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Abbreviations

AMCA: amino-methyl coumarin

CPEPD: 1,1'-(2-chloro-1,4-phenylene)bis(1H-pyrrole-2,5-dione)

GEF: Guanine nucleotide exchange factor

Mant: N-methylanthraniloyl

NPPD: 1-(3-nitrophenyl)-1H-pyrrole-2,5-dione

PEPD: 1,1'-(1,2-phenylene)bis(1H-pyrrole-2,5-dione)

RhoGEF: Rho GTPase guanine nucleotide exchange factor
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Abstract

Background information

RhoGTPases are involved in many biological processes and participate in cancer

development. Their activation is catalyzed by exchange factors (RhoGEFs) of the Dbl

family. RhoGEFs display proto-oncogenic features, thus appearing as candidate

targets for anticancer drugs. Dominant negative RhoGTPase mutants have been

widely used to block RhoGEF signaling. However, these tools suffer from limitations,

due to the high number of RhoGEFs and the complex mechanisms that control

RhoGTPase activation.

Results

RhoG-T17N is a poor inhibitor of its exchange factor TRIO-GEFD1 in vivo: although it

binds to TRIO-GEFD1, RhoG-T17N does not block the downstream signaling. Using

the Yeast Exchange Assay we show that in the presence of TRIO-GEFD1, RhoG-

T17N can bind to its effectors, which illustrates how negative mutants may produce

misleading interpretations and emphasizes the need of new types of RhoGEF

inhibitors. In that prospect, we adapted the Yeast Exchange Assay method to identify

RhoGEF inhibitors. Using this novel approach, we screened a 3,500 chemical

compound library and identified a potential inhibitor of TRIO-GEFD1. This molecule

inhibited TRIO-GEFD1 in vitro. Among the chemical analogs of this compound, we

identified two molecules with better inhibitory activity. The three TRIO-GEFD1

inhibitors had no effect on ARHGEF17 and ARNO, two exchange factors for RhoA

and Arf1 respectively.

Conclusions

The development of RhoGEF inhibitors appears as a necessary tool for the study of

Rho GTPase signaling pathways. The Yeast Exchange Assay adaptation we present
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here is suitable to screen for chemical or peptide libraries and identify candidate

inhibitors.
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1- Introduction.

Small GTPases of the Rho family regulate actin cytoskeleton dynamics, cell

morphology, adhesion, migration, intracellular trafficking, embryonic development,

apoptosis and transformation (Etienne-Manneville and Hall, 2002). They are inactive

when bound to GDP and active when bound to GTP. When active, they can bind to

their effectors and activate downstream signaling cascades. Rho GTPase activation

is catalyzed by Guanine Nucleotide Exchange Factors (GEFs) of the Dbl and the

CZH/DOCK families. In mammals, there are 65 Dbl-related (Rossman et al., 2005)

and 11 DOCK-related proteins (Meller et al., 2005) and each GEF activates one or

several GTPases. The exchange domain is responsible for GTPase activation.

RhoGEFs contain additional domains involved in lipid and protein binding that are

supposed to regulate their localization and biological activity.

The interaction between the GTPase and the exchange factor is a complex

mechanism involving multiple domains of either partner. Even though several three-

dimensional structures of GTPase-GEF complexes have been solved, the exact

mechanisms of substrate selectivity by the exchange factors are not known (Erickson

and Cerione, 2004; Rossman et al., 2005). Mutant analyses revealed that point

mutations at identical positions could have distinct effects depending on the GTPase

and the exchange factor involved. For instance, the T37A mutant of RhoA and the

equivalent T35A mutant of Cdc42 do not respond to activation by their respective

exchange factors Lbc and Cdc24 (Li et al., 1997). In contrast, the T35A mutant of

Rac1 still responds to TRIO-GEFD1 (Gao et al., 2001). Similarly, while the F39E

mutant of RhoA cannot be activated by Lbc, it retains the ability to be activated by

Dbl (Li and Zheng, 1997). In that context, the development of RhoGEF specific

inhibitors would be valuable tools to decipher RhoGTPase signaling pathways.
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As suspected for a long time (Ron et al., 1988), Dbl proteins are involved in

various human pathologies including cancer (Kanekura et al., 2004; Orrico et al.,

2004). Abnormal exchange factor function was described in various pathologies

(Ridley, 2004) in particular due to their oncogenic potential (Karnoub et al., 2004).

