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An asymptotically stable semi-lagrangian scheme in
the quasi-neutral limit

R. Belaouar*  N. Crouseilles’  P. Degond!  E. Sonnendriicker *

Abstract

This paper deals with the numerical simulations of the Vlasov-Poisson equation
using a phase space grid in the quasi-neutral regime. In this limit, explicit numer-
ical schemes suffer from numerical constraints related to the small Debye length
and large plasma frequency. Here, we propose a semi-Lagrangian scheme for the
Vlasov-Poisson model in the quasi-neutral limit. The main ingredient relies on a
reformulation of the Poisson equation derived in [5] which enables asymptotically
stable simulations. This scheme has a comparable numerical cost to that of an ex-
plicit scheme. Moreover, it is not constrained by a restriction on the size of the time
and length step when the Debye length and plasma period go to zero. A stability
analysis and numerical simulations confirm this.
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1 Introduction

For many years, the modeling and numerical simulation of plasmas has been an active field
of research. The description of the plasma is usually performed in two ways. On the one
hand, fluid models which need that the system is close to a thermodynamical equilibrium
to be valid. On the other side, kinetic models consider a phase space repartition of
the particles, but numerical simulations are larger than fluid ones. Indeed, the high
dimensionality of the kinetic models (6 dimensions plus the time) makes the simulations
difficult to handle. However, when collisionless problems are studied, the use of kinetic
models is necessary since fluid models cannot accurately describe the physics.

In addition, kinetic simulations are complex due to the large variety of scales involved
in the system. Among them, there are two important physical length and time scales:
the Debye length and the electron plasma period. The Debye length measures the typical
length of charge unbalances whereas the electron plasma period characterizes the motion
of the oscillations due to the electrostatic restoring forces when charge unbalances occur.

We are interested in this paper in the so-called quasi-neutral limit where both pa-
rameters are small compared with macroscopic lengths of interest. From a numerical
point of view, a classical explicit scheme has to solve these micro-parameters in order to
remain stable, which requires a very small time step and phase space cells. But on the
other side, simulations have to be performed on macroscopic lengths, which makes kinetic
simulations challenging.

Many asymptotic models have been derived to describe such regimes, but in situa-
tions where both quasi-neutral and non quasi-neutral regimes coexist, these models are
not valid. Hence, hybrid approaches can be adopted (see [17, 21, 24]). However, a specific
development is necessary to connect the models, and the interface has to be carefully
described through an asymptotic analysis (see [12, 25]) or thanks to physical considera-
tions. Finally, these two points are quite difficult to handle numerically. Hence, it seems
important to develop numerical methods which can handle in the two regimes.

The main goal of this work is to present Vlasov-type simulations (i.e. using a grid
of the phase space) in the quasi-neutral regime. To that purpose, following the strategy
introduced in [5, 6, 9], a new numerical scheme is introduced, the stability analysis of



which shows that its stability domain is independent of the Debye length. The present
approach allows stable simulations even when the mesh does not resolve the Debye length
and the plasma period.

As in [9], the Vlasov-Poisson model is studied with small values of the Debye length
(which corresponds to the quasi-neutral regime). The Poisson equation is re-written in
an equivalent form: the so-called Reformulated Poisson Equation (RPE). It has been first
introduced in [5, 6] within the context of the fluid Euler-Poisson system, and the extension
to the kinetic framework has been performed in [9]. The RPE enables to overcome the
drastic reduction of time and space steps and is not more difficult or costly to solve
numerically.

This work is based on the same model as [9] since the Vlasov equation is coupled
with the RPE, but a semi-Lagrangian Vlasov solver is used in place of a Particle In Cell
(PIC) solver. Such solvers are very often used for kinetic simulations (see [1, 18]) with
the advantage that the computational cost of these methods remains acceptable, even in
high dimensions. However, the inherent numerical noise becomes too significant for some
applications. Hence, methods discretizing the Vlasov equation on a phase space grid have
been proposed (see [14, 15, 26]). Unlike PIC methods, the distribution function is well
resolved everywhere, even in zones where few plasma particles are present.

The semi-Lagrangian method can be viewed as an intermediate method between PI1C
methods and Eulerian methods. The mesh of the phase space is kept fixed in time
(Eulerian method), and the Vlasov equation is integrated along the trajectories using
the invariance of the distribution function along the characteristic curves (Lagrangian
method). Interpolation is performed to evaluate the new value of the distribution function
on the grid nodes. In particular, one of the advantages of such a method is to have a good
description of the phase space (also in regions where the density is low), and unlike PIC
methods, it is noiseless.

The main particularity of this work consists in the time integration of the trajectories
and its coupling with the field solver. As in [9], the particle trajectories are computed
using a semi-implicit symplectic integrator: the characteristics in velocity are integrated
using an implicit electric potential evaluated at an explicit position. Semi-implicit time
discretization of the characteristics has already been employed in [4, 20, 22, 23|, but the
use of the Reformulated Poisson Equation makes the approach different. This equation
enables to predict a stable electric field even for small values of the Debye length \. More-
over, the present approach does not suffer from unphysical decay of conserved quantities
such as the total energy, which can prevent the asymptotic preserving property of the nu-
merical scheme. Besides, as mentionned in [5, 6, 9], the coupling with the RPE together
with the new time integration has the same computational cost as the standard resolution
of the Vlasov-Poisson equation.

