will be presented. Next, the Green’s 
functions, on which the proposed solution method of the 
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heat equation is based, will be introduced. Finally, the 
solution of the heat equation for the particular circuit 
thermal model will be found determining the appropriate 
Green’s functions. 
 
2.1. Heat equation in non-homogenous solids 
 
For the heat conduction processes, obeying the Fourier’s 
law of conduction stating that the heat flux is directly 
proportional to the temperature gradient, the elementary 
energy balance performed for a unitary solid volume leads 
to the following three-dimensional Fourier-Kirchhoff heat 
equation [1]-[4]: 

 ( )[ ] ( ) ( )
t

T
rctrgTr vv ∂

∂=+∇∇ ,λo  (1) 

where: 
λ - thermal conductivity [W/mK]; t – time [s]; 
r – position vector [m];   T – temperature [K];  

c v – specific heat per unit volume [J/m3K]; 
g v – generated heat per unit volume [W/m3]; 

The solution of Equation 1 can be determined given 
material thermophysical properties as well as initial and 
boundary conditions. The initial conditions determine the 
temperature distribution in a structure at the starting point 
of the thermal analysis. The boundary conditions describe 
the heat exchange with the surrounding fluid at the outer 
structure surfaces. Generally, there are distinguished three 
fundamental types of boundary conditions: the Dirichlet 
condition (prescribed surface temperature), the Neumann 
condition (prescribed surface heat flux) and the Robin 
condition (convective heat exchange).  
 
2.2. Green’s functions 
 
Green’s functions (GFs) are versatile mathematical tools 
suitable for obtaining solutions of linear heat conduction 
problems. There exist two possible interpretations of GFs. 
Firstly, they can be regarded as a temperature response  
in a point x at time t caused by an instantaneous heat 
generation occurring in a point x’ at time τ. Thus, in order 
to obtain the temperature response in time, it is enough  
to integrate a GF over the entire volume and time as far  
as heat is generated. For the heat diffusion equation, a GF 
describes also the temperature distribution at a point x  
in time t due to an initial temperature rise at a point x’. 
Then, the entire temperature field can be computed as an 
integral of a GF evaluated at the analysis initial time over 
the entire domain. 

The GFs can be derived using different methods, such 
as the method of images, the Laplace transform method  
or the Fourier method of separation of variables. All these 
methods yield solutions in different but mathematically 
equivalent forms. From the computational point of view, 

the main difference between all these methods is the rate 
of series convergence. Generally, the first two methods 
are rapidly convergent for short times whereas the Fourier 
method produces series, which are better convergent for 
large times, and thus are more convenient for thermal 
simulations of electronic circuits. 

Particular GFs depend on the structure geometry and 
the applied boundary conditions. Therefore, the same GF 
can be used then for solving different problems. For linear 
problems the overall temperature rise can be found as the 
sum of the individual temperature rises caused by the 
various influencing factors, such as the initial temperature 
distribution, the internal heat generation and some non-
homogeneous boundary conditions [5]-[7].  

Taking into account that one-dimensional GFs are 
geometry dependent solutions of the heat equation with 
homogeneous boundary conditions, they can be easily 
tabulated and used for the construction of other more 
sophisticated solutions. For instance, multi-dimensional 
GFs can be determined in many cases, especially in the 
rectangular co-ordinate systems, as the products of one-
dimensional GFs. More information on the GFs and the 
particular methods of deriving them can be found in [5]. 
 
2.3. Green’s function solution 
 
The procedure of solving Equation 1 employing Green’s 
functions begins with the solution of the complementary 
Equation 2, which is almost identical with the original one 
except for the fact that there is no internal heat generation 
and that the boundary conditions are of the same type but 
homogeneous ones [5]. 

