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Deformation or spherical symmetry in 10 Be and the inversion of 1/2 --1/2 + states in 11 Be

For a core plus one neutron system like 11 Be we have calculated the energies of the 1/2 -and 1/2 + states assuming a deformation of the core deduced from the low energy 2 + state properties or taking into account the coupling of the neutron with this 2 + state interpreted as a spherical one-phonon state. We have shown that the two derivations yield identical results if the phonon energy is neglected in the second derivation and close results in the general case.

The problem of the 1/2 --1/2 + states inversion in 11 Be has been for long a challenge for theoreticians and has been the subject of a large number of publications assuming deformation [1,2,3,4] or spherical symmetry [5,6,7,8]. However we restrict our discussion to papers by Nunes et al. [1]and Vinh Mau [5] which are directly concerned with the inversion problem and have proposed simple models to examine its origin. These two theoretical papers which relate the inversion of the 1/2 --1/2 + states in 11 Be to the existence of a low energy 2 + state in 10 Be are often considered as conflicting . Indeed the first one relies on the assumption that this 2 + state at 3.36 MeV is a rotational state implying a deformation of the nucleus while the other assumes it to be a one-phonon vibrational state therefore works with a spherical nucleus. The parameter β 2 deduced from the measured B(E2) is in the first case interpreted as a deformation parameter and in the second case as a collective transition amplitude for the vibrational phonon. Intuitively we could already say that these two interpretations are not independent or contradictory because deformation comes from strong correlations between nucleons inside the nucleus which are taken into account implicitly when β 2 is interpreted as a collective amplitude. This equivalence shows up in large basis shell model calculations which are able to reproduce rotational as well as vibrational states [START_REF] Elliott | Proceedings of the Int. Conference on the Physics of Nuclear Structure at the Extrems[END_REF]. Moreover a recent analysis of p( 11 Be , 10 Be )d reaction [START_REF] Pitta | [END_REF] where the wave functions of the last neutron in 11 Be were taken from the two models leads to the same agreement with experiments.

The aim of this note is to show explicitly and analytically that there is a simple relation between the two derivations for 1/2 + and 1/2 -states. The basic assumptions of the two methods [1,5] are schematised in Fig. 1.

Let's start with the left-hand side of the figure which illustrates the model used by Nunes et al.. The neutron one-body potential is then written as a deformed Woods-Saxon potential by replacing the spherical radius R 0 by the deformed one, R 0 (θ, φ). It writes as:

V def nc (r, θ, φ) = V 0 (1 + exp[(r -R 0 (θ, φ))/a)]) -1 (1) R 0 (θ, φ) = R 0 1 + β 2 Y 0 2 (θ, φ) (2) 
what, by performing an expansion around R 0 , leads to the potential:

V def nc (r, θ, φ) ≃ V W S (r, R 0 ) -β 2 R 0 dV W S (r, R 0 ) dr Y 0 2 (θ, φ) (3) 
The second term of eq.( 3) is a correction to the spherical Woods-Saxon potential, V W S (r, R 0 ), and can be considered as a small perturbation. Therefore δǫ n , the corresponding modification 10 Be as proposed in ref. [1] (left side of the diagram) and in ref [5] ( right side of the diagram).

of the single neutron energy for a neutron state represented by the index n, may be calculated to lowest order in perturbation theory. For 1/2 + and 1/2 -states the first order term is zero and one has to go to second order which leads to:

δǫ n = β 2 2 R 2 0 λ =n < n| dV W S dr Y 0 2 |λ >< λ| dV W S dr Y 0 2 |n > ǫ n -ǫ λ (4) 
where |n >, ǫ n and |λ >, ǫ λ are the eigenvectors and eigenvalues of the spherical potential, V W S , for states n and λ respectively. The summation over λ runs over the complete set of neutron states except state n. Performing the calculation of matrix elements leads to:

δǫ n = 1 10 β 2 2 R 2 0 λ =n (-1) jn-j λ R 2 nλ ǫ n -ǫ λ |< l n , j n ||Y 2 ||l λ , j λ >| 2 (5) 
where < l n , j n ||Y 2 ||l λ , j λ > is the reduced matrix element of Y 2 and R nλ the radial integral:

R nλ = ∞ 0 r 2 dr φ * αnlnjn (r) φ α λ l λ j λ (r) dV W S (r) dr (6) 
with obvious notations.

Going to the right hand side of Fig. 1 which illustrates the model of ref. [5] and after calculation of the particle-phonon coupling diagrams for phonons of angular momentum L and energy E L , one obtains the modified one-body potential [5] as:

V sph nc (r, r ′ ) = V W S (r)δ(r, r ′ ) + L β 2 L R 2 0 2L + 1 λ,M F L,λ φ * λ (r) dV W S (r) dr Y M * L (θφ) φ λ (r ′ ) dV W S dr | r=r ′ Y M L (θ ′ , φ ′ ) (7) F L,λ = 1 -n λ ǫ n -ǫ λ -E L + n λ ǫ n -ǫ λ + E L (8)
where n λ is the occupation number of state λ and φ λ (r) the three dimensional wave function of the neutron calculated in the Woods Saxon field. The potential is non local, has spherical symmetry and looks very different of the deformed potential of eq.( 3). However it is again a perturbation to V W S and to first order gives for the contribution of a 2 + phonon as:

δǫ n = 1 5 β 2 2 R 2 0 λ,M F 2,λ < n| dV W S dr Y M 2 |λ >< λ| dV W S dr Y M * 2 |n > (9) = 1 10 β 2 2 R 2 0 λ =n (-1) jn-j λ ( 1 -n λ ǫ n -ǫ λ -E 2 + n λ ǫ n -ǫ λ + E 2 )|R nλ | 2 |< l n , j n ||Y 2 ||l λ , j λ >| 2 (10) 
where the term λ = n is automatically eliminated for j n = 1/2 because of angular momentum coupling. By comparing the two formulae, eqs.( 5) and [START_REF] Elliott | Proceedings of the Int. Conference on the Physics of Nuclear Structure at the Extrems[END_REF], one sees that they are identical if one takes E 2 , the phonon energy, equal to zero. Because E 2 appears in the denominators only, it is easy to see that eq.( 10) yields a correction which is smaller than given by eq.( 5).

However the phonon energy is small (few MeV) and in the limit of very strong collectivity is close to zero then it should not introduce a too large difference between the two derivations.

This result tells us that one may not consider the two models as contradictory and that it is not justified to reject one or the other as it is sometimes done.

For other states with j n = 1/2 we have not found such a simple relation between the two derivations because the perturbative first order contribution to δǫ n is non zero for the potential of eq.( 3).

The theoretical expressions of the potentials have been used in different ways. In ref. [1] β 2 was taken from the measured value of the B(E2) and the strengths of Woods-Saxon and spin-orbit potentials fitted to the experimental neutron energies in 11 Be. In the papers following ref. [5] the Woods-Saxon and spin-orbit potentials were fixed accordingly to their known properties in normal nuclei [START_REF] Bohr | Nuclear Structure[END_REF] and the strength of the second term of eq.( 7) was parametrised assuming a surface form factor, ( dV W S (r) dr ) 2 , as suggested by theory. When applied to reaction problems involving 11 Be, the two potentials give the same (good) results [START_REF] Pitta | [END_REF] not only for 1/2 + and 1/2 -but also for 5/2 + states.

We have shown that assuming a deformed mean field model or taking account of twobody correlations in a spherical model leads to close results for the inversion of 1/2 + and