Therefore, components of RhoGTPase signaling pathways appear as potential

anticancer therapeutic targets (Sahai and Marshall, 2002). RhoGTPases have a wide

range of tissue distribution, participate in different signaling cascades and can be

activated by several exchange factors in the same cell. In contrast, Rho GEFs have a

narrower tissue distribution and are activated downstream of specific membrane

receptors (Zheng, 2001). Thus, beside their applications for the study of RhoGTPase

signaling pathways, RhoGEF inhibitors would also be of major interest to develop

new drugs.

Much effort is being made to isolate RhoGEF inhibitors and the interface

between the GTPase and the exchange factor may be an interesting target site

(Aznar and Lacal, 2001; Ramirez De Molina et al., 2001). Nevertheless, only one

RhoGEF specific inhibitor was isolated so far: the peptide TRIPα, which inhibits

RhoA activation mediated by TRIO-GEFD2, the second exchange domain of TRIO

(Schmidt et al., 2002). TRIPα was initially isolated in a two-hybrid screen of a random

peptide library according to its ability to bind TRIO-GEFD2 (Schmidt et al., 2002).

Structural analyses of the interface between the GTPase and the exchange factor

can also help for the design of specific interactors by in silico docking (Cherfils, 2001;

Erickson and Cerione, 2004). Applying such structure-based virtual screening

approach, a specific inhibitor of Rac activation was identified that targets the

RhoGEF recognition groove of the GTPase (Gao et al., 2004).
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We previously reported the Yeast Exchange Assay, a rapid qualitative test to perform

wide range screens for GEF specificity (De Toledo et al., 2000). Here we present a

novel method based on the Yeast Exchange Assay, which is suitable to perform

screens for chemical or peptide inhibitors of GEF activity. To illustrate this

application, we present a screen of a library of chemical compounds and the

identification of an inhibitor of TRIO-GEFD1, the first exchange domain of TRIO that

is an activator of RhoG (Blangy et al., 2000).
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2- Results.

2.1- RhoG-T17N does not act as a dominant negative to inhibit TRIO-

GEFD1.

Based on early studies on Ras proteins, the negative T17N mutation is thought

to generate a nucleotide-free GTPase that is expected to have a high binding affinity

for the exchange factor and thereby to function as a dominant negative mutant

(Farnsworth and Feig, 1991; Feig and Cooper, 1988a; Feig and Cooper, 1988b).

Accordingly, two hybrid experiments showed that RhoG-T17N bound efficiently to its

exchange factor TRIO-GEFD1(Blangy et al., 2000), whereas it did not bind to the

RhoA and RhoC exchange factor TRIO-GEFD2 (Figure 1A). When expressed in

REF-52 cells, TRIO-GEFD1 induced the formation of lamellipodia and dorsal ruffles

(Figure 1B, a-b) characteristic of RhoG activity (Blangy et al., 2000; Vignal et al.,

2001). Surprisingly, RhoG-T17N did not inhibit TRIO-GEFD1 induced actin

remodeling (Figure 1B, c-e). RhoG-T17N and TRIO-GEFD1 appeared to colocalize in

the regions of actin polymerization, in dorsal ruffles and at the leading edge of the

cell (arrow in Figure 1B, panels c-e). These results suggest that the two proteins can

also interact in fibroblasts but that RhoG-T17N does not act as a competitive

dominant negative inhibitor of the exchange factor TRIO-GEFD1. Substitution of

D118, another conserved residue among Rho GTPases, also generates a nucleotide

binding deficient GTPase as shown for Cdc42 (Tu et al., 2002). According to

previous observations (Blangy et al., 2000), RhoG-D118A efficiently inhibited TRIO-

GEFD1 induced lamellipodia and dorsal ruffles formation (Figure 1B, f-h). Contrarily

to RhoG-T17N, RhoG-D118A acted as a dominant negative mutant on TRIO-GEFD1,

as shown by the inhibition of actin remodeling. RhoG-T17N thus has an unexpected

activity towards TRIO-GEFD1.
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To get a better understanding of these observations in REF-52 cells, we further

studied RhoG-T17N and RhoG-D118A in the Yeast Exchange Assay (De Toledo et

al., 2000), a GEF assay based on the two hybrid system (Figure 1C, a). Kinectin is a

known effector of RhoG (Vignal et al., 2001). When expressed in yeast, RhoG-wt, -