Moreover, a stability analysis of the model is performed in the linear framework,
proving that the numerical scheme is stable for small values of the Debye length A, even if
the time step does not resolve it. Such a study has been performed for the Euler-Poisson
context in [11]. However, the strategy is different in the Vlasov case. Indeed, starting from
the semi-discretized linearized version of the Vlasov equation coupled with the RPE, we



derive a semi-discretized dispersion relation. The roots of this dispersion relation provide
an indication on the stability of the numerical scheme. Indeed, when the imaginary part
of the root is negative, then the numerical scheme is stable. As a comparison, we also
derive a dispersion relation for the classical numerical scheme which does not enjoy such
a property when the time step is bigger than the Debye length. This study emphasizes
the Asymptotic Preserving property since the damping coefficient obtained by solving
the dispersion relation presents the correct behavior as A goes to zero. These results are
confirmed by the numerical results.

The paper is organized as follows. In the next part, we describe the Vlasov-Poisson
model and introduce the Reformulated Poisson Equation. Then, we recall the main steps
of the semi-Lagrangian method. Next, the asymptotically stable numerical scheme is
presented with a classical scheme. A stability analysis is then performed on these two
numerical schemes by solving the associated dispersion relation. Finally, some numerical
results illustrate the efficiency of the new method compared to the classical one.

2 The Vlasov-Poisson model and its quasi-neutral
limit

In this section, we present the Vlasov-Poisson system ans its quasi-neutral limit. As in
[5], we show that the Poisson equation can be reformulated into an elliptic equation which
does not degenerate in the quasi-neutral limit and, at the limit, provides an equation for
the quasi-neutral potential.

2.1 The Vlasov-Poisson system and its properties

In this paper, we restrict ourselves to the one-dimensional Vlasov-Poisson system, even if
this work straightforwardly extends to the multi-dimensional case.

Here, we consider only one species of particles, the electrons, and we assume that the
ions form a uniform neutralizing background. Under these assuptions, the time evolution
of the electron distribution function f(¢,x,v) in phase space (z,v) € R x R (with ¢ the
time, x the spatial direction and v the velocity) is given by the dimensionless Vlasov
equation

O f + 00, f + 0,00, f =0, (2.1)
where the electric potential ¢(¢, z) is coupled to f through the Poisson equation

N0, 0(t,x) = p(t,z) — 1, with p(t,2) = /f(t,:z:,v)dv. (2.2)

In this one-dimensional context, this Poisson equation (2.2) is equivalent to the Ampere
equation

8tE:i, (t,x)= | vf(t,z,v)dv, 2.3
S gt = [ ofta) (23)



where £ = —0,¢ is the electric field.

Here the density p has been normalized to the ion background density and the electron

mass to unity. The dimensionless parameter A is the ratio of the Debye length to the length

unit, or equivalently the ratio of the plasma period to the time unit. Here, velocities are

normalized to ionic thermic velocity and space to a characteristic length of the problem.
In the sequel, we briefly recall some classical estimates on the Vlasov-Poisson system

(2.1)-(2.2). First of all, mass and momentum are preserved with time,

d
— f(t,:c,v)( ! )dwdvzo, teRT.
dt Jrxr v
Next, multiplying the Vlasov equation (2.1) by |v[* and performing an integration by
parts, we find the conservation of the total energy &; for the (2.1)-(2.2) system
a& d
— = — (&M +E() =0, teRH,
B L& +E(0)
where &, denotes the kinetic energy and &, the potential energy

Ex(t) = f(t,z,v) gd:pdv, Et) = )\; / 10.6(t, ) |*dx.
R

RXR

On the other hand, we can define the characteristic curves of the Vlasov-Poisson
equation (2.1)-(2.2) as the solutions of the following first order differential system

(dX

E(t;sal'?v) = V(t;S,LE,U),
4 (2.4)
%(t; s,x,v) = 0.0(t, X(t; s, x,v)),

\

with the initial conditions
X(s;s,z,v) =2, V(s;s,x,v)=n.

We denote by (X(t;s,z,v),V(t;s,2,v)) the position in phase space at the time ¢, of a
particle which was in (z,v) at time s. Let say that t — (X(¢;s,z,v),V(t; s, z,v)) is the
characteristic curves solution of (2.4). Then, the solution of the Vlasov-Poisson equation
(2.1)-(2.2) is given by

flt,x,v) = f(s,X(s;t,2,0),V(s;t, z,v))
= fo(X(0;t,2,v),V(0;t,2,v)), (x,v) e RxR, t>0,

where f; is a given initial condition of the Vlasov-Poisson equation. This equality means
that the distribution function f is constant along the characteristic curves which is the
basis of the semi-Lagrangian method we recall in a next section.

5



2.2 The quasi-neutral model

The quasi-neutral limit of the Vlasov-Poisson system (A — 0) has been studied rigorously
in a series of papers (for example see [2]).

Formally, passing to the limit A — 0 in (2.1)-(2.2) merely amounts to replacing the
equation (2.2) by the quasi-neutrality constraint p = 1. The Poisson equation is then lost,
while the electrostatic potential becomes the Lagrange multiplier of the quasi-neutrality
constraint. This is exactly the same in the incompressible Euler equations in which the
pressure is a Lagrange multiplier for the divergence-free constraint.