 ( )[ ] ( )
t

rcr v ∂
Θ∂=Θ∇∇ λo  (2) 

According to the separation of variables method, the 
temperature Θ�  being the solution of the complementary 
equation, can be expressed as follows: 

 ( ) ( ) ( )∑ −=Θ
n

nnn trAtr γϕ exp,  (3) 

where: 
A – series coefficients;   n – series index; 
ϕ  – eigenfunctions;   γ – eigenvalues; 

Substituting the solution form into Equation 2 leads  
to the eigenvalue problem, which can be solved following 
the so-called Galerkin procedure by the integration over 
the entire structure volume. Finally, the procedure yields 
the following formula to compute the eigenvalues γ n [5]: 
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Typically, pursuing the Fourier method, the next step 
would be to determine, applying the initial condition, the 
unknown series coefficients A n and hence finding the 
complementary solution. However, in the considered case, 
the appropriate GFs have to be found before. This is done 
repeating the entire procedure with the substitution of the 
solution and the integration over the volume, however this 
time for Equation 1. Then, after algebraic manipulations, 
the unknown GFs can be obtained using Equation 5 [5]. 
The remaining part of the solution for the case considered 
here will be presented after the description of the circuit 
thermal model. 
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 (5) 

 
2.4. Circuit thermal model 
 
The particular hybrid circuit considered in this publication 
has rectangular shapes and can be approximated, as many 
other electronic circuits, by a multilayered parallelepiped. 
The model, owing to its simplicity, allows the application 
of the Green’s function analytical approach yet provides 
satisfactory accuracy. The dissipated power is represented 
in the model by the heat flux penetrating into the structure 
through its top surface. Since most circuits are relatively 
thin in comparison to their area, the four lateral surfaces 
are assumed to be adiabatic ones and the heat is removed 
only at the remaining surfaces, according to the Newton’s 
law, according to which the heat flux is proportional to the 
temperature difference between the circuit surface and 
surrounding fluid [8]-[9].  

The entire set of equations describing the proposed 
thermal model and its boundary conditions is summarised 
in Equations 6. Additionally, the thermal model is shown 
in Figure 1. The imperfect contact between the structure 
layers is characterised by the thermal conductance g. The 
letter i and the numbers 1 and 2 are the layer indices. 

adiabatic
surface

heat flux

heat transfer
coefficient 

adiabatic
surface

adiabatic
surface

adiabatic
surface

heat transfer
coefficient 

imperfect
contact

 
Figure 1: Circuit thermal model. 

Governing equation: [ ]
t
T

cT i
ivii ∂
∂=∇∇ λo  (6) 

Boundary conditions: 

Top surface: ( )∞−−=
∂
∂− TThq

n
T

11
1

1λ  (6a) 

Lateral surfaces: 0=
∂
∂

n

Ti  (6b) 

Layer contact: ( )21
1

1 TTg
n
T −=

∂
∂λ  (6c) 

Bottom surface: ( )∞−=
∂
∂− TTh

n

T
22

2
2λ  (6d) 

where: 
 h – heat transfer coefficient [W/m2K]; 
 n – outward drawn normal to surface; 
q – heat flux [W/m2]; T ∞ – ambient temperature [K]; 
 
2.5. Model solution 
 
For the above-proposed circuit thermal model consisting 
of two layers, its time dependent solution can be found  
in accordance with the earlier presented solution outline. 
First, the three-dimensional eigenfunctions φ n, expressed 
by Equation 7, were determined computing the unknown 
values of coefficients C, Γ and β � by the application of the 
specific boundary and contact conditions consistent with 
the thermal model. 
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where: 
m, n, k – series indices;a, b, d – top layer dimensions [m]; 

In particular, the eigenvalues in the vertical direction 
β k were found as the solutions of the transcendental 
equation: 
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 (8) 

When the temperature rise does not result from the 
initial temperature distribution and there is no internal 
energy generation, the only non-homogenous boundary 
condition is the heat flux diffusing into the structure 
through its top surface. Then, the final formula to compute 
temperature rise in the circuit can be expressed in the 
terms of Green’s function as given in Equation 9. More 
detailed description of the solution method can be found 
in [10]-[11]. 
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Figure 2: IGBT module electrical scheme. 
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3. MEASUREMENT AND SIMULATION 

 
The earlier presented mathematical considerations will  
be applied in this section for the analysis of transient 
thermal process in a hybrid power circuit. After a short 
description of the circuit, its thermal simulations based  
on the GF solution of the heat equation resulting from the 
thermal model will be presented in detail. The simulations 
will be validated with infrared temperature measurements. 
 