T17N or -D118A did not bind to kinectin (Figure 1C, b). The further expression of

TRIO-GEFD1 promoted the binding of RhoG-wt to kinectin as reported earlier (De

Toledo et al., 2000). Unexpectedly, RhoG-T17N also bound to kinectin when TRIO-

GEFD1 was expressed, whereas RhoG-D118A did not (Figure 1C, b). The binding of

RhoG-T17N to kinectin was not observed when TRIO-GEFD2 (Figure 1C, b). Similar

results were obtained using two other RhoG effectors unrelated to kinectin (Vignal et

al., 2001): the RabGAP RhoGIP56/AS160 (Kane et al., 2002; Larance et al., 2005)

and the TRAF3 interacting protein RhoGIP122/T3JAM (Dadgostar et al., 2003;

Vigorito et al., 2004), showing that this observation is not restricted to kinectin (our

unpublished observations). As TRIO-GEFD1 did not interact directly with kinectin

(Figure 1D), these results show that RhoG-T17N can bind to its effectors when the

exchange factor TRIO-GEFD1 is expressed.

These observations in yeast are consistent with the results in REF-52 cells and

suggest that RhoG-T17N is not an efficient inhibitor of TRIO-GEFD1.

2.2 Establishment of a GEF inhibitor screening method based on the

Yeast Exchange Assay.

To identify RhoGEF inhibitors, we took advantage of the Yeast Exchange

Assay. We speculated that in this system we could measure the inhibition of GEF

activity by adding a chemical compound or a peptide as a fourth partner (Figure 2A).

The only RhoGEF inhibitor described so far is the peptide TRIPα  that binds to and
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inhibits TRIO-GEFD2 (Schmidt et al., 2002). In yeast, TRIO-GEFD2 activated RhoC

and promoted its binding to its effector ROCK (Figure 2B, a). When TRIPα was

expressed as a fourth partner, the binding of RhoC to ROCK was lost (Figure 2B, b).

This indicates that TRIPα can inhibit TRIO-GEFD2 activity in yeast. Moreover,

TRIPα expression did not affect RhoC activation by another exchange factor:

ARHGEF17 (De Toledo et al., 2000), showing that the peptide is also specific for

TRIO-GEFD2 in this assay (Figure 2B). Thus, the Yeast Exchange Assay appears as

an appropriate method to screen libraries and identify directly peptides or chemical

compounds that interfere with GEF exchange activity.

Yeast has long been regarded as a tempting system to screen for drugs, in

particular inhibitors of protein-protein interaction (Vidal and Endoh, 1999). To

increase the screening sensitivity for Rho GEF inhibitors, we modified the TAT7

strain to make it permeable to a wider range of chemical compounds including

hydrophilic or charged molecules. For that purpose, we inserted a Kanamycin

resistance cassette into the erg6 gene. Disruption of erg6, which encodes a

methyltransferase in the ergosterol biosynthetic pathway, is not lethal in

Saccharomyces cerevisiae. The disruption affects ergosterol synthesis and

membrane function, erg6 deficient yeasts being more sensitive to a broad range of

compounds among which BrefeldinA, the inhibitor of the ARF GTPase exchange

factor Sec7 (Chardin and McCormick, 1999; Shah and Klausner, 1993; Vogel et al.,

1993). To verify that erg6 disruption was efficient in the context of the Yeast

Exchange Assay, RhoG-wt, Kinectin and TRIO-GEFD1 were expressed in both

erg6+ and erg6- yeasts. Cell permeabilization in liquid nitrogen confirmed that ß-

galactosidase expression induced by TRIO-GEFD1 expression was similar in both

yeast strains (Figure 2C, a). We then compared yeast permeability by plating both
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strains on X-gal supplemented medium. Whereas the unmodified TAT7 strain

remained white (Figure 2C, b: ERG6+), the strain in which erg6 was disrupted readily

turned blue (Figure 2C, b: ERG6-), indicating that the disruption of erg6 helped X-gal

entry in yeast.

The disruption of erg6 is compatible with the study of RhoGEF activity in the

Yeast Exchange Assay. Moreover, such mutation may facilitate the entry of a wider

range of chemical compounds in yeast.