Assuming that the quasineutrality constraint is satisfied initially, integrating (2.1)
with respect to the velocity variable leads to the divergence-free constraint for the scaled
electric current

0 /vf dv = 0. (2.7)

Then, using (2.7) and after some computations that will be detailed in the next section,
we obtain the following elliptic equation for the quasi-neutral potential ¢

02 — 028, (2.8)

where S is the second moment of the distribution function f, S(t,z) = [v?f(¢, 2, v) dv.
In summary, the quasi-neutral model consists in the following system

‘2—{ 0O, + 0,00, f — O, (2.9)

i = 025. (2.10)

We first note that the Vlasov-Poisson system (2.1)-(2.2) and (2.9)-(2.10) differ by the

elliptic equations for the potential ¢ namely the Poisson equation (2.2) for the former and
the quasi-neutral limit (2.10) for the latter.

A major difficulty is to find a direct way to obtain the equation (2.10) from the quasi-

neutral limit of (2.2). In [5, 6], in order to unify these two different equations, a new
reformulation of the Poisson equation has been derived.

2.3 The reformulated Poisson equation

This present part recalls the main steps of the derivation of the Reformulated Poisson
Equation (see [5, 6, 9]).
By taking the two first moments of the Vlasov equation, we get the continuity equation

Op + 0, =0, (2.11)
and the equation evolving the current density j

Bij + 0uS — pdyd = 0, (2.12)



where p = [ f(v)dv, j = [vf(v)dvand S = [v?f(v)dv. In order to eliminate the current
j, we make the difference between the time derivative of (2.11) and the divergence of (2.12).
It follows

Op — 0pS + 0 (p0s¢) = 0. (2.13)

Now, using the Poisson (2.2) to replace p in the first term of (2.13) gives the Reformulated
Poisson Equation

—0y [(N0 + p)0y0] = =005 (2.14)

which is equivalent to the original one if initially the Poisson equation (2.2) and its time
derivative are satisfied.

In the quasi-neutral limit (A — 0), the reformulated equation (2.14) formally converges
toward the quasi-neutral potential elliptic equation (2.10). It does not degenerate into an
algebraic equation like the Poisson equation (2.2) does. Then the reformulated system

0] + 8,00, =0, (2.15)
0, [\ + p)0s] = —0r0S (2.16)

seems to be an appropriate framework to deal with problems which are partly or totally
in the quasi-neutral regime.

In the next section, we show how we can use this reformulated system to derive an
asymptotic time strategy for the Vlasov-Poisson problem.

3 An asymptotic preserving scheme for the Vlasov-
Poisson model

In this part, we describe a numerical scheme used to solve the Vlasov-Poisson system. In
a previous work of P. Degond et.al [9], a PIC method was used to solve the Vlasov-Poisson
equation. Although they could deal with unresolved Debye length and plasma electron
period and get stable simulations, they observed an unphysical strong decay of the total
energy which could not permit to verify if the PIC method enjoys the asymptotic pre-
serving property. In this work, we propose to use a semi-Lagrangian method to overcome
this lack of energy conservation.

3.1 The semi-Lagrangian method

In this section, we will recall the principles of the semi-Lagrangian method for the Vlasov-
Poisson equation (see [26] for more details) in two dimensions of the phase space.

First of all, we introduce the finite set of mesh points (z;,v;),i = 0, ..., N, and j =
0, ..., N, to discretize the phase space computational domain. Then, given the value of



the distribution function f at the mesh points at any given time step t"”, we obtain the
new value at mesh points (z;,v;) at t"** using

f(tn + Ataxiavj) = f(tannv Vn)a

the solutions of (2.4), and At stands for the time step. For each mesh point (z;,v;), the
distribution function f is then computed at t"*! by the two following steps

where the notations (X", V") = X(t"t" + At, x;,v;), V(t"; t" + At, z;,v;) are used for

1. Find the starting point of the characteristic ending at (;, v;), which is X™ and V™.
2. Compute f(t", X™, V™) by interpolation, f being known only at mesh points at time
t".

Now, for the general case, in order to deal with step 1, we need to introduce a time
discretization of (2.4). A lot of numerical methods exist for the resolution of the charac-
teristic curves, given by the following ordinary differential equations

X

=V, (3.1)
dv
— = 0.6(t. X). (3.2)

Here, we want to use a robust and stable scheme which can take into account the spatial
and time oscillations of the electric potential ¢ when the parameter A tends towards 0.
To reach this goal, the first difficulty is related to the time discretization of ¢ in the right
hand side of (3.2). In the context where the plasma is at equilibrium, it refers to a source
term in the momentum conservation’s law of the Euler equations. In the work of S. Fabre
(see [13]), it is proven that a necessary condition for stability for the Euler-Poisson system
is the use of an implicit time discretization of the advection term 0,¢. We therefore do
the same for the time discretization of ¢ in (3.2).

The second difficulty is related to the time discretization of (3.1) coupled to the space
discretization of the right hand side of (3.2). In order to preserve the total mass quantity
for all time and to preserve the areas of the transformation (X", V") — (X" V")
we have to use the well known Euler symplectic schemes for (3.1)-(3.2) (see [27] for more
details).

Then, we have two possible alternatives to discretize (3.1)-(3.2). The first one we call
(EI) is (E for explicit in space and I for implitit in velocity)

Xn—|—1 —_Xn .
Vn+1 —_yn
At = x¢n+1(Xn+1)7 (34)



and the second one (IE) writes

Xn+1 _ X" 1
Vn+1 —_yn . .
T = X, (3.6)

But some basic computations on the (F1) scheme lead to

Xn+1 —_92Xn + Xn—l

N% = 00" (X"), (3.7)
whereas the same ones for the (I F) scheme give
Xn+l —_9oxn Xn—l
T 0,0 (X, (338)

At?