3.1. Circuit description 
 
The analyses presented in this paper concerned an IGBT 
power hybrid module manufactured in the insulated metal 
substrate technology [12]. The module is a commercial 
three-phase AC motor driver consisting of the three-phase 
input rectifier (diodes D1-D6), the three-phase output 
inverter (transistors T1-T6 with free-wheel diodes DT1-
DT6) and the protection circuit (transistor T7 and diode 
DT7). All these devices, together with the molybdenum 
heat spreaders are attached to the common copper frame 
providing electrical contact. The entire circuit is mounted 
on a large 50mm x 75mm x 1.5 mm aluminium plate and 
insulated electrically from the plate by a thin raisin layer. 
The electrical scheme and the layout of the circuit are 
given in Figures 2 and 3 respectively. 
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D2 D3
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DT1
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DT3
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T7

T4 T5 T6
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DT2

DT3

DT4 DT5 DT6
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Figure 3: IGBT module layout. 

3.2. Thermal model 
 
In order to perform the thermal simulations, an adequate 
circuit thermal model was required. Originally, a full five-
layer model was considered. This model had been solved 
numerically employing the finite difference method. The 
preliminary simulations showed that the temperature drop 
in the top layers (silicon dies, molybdenum heat spreaders 
and the copper frame) is not significant, thus a simplified 
model has been used involving only two layers; namely 
the aluminium base plate and the top layer representing 
the other layers. The model allows the direct application 
of the earlier described heat equation solution method 
based on Green’s functions. 

The cross-section of the thermal model is presented  
in Figure 4. The symbols λ, α and h denote the thermal 
conductivity, the thermal diffusivity and the heat transfer 
coefficient respectively. The thermal properties of the top 
layer correspond to the thermal properties of silicon and 
molybdenum, which are very much alike. The value of the 
heat transfer coefficient at the top surface represents the 
typical combined radiation and convection cooling at this 
temperature whereas the coefficient value at the bottom 
reflecting the presence of a large aluminum block as well 
as the contact conductance were set experimentally so that 
to minimize the relative error with respect to the infrared 
measurements. Finally, the thermal diffusivity, being the 
ratio of the thermal conductivity to the thermal capacity, 
was found from the transient temperature curve so that  
to obtain the correct temperature rise rate. 
 
3.3. Infrared measurements 
 
All bodies having temperatures higher than the absolute 
zero emit the thermal electromagnetic waves. According 
to the Stefan-Boltzmann law the total amount of radiated 
energy is proportional to the fourth power of temperature. 
Moreover, it can be calculated form the Planck formula 
that the spectrum density of the thermal radiation has its 
maximum in the range of infrared waves. Thus, using 
appropriate detectors of infrared radiation, it is possible  
to measure temperature by measuring thermal radiation.  

Al

Si/Mo

heat flux cooling

cooling

λλλλ1 = 140 W/mK 
αααα1 = 5.0*10-5 m2/s

λλλλ2 = 240 W/mK
αααα2 = 7.0*10-5 m2/s

h1 = 15 W/m2K

h2 = 270 W/m2K

g = 45000 W/m2K

 

Figure 4: Circuit thermal model. 
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Figure 5: Measured and simulated temperature values. 

For the infrared temperature measurements the circuit 
was placed horizontally on a massive block of aluminum. 
The transient temperature measurements were taken using 
the AGEMA Thermovision 900 infrared camera at the 
rate of 3 images per second. Before the measurements, the 
circuit was sprayed with black matt paint so as to assure 
uniform and known surface emissivity [13]. 

Initially, during the experiment, the power of 8.4 W 
was dissipated in the transistor T3. Then, after 63.5 s, the 
transistor T1 was also switched on and dissipating the 
same amount of power. Finally, after 187 s the transistor 
T3 was switched off and the power was dissipated only  
in the transistor T1.  

The particular measured temperature curves obtained 
for the hot spots, i.e. transistors T1 and T3, and the diode 
DT2 placed between the transistors, encircled in Figure 3, 
are presented with solid lines in Figure 5. Additionally, an 
exemplary infrared picture obtained after 180 s is shown 
in Figure 6.  

The presented results revealed that there were some 
instabilities observed just after switching the transistor T1 
on, probably due to unexpected transients occurring in the 
power supply cables. Moreover, it should be also clearly 
said that the diode temperature could not be determined 
accurately from the infrared measurements because of the 
problems with establishing the exact device location in the 
registered infrared images. 