2.3- Identification of chemical inhibitors of TRIO-GEFD1.

In order to identify potential TRIO-GEFD1 inhibitors we developed a two-step

procedure combining yeast and in vitro exchange assays. We first used the erg6 -

strain expressing RhoG-wt, Kinectin and TRIO-GEFD1 to screen a series of 3,500

chemicals (see Materials and Methods). Compounds were selected for their ability to

inhibit growth in selective HIS- medium, indicative of the inhibition of GTPase

activation, and having no effect on growth in non-selective HIS+ medium, to discard

cytotoxic drugs. Such molecules are candidate inhibitors of TRIO-GEFD1 mediated

RhoG activation (Figure 2A). We further tested the selected compounds for their

ability to inhibit TRIO-GEFD1 catalyzed nucleotide release by RhoG in vitro, using

[3H]-GDP dissociation assays with purified recombinant proteins.

Through this procedure, we selected 1-(3-nitrophenyl)-1H-pyrrole-2,5-dione

(C10H6N2O4, NPPD, Figure 3A) as a potential TRIO-GEFD1 inhibitor, which was

then analyzed in vitro in more details. [3H]-GDP dissociation assays showed that pre-

incubation of TRIO-GEFD1 with NPPD significantly reduced its activity on RhoG, the

longer the preincubation, the higher the inhibition (Figure 3B). Preincubation of the

inhibitor with the GTPase did not increase its inhibitory activity (our unpublished

data). NPPD inhibition was dose dependent. Nucleotide exchange was reduced from
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70% down to 55% in the presence of 50 µM NPPD and to only 35% in the presence

of 100 µM inhibitor (Figure 3C). Finally, kinetic analysis confirmed that NPPD

significantly slowed down the nucleotide exchange reaction catalyzed by TRIO-

GEFD1 (Figure 3D). These results show that NPPD can function as an inhibitor of

TRIO-GEFD1 in vitro.

To identify more potent inhibitors, we tested a series of 23 NPPD structural

analogs. We measured the initial exchange rate using N-methylanthraniloyl (Mant)-

GTP as a fluorescent readout (Hemsath and Ahmadian, 2005). Among the molecules

tested two were more efficient inhibitors than NPPD: 1,1'-(1,2-phenylene)bis(1H-

pyrrole-2,5-dione) (C14H8N2O4, PEPD, Figure 4A, a) and 1,1'-(2-chloro-1,4-

phenylene)bis(1H-pyrrole-2,5-dione) (C14H7ClN2O4, CPEPD, Figure 4A, b). At a

concentration of 100 µM, corresponding to a 1000 fold molar excess compared to the

exchange factor, NPPD reduced the initial exchange rate by 48.7%, PEPD and

CPEPD inhibited the initial exchange rate by 92.4 and 99.8% respectively (Figure 4B,

a-d). Dose response experiments confirmed that PEPD and CPEPD were more

efficient than NPPD at inhibiting TRIO-GEFD1 catalyzed nucleotide exchange by

RhoG (Figure 4B, a-d): the IC50 of the compounds were 115.5 µM for NPPD, 55.8 µM

for CPEPD and 51 µM for PEPD (Figure 4B, d). Of the other analogs of NPPD

tested, 10 compounds had a similar inhibitory activity on TRIO-GEFD1 as NPPD and

11 compounds had not effect on the exchange reaction (our unpublished

observations).

In the absence of TRIO-GEFD1, Mant-GTP remained stably bound to RhoG in

the presence of NPPD, CPEPD or PEPD (Figure 5A, a, b and c respectively)

showing that these compounds did not affect the stability of nucleotide binding to

RhoG. We finally studied the specificity of the inhibitors. We tested the effects of
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NPPD, PEPD and CPEPD on nucleotide exchange by RhoA catalyzed by

ARHGEF17 (Figure 5B, a, b and c respectively) (De Toledo et al., 2000) and by Arf1

catalyzed by ARNO (Figure 5C, a, b and c respectively) (Antonny et al., 1997).  In the

presence of a 1000 fold molar excess of NPPD (a), CPEPD (b) and PEPD (c) as

compared to the exchange factor, the Mant-GTP exchange reactions catalyzed by

ARHGEF17 and ARNO were not or slightly inhibited (Figure 5D), as compared to the

inhibition of TRIO-GEFD1 by these compounds (Figure 4B, d).