The two schemes (3.7) and (3.8) correspond to an explicit and an implicit time discretiza-
tion of the equation describing the motion of electrons
d’X

In order to get stable numerical results with respect to the time step At and the parameter
A and since we deal with strong oscillations in space and in time of the electric potentiel
¢, we have to choose the symplectic scheme (I'E) to solve (3.1)-(3.2).

Therefore the starting point of the characteristic curves ending at (X" V") ig
computed thanks to the following numerical scheme

X" = X" — Aty (3.9)
V=V — AL 9" TH(XT). (3.10)

The second step of the semi-Lagrangian method deals with the interpolation of f™(X™, V™)
by using the values of f™ on the mesh points. This is done by using local cubic B-splines.
For more details on this step, we refer the reader to [8].

3.2 The classical time discretization for the Vlasov-Poisson model

In this subsection, the Ampere equation will be used to predict the electric field at time
"t (B = —0,¢™) in (3.10). Indeed, we use the fact that in one dimension of
space, the Poisson equation (2.2) and the Ampere equation (2.3) are equivalent (note
that the methodology can be extended to multidimensional problems using the continuity
equation, see [7] for example). In the rest of the paper, the use of the Ampere equation
in order to predict the electric field at time ¢"*! will be referred to the “classical time
discretization”. Its time discretization writes

At
E;H—l = En + 0

Pt (3.11)



where At is the time step, E is the electric field evaluated at ¢ = t" in x = ;. Finally,
J denotes the current evaluated at time t” in x;, and is given by

gt = Zf(t”,xi,vj)vjAv, (3.12)

with Av the velocity step.
Hence the classical numerical scheme can be decomposed into the following steps.
Let us suppose that f(t", z;,v;), (0,¢"); are known on the mesh points

Step 1. Computation of a prediction of Ef"*!, called EZ‘“, by solving the Ampere
equation

~ At
n+1 n ‘n
B = B + ﬁ]i 3

where jI is computed via (3.12).

Step 2. Resolution of (2.4)

e Backward advection of At in the spatial direction
X" = X" ALyt
e Backward advection of At in the velocity direction

V= Vn+1 — At 8w¢n+1(Xn)7

Step 3. Interpolation of f(¢", X™, V™) and updating of the distribution function
thanks to the following equality

where II is an interpolation operator.

Step 4. Computation of the density p"*H(X"*)

pn+1(Xn+1) :/ f(tn+1,Xn+1,U)dU,
R

and resolution of the Poisson equation at time "' to get ¢! and £+

It is well known that the stability of this classical scheme requires a space and a time
step which resolve the parameter A (the numerical results will show this fact). But this
classical approach will be used as a reference to make comparison with the new approach.
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3.3 The asymptotically stable time discretization

As evoked previously, we use the Reformulated Poisson Equation (2.14) to compute the
electric potential at time t"*1. To that purpose, a time discretization has to be performed,
deduced from a time discretization of the Euler-Poisson equation (see [5, 6, 9]).

In the sequel, we fastly recall the main steps allowing to derive a time disretization of
the Reformulated Poisson Equation. The starting point is the semi-discretization in time
of (2.11)-(2.12) in the following way

k+1 k
p - p F+1
E___F Lo =0, 3.13
A T O (3.13)
jk+1 _ ]k

Now, we perform the same computations as in the continuous case (see section 2.3): we
take the discrete time difference of (3.13) and we combine it with the space derivative of
(3.14) to eliminate the discrete moment j*. This leads to

PPl — 2k 4 e
At?

By substituting the density p**1 by (1 + A\20?¢**1) thanks to the Poisson equation which
we suppose satisfied at time ¢"*!, we get the semi-implicit time differencing of (2.14)

—0, (P AL + X0, ) = —ALPG2S" — 20" + pF' + 1. (3.16)

+ 0, (p0,¢") = 025, (3.15)

Let us remark that (3.16) is an elliptic problem which allows to compute ¢**! thanks to
quantities at time t" and which does not degenerate when A goes to zero; moreover, its
numerical resolution has the same cost as the traditional Poisson equation.

The spatial approximation of (3.16) is performed in a usual way, by discretizing the
space derivatives on the fixed grid (z;); using uncentered finite differences. The reader is
refered to [6] for more details.

4 Continuous dispersion relation of the linearized Vlasov-
Poisson model

In this section, we study the dispersion relation of the linearized Vlasov-Poisson model
for different values of XA. To derive the dispersion relation; the Vlasov-Poisson model

(2.1)-(2.2) is linearized around a equilibrium Maxwellian distribution function
fo( )*—1 p(__zﬂ) () =0 (4.1)
T,V ex , Eo(x . .
’ V2nr 2 ’

We may reformulate the Vlasov-Poisson system (2.1)-(2.2) as equations for the perturba-
tions f; and F; of the equilibrium (4.1) so that

f:f0+f17 EZO—I_EI

11



We deduce that they satisfy the linearized Vlasov-Poisson equation
atfl + vaa:fl — Elavfﬁ = 07 (42)
/\28wE1 = —/f1 dv. (43)

Note that the linearized Poisson equation is equivalent to

/\28tE1 = /’Ufl dv (44)

which corresponds to the linearization of the Ampere equation around the Maxwellian
steady-state.
The dispersion relation of (4.2)-(4.3) (see[10]) is

1[0,
)\252/“’ LIP (4.5)

— =

D(w.&\) =1+

As in [16], this function D (4.5) can be reformulated as

w2

D(w.&,\) =1+ A21€2 (1 + g%exp(—@) (z - erﬁ(%g))) . (4.6)

where erfi is the imaginary error function defined such that

erfi(0) = 0, and %erﬁ(z) = %exp(xz).
For reading convenients, the details of the computations from (4.5) to (4.6) have been put
in Appendix.