 

Figure 6: Exemplary infrared picture (after 180s). 

3.4. Thermal simulation 
 
First, during the simulations, the temperature values for 
different time instants were computed in the transistors, 
where the heat was generated, and at the location of the 
diode DT2. The simulation results, represented by various 
markers, are compared with the measurement in Figure 5. 
Moreover, the temperature map, shown in Figure 7, was 
computed using the analytical method exactly for the same 
time instant as the earlier presented infrared image. As can 
be seen, the simulated temperature values are in relatively 
good accordance with the infrared measurements. During 
transient states the temperature differences do not exceed 
5 K, which is acceptable considering the limited accuracy 
of measurements and the relative simplicity of the circuit 
thermal model. The discrepancies between the simulation 
and the measurement are clearly much more important for 
the transistor T1. As already mentioned, this is caused the 
most probably by the fluctuations of the power dissipated 
in this transistor observed also in the measurement curves.  

The other possible sources of simulation errors result 
from various non-linearities occurring in the real structure. 
Because in reality the material thermal properties, such as 
the conductivity or the diffusivity, depend quite strongly 
on temperature, the computation of the total temperature 
rise by the simple addition of temperature rises resulting 
from the power dissipation in the individual transistors 
might lead to important errors. 

All the presented thermal simulations were performed 
in the Matlab environment on the computer equipped with 
the 1.1 GHz AMD Athlon processor and a 512 MB RAM 
memory. During all the simulations only 20 eigenvalues 
were considered, because the introduction of additional 
series components did not change the simulation results 
by more than 1 K. When the simulation time is concerned, 
for the transient simulations of 2 heat sources with the 
resolution of 5 seconds some 10 minutes were required, 
whereas it took almost 2 hours to compute the 4 000 point 
temperature map. 

 
Figure 7: Simulated temperature distribution (after 180s). 

 TIMA EDITIONS / THERMINIC 2005 ISBN 2-916187-01-4 15



Marcin JANICKI, Gilbert DE MEY, Andrzej NAPIERALSKI 
Transient Thermal Simulation of A Power Hybrid Module Using An Analytical Solution … 

 

4. CONCLUSIONS 
 
The authors presented in this paper an analytical approach 
to the thermal analysis of power electronic circuit. Owing 
to the relative simplicity of the proposed circuit thermal 
model, it was possible to apply for the solution of the heat 
equation resulting from the model an analytical method 
based on the Green’s functions. The simulation results are 
in good agreement with infrared measurements, however 
the true accuracy of the methodology cannot be assessed 
because the measurements themselves bear some errors. 

The proposed analytical solution is more elegant and 
has many obvious advantages, e.g. it renders possible the 
computation of the temperature values only in selected 
locations from the same mathematical formula without the 
necessity for solving the entire set of difference equation 
as it is in the case of various numerical methods. Thus, the 
presented approach might prove to be competitive with 
numerical methods, especially when the temperature has 
to be computed only in a limited number of points, e.g. for 
the determination of the hot spot temperature. However, 
numerical methods certainly are more advantageous, if the 
whole temperature distribution map has to be computed. 

The hereby-presented methodology is very powerful 
and allows thermal analyses of structures having relatively 
complex shapes and various types of boundary conditions. 
However, the main difficulty of the method consists in the 
computation of the eigenvalues. Fortunately, the Galerkin 
integral procedure is very universal and, even if the exact 
solutions cannot be determined, quite accurate results can 
be obtained using linear combinations of non-orthogonal 
basis functions. 

The simulations proved that the model could be used 
with constant model parameter values only in a limited 
range of temperatures because the heat transfer processes 
are strongly temperature-dependent phenomena. However, 
some of the non-linearities can considered in simulations 
in a relatively simple way by updating the thermal model 
parameters with each iteration, as shown in [14].  

Moreover, it is worth mentioning that all the physical 
model parameter values are almost identical with the ones 
commonly encountered in the literature. The only values 
which had to be found directly from the measurements 
were the thermal contact resistance and the heat transfer 
coefficient value at the bottom of the structure. These two 
quantities are responsible mainly for the temperature map 
profile on the circuit top surface and the temperature rise 
over the ambient temperature. 
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