15

3- Discussion

In this report we show that RhoG-T17N does not inhibit its exchange factor

TRIO-GEFD1, which illustrates the limitation of using dominant negative

RhoGTPases as inhibitors. In order to develop new tools to study RhoGTPase

signaling, we developed a novel strategy derived from the Yeast Exchange Assay to

screen for inhibitors of exchange factor mediated GTPase activation. Using this

approach we further present the screening of a chemical compound library and the

identification three chemical inhibitors of TRIO-GEFD1.

Rho GTPases mutants such as Rac1-T17N and Cdc42-T17N have been widely

used to inhibit the downstream signaling of exchange factors in vivo. Based on

original studies on Ras, these mutants are expected to function by sequestering the

exchange factors away from the endogenous GTPase. Several examples do support

this model: for instance, expression of Rac1-T17N inhibits membrane ruffling induced

by TIAM-1 overexpression (Michiels et al., 1995) and Cdc42-T17N inhibits p38 MAP

kinase activation induced  by ßPIX overexpression (Lee et al., 2001). Nevertheless,

some RhoGTPase T17N mutants may retain the ability to bind their effectors and

activate downstream signaling pathways in the presence of an exchange factor, as

we illustrate here in the case of RhoG-T17N. This suggests that the stable binding to

TRIO-GEFD1 may induce conformational changes allowing RhoG-T17N to bind to its

effectors. These observations further support the hypothesis that the binding of the

GTPase to the effector may occur within a three partner complex also involving the

exchange factor, as suggested for the Dbl, Cdc42 and PAK1 (Wang et al., 2004).

This mechanism should participate to the spatial regulation of signaling cascade

activation in the cell. We show here that in the presence of TRIO-GEFD1, RhoG-

T17N can bind to its effector, whereas Cdc42-wt but not T17N can form a complex
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with Dbl and PAK1 (Wang et al., 2004). Thus, the T17N mutation may not be

equivalent in all RhoGTPases; furthermore, a T17N GTPase may also behave

distinctly towards its different GEFs, as reported earlier for other point mutations

(Gao et al., 2001; Li et al., 1997; Li and Zheng, 1997). The use of dominant negative

mutants also suffers further limitations such as the occurrence of gain of function

phenotypes, as shown recently for Cdc42-T17N (Czuchra et al., 2005) and specificity

towards the exchange factor. Rho GTPase signaling involves 18 small GTPases and

more than 80 RhoGEFs in mammals (Meller et al., 2005; Rossman et al., 2005). Rho

GTPases share more than 55% homology and several RhoGEFs can activate each

GTPase. Thus Rho GTPase mutants may be non-discriminative between exchange

factors and interfere non-specifically with signaling cascades. In that context, detailed

analysis of the complex Rho signaling pathways requires the development of new

tools such as specific RhoGEF inhibitors.

We have developed an approach based on the Yeast Exchange Assay, which

allows the direct screening of peptide or chemical compounds that inhibit the

exchange reaction. We have disrupted the erg6 gene to render yeast sensitive to a

wider range of chemical compounds. The disruption is also convenient when

performing peptide library screening as it helps rapid identification of interesting

peptides: upon plating ERG6 deficient yeasts on X-gal plates, colonies turn blue

when the exchange factor is active and stay white when a peptide is expressed that

inhibits the exchange reaction. Using this screening procedure, we identified NPPD

as a potential inhibitor of TRIO-GEFD1. We confirmed that NPPD inhibits TRIO-

GEFD1 catalyzed nucleotide exchange by RhoG in vitro. Among chemical analogs of

NPPD, we identified CPEPD and PEPD as more efficient inhibitors of TRIO-GEFD1.

These compounds did not affect the stability of guanine nucleotide binding on RhoG
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and were able to discriminate between GTPases and exchange factors. Therefore,

they appear as good inhibitors of TRIO-GEFD1. We tested a series of 23 analogs of

NPPD. The analysis of the active and inactive compounds suggests that the 1-

(phenyl)-1H-pyrrole-2,5-dione structure is necessary to obtain efficient inhibition of

TRIO-GEFD1. Substitutions of small groups at position 4 of the phenyl do not affect

inhibition while bigger groups lead to compounds unable to inhibit the exchange

reaction. Nevertheless, only 24 compounds were tested and more combinatorial

chemistry analyses should be performed to delineate the active backbone and

optimize the structures of NPPD, CPEPD and PEPD and further improve their

inhibitory effect. Chemical analysis would also be necessary to design molecules with

improved solubility and chemical stability.