This last formulation enables to compute numerically w as a function of (£, ). In the
sequel, we plot the imaginary part of the solutions of (4.6) as a function of ¢ for different
values of \.

We can observe that there exists at least two curves of solutions of (4.6). We plot
on Figs. 1, 2 two curves of solutions of the dispersion relation: the absolute value of the
Imaginary part of the solution w = w, + iw; is plotted as a function of the wave number,
for different values of \. Several curves of solutions exist, but we restrict ourselves to
solutions with small w;.

In the literature, numerical simulations capture the wave associated with the smallest
w; since the others waves are damped very fastly; however, residual of these highly damped
waves can be observed at the beginning of the simulations: the first oscillation is usually
larger than the following ones (see [7, 14]).

12
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Figure 2: Absolute value of the Imaginary part of the solution to (4.6) as a function of &:
(@) A=107"2,(b) A =1073.
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5 Stability analysis of the linearized equations

In this section, we study the linear stability of a semi-discretization in time of the Vlasov-
Poisson (Vlasov-Ampere) system and of the Vlasov-RPE system. For each system, we
start from the time discretization of its linearized version. Then, by using a spatial Fourier
transform, the discrete dispersion relation is computed for each scheme, which enables to
study the stability of the time discretization. Even if looking at the stability of a linearized
semi-discretized version of the initial model is quite restrictive, this study is easier and
can give some indications of the behavior of the fully discretized model. Let us mention
[11], in which the authors perform an similar study for the Euler-Poisson and Euler-RPE
systems; asymptotic stability is then proved when the RPE is used.

5.1 Stability analysis of the linearized Vlasov-Ampere system

In order to analyse the numerical stability of the semi-discrete scheme, we start from the
time discretization of the linearized version the Vlasov-Poisson model (4.2)(4.4)

n+1l fn
f + vamfln_H o Eln_'_lavf() - 0: (51)
)\—Q(E"“ —EY) = [ vfidv (5.2)
At 1 1 1 ) :

where the flux term as well as the electric field as considered implicit, following [11]. In
order to analyse the stability of the numerical scheme (5.1)-(5.2), it is customary, at this
point, to introduce the Fourier transforms in space of the perturbed distribution function
and of the electric field. The numerical scheme in Fourier space reads

AlTH—1 - J/C\ln Tn+1 n41

T AL v fi = E7T0, fo = 0, (5.3)
A—2(En+l —EN = [ vflrdv (5.4)
At 1 1 1 ’ .

where f”, E™ denote the spatial Fourier transform of f™, E™ respectively.

Let us follow the standard procedure for analyzing small amplitudes waves. Assuming
that all perturbed quantities evolve in time like exp(—iwt), the Fourier transforms in
space of f“ and E™ can be written as

fln = Cfexp(—iwnAt), E"=C, exp(—iwnAt), (5.5)

where C; and C, are functions of £. Seeking the solution of (5.3)-(5.4) under the form
(5.5) leads to

Cy [exp(—iwAt)(1 4 iAtév) — 1] = C. At exp(—iwAt)0, fo,
2

A :
CGE(eXp(—zwAt) —-1)= /vC'f dv,
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which gives

C.At exp(—iwAt)0, fo
exp(—iwAt)(1 + iAtév) — 1’

Cr= (5.6)
C’e%(exp(—iwAt) -1) = /'UCf dv. (5.7)

Since we deal with non-zero solutions, plugging the expression of C'y given by (5.6) in
(5.7) gives

)\2 Uavfo
— (exp(—iwAt) — 1) — At exp(—iwAt dv=20
At(eXp( iwht) —1) exp(—iw )/exp(—iwAt) — 1+ iexp(—iwAt)Atév) v
which can be rewritten as
)\2 . { Uavfo
E(exp(—zwAt) - 1) — ¢ | oplionn —1 - dv = 0. (5.8)
1ALE
Some basic computations lead to
. At Uavf()
1— — dv =0,
Z)\Qf(exp(—iwAt) —1) / v

wAt) — 1
eXp(Z;dAtg) = %. Since the following equality holds
/38”]00 dv —’d/?vfo dv,
a—v a—v

the discrete dispersion relation associated to the Vlasov-Ampere discretization is given by

xp(iwA Oy
¢ pA(zZ’Z 2 /~ fo g, (5.9)

a—v

with @ =

DP(w,&,0) =1+

Moreover, for all a € C, we have (see the Appendix for more details)

/ Oufo 4 _ 4 n a\/gexp(—oﬁ/?) (z — erﬁ(a/\/§)> .

o —v

This previous computations finally give the following discrete dispersion relation

e (145 gontge) (s © - (50} 10

with a = (exp(iwAt) —1)/(iAt). Remark that, since lima;oa = w, in the limit At tends
towards 0, we recover the continuous dispersion relation (4.5)

DAY =1+

lim D (w, &, A) = D(w, &, N).

At—0
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Thanks to this formulation of the dispersion relation (5.10), we are able to compute
w as a function of (&, A, At). The main goal consists in the determination of the behavior
of the small amplitudes perturbed waves: if Im(w) < 0, the perturbations are damped
and the numerical scheme is stable whereas if Im(w) > 0, the numerical scheme is then
unstable. The numerical results are resumed in the table 1. We can observe that the
stability condition has to be respected; indeed when At > A, we find Im(w) > 0 and the
numerical scheme is then unstable.

| At 1 | 107" ]| 10 [ 107 [ 107* |
107" || —0.8808 || —0.1506 | +45.55 || +91.8 [ +137.86
1072 || —0.8563 || —1.8028 | —1.7806 || +1381 +1842
1073 || —0.8518 || —1.7585 | —1.7377 || —1.7376 | +18420
107% || —0.8513 || —1.7538 | —1.7533 || —1.7331 || —1.7333
0 —0.8513 || —1.7533 || —1.7528 || —1.7326 || —1.7326

Table 1: Imaginary part of the root of the dispersion relation associated to the Vlasov-
Ampere model in the implicit case: Im(w) for & = 1 as a function of (At,\).

5.2 Stability analysis of the linearized Vlasov-RPE system

In this part, we perform the same analysis as previously for the Vlasov-RPE system

0

a—{—kv&mf—E&,f =0, (5.11)

—0, [()\2&,5 + p)E} = 0 S. (5.12)
The linearized Vlasov-RPE system around the Maxwellian steady state writes

8tfl + 'Ua:rfl - Elavf(] = 07 (513)

0,(N2OPEL + Ey) = —025, (5.14)

with Si(t,z) = [v?fi(t, z,v) dv.

In order to recover the continuous dispersion relation which permits to analyse the
small amplitudes waves, we assume that all perturbed quantities vary with (z,t) like
exp(i(§x — wt)). Thus equations (5.13)-(5.14) reduce to

i(w—&v)Cs + CO, fo = 0, (5.15)
i€(1 — W\, = 52/02C’f dv (5.16)

respectively. Solving the first of these equations for C'; and substituting into the integral
in the second, we formally get, (if C, is non-zero) the following dispersion relation

1w\ / v20, fo
- — + dv = 0.
§ 3 v —w

D:
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Using the fact that

’U2avf0 o 1 w? ava
/vf—wdv__5+?/v£—wdv

~ w2A2 1 8 f()
D(w,&,\) = ¢ 1—|—)\2€2/__Udv =0 (5.17)
3
which is the same dispersion relation as for the linearized Vlasov-Poisson equation multi-
plied by (wA/&)2.
We compute the time approximate solutions of the linearized Vlasov-RPE system
(5.13)-(5.14) with the following numerical scheme

we get

fn—l—l fn
— T 0o, frH — B, fo = 0, (5.18)
En+1 —920.E" Enfl

2 ixtg PO gt = —0; / v? " du, (5.19)

The stability analysis is done using the space Fourier transform of (5.18)-(5.19)

fn—i-l fn - -
At + o frtt — BT, fo = 0, (5.20)
ONE (E"+1 2E" + EnTY) 4B =¢ / 2fn d. (5.21)

Note that the equation (5.21) is still valid when & = 0.
As in the Vlasov-Ampere case, we use the decomposition (5.5) for the linear stability
analysis.

Seeking the solution of (5.20)-(5.21) under the form (5.5) leads to

Cf [exp(—iwAt)(1 + iAtév) — 1] = C. At exp(—iwAt)0, fo, (5.22)
)\2
ZE(eXp( iwAt) 4+ exp(iwAt) — 2) + iexp(—iwAt)C’ezﬁ/ngf dv. (5.23)

Since we deal with non-zero solutions, plugging the expression of C given by (5.22) in
(5.23) leads to

2

. : , § 2
ZA—ﬁ(cos(wAt) — 1) +iexp(—iwAt) = c /v Cydv.

Using the fact that

iC. [ v20,[o exp(—iwAt) — 1
20 dv = dv, with @ =
/U Cydv : A with a = N ,
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we get
A)N? WAL
—iaE S

Since the following equality holds

2
/?i&,fo dv—1+52/?vf0 dv,
a—v a—v

the discrete dispersion relation associated to the Vlasov-RPE discretization (5.20)-(5.21)

18
Dy fo

a—v

Uafo

a—v

) + i exp(—iwAt) = /

4N? At\ |,
DX w, €, )) = 1 — exp(—iwAt) + N sin? (WT) +a /

The previous computations give the following discrete dispersion relation

(5.24)

42 At
D = 1 — exp(—iwAt) + p sin (w2 )

( \fé 252 (iSign(f)—erﬁ(\fg))) (5.25)

Remark that, in the limit At tends towards 0, we recover the continuous dispersion relation
(5.17) N
Jim D3 (w,€,2) = ED(w, &, ).

The numerical solutions of the dispersion relation D5 are exposed in the tabular 2
where the imaginary part of w is written as a function of At and for different values of A.
As expected, the numerical scheme is stable for all values of A and At since all the values
of the imaginary part of w are negative.

| AL 1 | 107t [ 102 [ 107 [ 107* |
1071 ]| —0.8949 [ —2.0081 | —1.9817 || —1.9817 || —1.9817
1072 || —0.8573 || —1.7924 | —1.7708 || —=1.7707 | —1.7707
1073 || —0.8519 || —1.7574 | —1.7367 || —1.7366 || —1.7366
107% || —0.8514 || —1.7537 | =1.7332 || —1.7330 || —1.7330

0 —0.8513 || —1.7533 || —1.7328 || —1.7326 || —1.7326

Table 2: Imaginary part of the root of the dispersion relation associated to the Vlasov-
RPE model in the implicit case: Im(w) for £ =1 as a function of (At, A).

6 Numerical results

In this section, we propose to validate the method on a linear problem: a uniform quasi-
neutral stationary solution of the Vlasov-Poisson equation is perturbed. We then initialize

18



the Vlasov-Poisson equation with

U2

1 .
fo(z,v) \/%(1 + asin(kx)) exp( 5 ),
on the interval [0,27/k], with periodic boundary conditions in the space direction and
homogeneous Dirichlet boundary conditions in the velocity direction. As pointed out in
section 2, the total energy is preserved with time at the continuous level. As a diagnostic,
we then are interested in the time evolution of the kinetic, electrostatic and total energies
&, €, and &, respectively given by

1 A2
& = 3 //vadvdx, &= ?/EQdZB, E=E+ &

We also plot the electric field and the logarithm of the electric energy to accurately
study the damping coefficient computed in the previous section. The same numerical test
case has been studied in [9] using a PIC solver of the Vlasov equation coupled with the
Reformulated Poisson Equation.

The numerical parameters are the following: v,,,, = 6 where the velocity domain
extend from —v,,4; t0 Vynee, We use a number of cells N, = 128; the x parameter is taken
equal to Kk =1, @ << 1 to consider linear regimes, and At = 0.5Az/vyq-

The two different methods we detailed in section 3.1 are compared: the classical
method uses the Ampere equation to predict the electric potential at time t"*! whereas
the asymptotic stable approach uses the RPE discretization (3.16).

The initialization of the RPE scheme is done in the following way: we first compute
the initial density p° thanks to the initial data f° and we assume that p=* = p". Thanks
to (3.16), we are able to compute ¢!, the approximation of ¢ at time At. For the Ampere
approach, classically the initial density p" enables us to compute ¢° according to the
Poisson equation; then thanks to the initial current, we can advance the discrete Ampere
equation (3.11) to get ¢ at time At.

On Figs. 3, 4 and 5, we give the results obtained by the two approaches with A = 1
and Az = 2.4 x 1072, which results to a resolved case since (Az, At) < A. The kinetic,
electric and total energies are plotted on Fig. 3, the electric field at time ¢ = 2w, L and
t=10w, Yis plotted on Fig. 4 and the logarithm of the electric energy on Fig. 5. For both
methods, the results are stable since the stability constraint is fullfilled for the Ampere
approach. The total energy is particularly well conserved with time for both methods.
We can also observe that the results of the RPE approach are very close to the standard
one on the different quantities we plot. Moreover, the numerical damping coefficient is in
well agreement with that computed in the previous section for the two approaches. This
test validates the RPE method with respect to the standard one.

On Figs. 6, 7 and 8, the same numerical parameters are considered but A = 0.1. The
same conclusions as before are available for these results: both methods give accurate
results with respect to the total energy conservation and to the damping coefficient.
Moreover, the associated period of the wave is very close to the computed complex solution
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of the dispersion relation (w = 10.15 — ¢0.12 whereas numerically we obtain w = 10.2 —
i0.1).

Finally, Figs. 9, 10 and 11 present some results where A\ = 1072, In this case, the
stability condition is not (strictly) respected in the standard approach neither in the
RPE algorithm. However, both methods give stable results even if we can observe some
differences. Indeed, on Fig. 10, the Ampere approach makes appear some oscillations
on the electric field whereas the RPE one does not. The RPE method smoothes the
microscale oscillations and consequently gives stable results, even when A < Az. On Fig.
11 the logarithm of the electric energy is plotted as a function of time. Up to ¢ ~ 4w, L
both methods are nearly superimposed. First, the two curves present a highly damped
behavior since the damping coefficient equals —10; then, a second behavior appears with a
lower damping coefficient (about —1.73). We verify that these two behaviors are solutions
to the dispersion relation; as mentionned in the section 4, the relation dispersion has
several solutions, and two of them are captured by the numerical methods. From a
quantitative point of view, the numerical methods are able to recover accurately the
solutions of tables 1 and 2. For large times, the Ampere method seems to degenerate
whereas the RPE approach appears to be more robust (we can observe a recurrence effect
for example).

The last figures present numerical results for the RPE approach only. Indeed, when
A = 1073 or 107*, the Ampere approach gives rise to unstable results: the electric field
generated by the Ampere equation becomes very strong which pushes the particles outside
the velocity domain, so the total mass falls to zero. On Fig. 12, we observe that the
total energy is still well preserved with time even if a decay occurs at the beginning of
the simulation. This remains quite reasonable compared to the decay observed for PIC
simulations in [9] due to the large noise resulting from the PIC assignment procedure.
The use of a phase space grid solver seems to efficiently avoid this kind of phenomenom.
On Fig. 14 the logarithm of the electric field also presents two different behaviors. They
are both in a good agreement with the solutions of the dispersion relation we determined
in section 4. On the contrary, in the Ampere context, since there exists one solution of
the dispersion relation which gives rise to a positive imaginary part, the method leads to
unstable numerical results.

Finally, the asymptotic preserving property is investigated considering very small val-
ues of A (A = 107*,107®). We want to check if the numerical scheme tends towards a
numerical approximation of the limit sytem of the Vlasov-Poisson system as A goes to
zero. To that purpose, we compare our numerical results in which A = 108 with the
limit system (2.9)-(2.10). The numerical parameters are the same as previously. The
initial condition with o = 0 has to be considered to respect the quasi-neutrality condition
p = 1 initially. In this case, the electric field is null everywhere and the Maxwellian ini-
tial condition is then a stationary solution. We can observe that the RPE method gives
satisfactorying results since the electric field is very close to zero (see Fig. 16), and the
total energy is equal to m for large times. Fig. 18 shows that the total mass is equal to
one for the RPE method whereas the total mass associated to the Ampere approach fails
to zero, due to numerical instabilities. We can observe that for A close to zero, the RPE
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approach is able to numerically recover the quasi-neutral limit with a fixed grid of the

20.0

phase space, i.e without resolving the small scales as the Debye length for example.

7 Conclusion

In this paper, we used a semi-Lagrangian scheme to simulate quasi-neutral problems us-
ing the kinetic description. In order to overcome the drastic stability condition A < Ax,
following [9], a Reformulated Poisson equation coupled with an appropriate time dis-
cretization of the characteristics curves has been implemented. An asymptotic preserving
numerical scheme is then obtained, which enables to simulate quasi-neutral regimes. The

present strategy has a comparable cost to that of an standard discretization.

8 Appendix: Details for the computation of the com-
plex integrals

For the Ampere or the RPE case, we are led to compute integrals of the form

=

where f; is a Maxwellian

fo(v) =

1

—— exp(—v?/2).

V2r
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Figure 4: Comparison of the two methods: electric field as a function of the space variable
at t = 2w, ' (left pannel), and at t = 10 w,* (right pannel). Az =2.107%, A= 1.
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Figure 5: Comparison of the two methods: time evolution of log(||F|;2). Az =
2.1072, X\ = 1. The slope —0.85 corresponds to the numerical Landau damping rate.
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at t = 2w ' (left pannel), and at t = 10 w, " (right pannel). Az =2.1072, X =0.1.
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Figure 9: Comparison of the two methods: log(&) as a function of time (left pannel),
log(&;) as a function of time (right pannel). Az = 2.1072, X = 0.01.
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Figure 11: Comparison of the two methods: time evolution of log(||F||2).
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Figure 12: Numerical results for the RPE approach: log(&;) as a function of time (left
pannel), log(&;) as a function of time (right pannel). Az =2.1072, A = 0.001.
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Figure 13: Numerical results for the RPE approach: electric field as a function of the
space variable at t = 2 w " (left pannel), and at ¢ = 10 w, ' (right pannel). Az =
2.1072, X\ =0.001.
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2.1072, X\ = 0.001. The slope —1.73 corresponds to the numerical Landau damping rate.
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Figure 15: Numerical results for the RPE approach: log(&x) as a function of time (left
pannel), log(&;) as a function of time (right pannel). Az = 2.1072, X = 0.0001.
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Figure 16: Numerical results for the RPE approach: electric field as a function of the
space variable at ¢ = 2 wt (left pannel), and at ¢ = 10 w; ' (right pannel). Az =
2.1072, A = 0.0001.
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Figure 17: Numerical results for the RPE approach: time evolution of log(||F||2). Az =
2.1072, X = 0.0001. The slope —1.73 corresponds to the numerical Landau damping
rate.
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Figure 18: Comparison of the two methods: total mass as a function of time for A = 1074

(left pannel), and for A\ = 1078 (right pannel). Az = 2.1072

Let us detail the computation in the following. Using an appropriate contour in the
complex plane, we set

/ %o dv = Pr/ wdv + im0y fo(@), (8.1)

vV—

where the Cauchy principal value denoted by Pr is defined by

o8y [ g [0

Let us detail the computations associated to the first term which we call 1.

L [era)ep(=(v+a)?/?)
I = \/%P/ d

()

_ _\/%_W U exp(—(v + a)?/2)dv + aPr/ exp(—(vv+ a)2/2)dv} :

Let us call J the last term.
2
xp(— 2
;o Pr/exp( (v+a)?/2)

v

Chm {/‘5 exp(—(v + a>2/2)dv N /;OO exp(—(v + 04)2/2)dv]

6—0 0o v v

- %E% [/5 Ooexp(—on/Z) exp(—v?/2) (— exp(aw) + — exp(—aw)) dv}
— 2ep(-a?/2) [ expl-1/2)shiva)

29



It is possible to express this last integral as a function of the erfi function, erfi(x)

(2/+/x) [ exp(t?)dt. Indeed, noticing that

y(a:):/o ooexp(—v2/2)sh(vx)ci—v,

satisfies the differential equation y” — xy’ = 0, we get that

/0+°° exp(—vg/Q)Sh(va)% _ gerﬁ (i) |

V2

Hence, gathering the previous terms leads to an expression of

1

[=——= [\/% — aexp(—a2/2)ﬂerﬁ(a/\/§)} :

V2r

Finally, the initial complex integral we look for becomes

/c%fo dv — _L [\/ﬂ—aexp(—f/?)ﬂerﬁ(a/ﬁ)] —i\/gaexp(—cﬂ/Q),

v —Q \ 2T

= —1+ a\/gexp(—QQ/Q)erﬁ(a/\/i) - i\/ga exp(—a?/2),
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