In conclusion, these results show that the Yeast Exchange Assay is well

adapted for high throughput screens of Rho GEF inhibitors and a valuable tool to

provide candidate molecules for further studies. Such inhibitors would be most

valuable for the study of RhoGTPase signaling pathways and may also have further

therapeutic applications.
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4- Materials and methods

4-1 Plasmids, yeast strain constructs transformation and growth.

The aptamer TRIPα fused to thioredoxin and thioredoxin alone (Schmidt et al.,

2002) were fused to the myc tag and inserted with p25MET promoter in pRs422

plasmid that contains the ADE2 selection marker. Arf1 and ARNO proteins were a

gift from Bernard Guibert and Jean-Christophe Zeeh, Gif sur Yvette, France. Other

yeast, bacteria and cell expression vectors were described earlier (Blangy et al.,

2000; De Toledo et al., 2000; Vignal et al., 2001). Yeasts were transformed with LiAc

using standard protocols (De Toledo et al., 2000). Yeasts were grown in complete

YDP medium or minimal SD medium supplemented with the appropriate aminoacids

and containing 0.1 M glucose. For inhibitor screen, yeasts were grown in 96 well

plates in selective His- medium containing 2 mM 3-AT, 2% DMSO and 0.2 mM

inhibitor. Each plate was done in duplicate and yeast growth was measured at OD570.

All chemical compounds were purchased from ChemBridge (San Diego, CA, USA).

The disruption of erg6 gene by insertion of a kanamycin resistance cassette

was amplified from strain Y00568 (erg6, isogenic to BY4741 with YML008c::kanMX4,

a gift from Matthias Peter, Zurich, Switzerland) with the following primers: UPERG6

5 ' -GCTGTTGCCGATAACTTCTTCATTGC-3 '  and DWNERG6 5 ' -

CTGATAGAAAATACTGGTCGTTTGCCACG-3', using Platinium Taq Polymerase

High Fidelity (Invitrogen). The PCR fragment was then transformed into TAT7 and

transformants were selected on plates containing 200 µg/ml G418. Disruption of erg6

gene by homologous recombination was verified by PCR on genomic yeast DNA

using primers in erg6 located upstream and downstream UPERG6 and DWNERG6,

respectively: UPUPERG6 5'-CGAAGATTGGTGAGAAACCTC-3' and

DWNDWNERG6 5'-GTCAATACGTTTGTATGCAGTG-3' as well as primers in the
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kanamycin resistance cassette: KAN787 5'-TTGCCATCCTATGGAACTGC-3' and

KAN1023 5'-ACGACTGAATCCGGTGAGAA-3'.

4.2 Cell lines, transfection and immunofluorescence.

Rat embryo fibroblasts (REF-52) were cultured at 37°C in the presence of 5%

CO2 in DMEM supplemented with 10% fetal calf serum as described (Blangy et al.,

2000). Cells were plated on 12 mm glass coverslips 16-24 hours before being

transfected using the lipofectamine method as described by the supplier (Invitrogen).

4 hours after transfection, the medium was changed, cells were fixed 20 hours later

for 10 minutes in 3.7% formalin in PBS. After a 2 minute permeabilization in 0.1%

Triton X-100 in PBS and a 30 minute incubation in 0.1% BSA in PBS, cells were

processed for immunofluorescence. Expression of myc-epitope tagged proteins was

visualized after incubation with the 9E10 anti-myc monoclonal antibody followed by

incubation with biotin conjugated sheep anti mouse IgG (1/200 dilution, Amersham)

and then with in streptavidin texas red (1/200 dilution, Amersham). Cells were

stained for actin using amino-methyl coumarin (AMCA)-conjugated phalloidin (0.5

U/ml, Sigma). Cells were washed in PBS and mounted in Mowviol (Aldrich) and

observed using a DMR Leica microscope with a 63x planochromat lens. Images were

recorded using a Hamamatsu CCD camera, transferred to Adobe Photoshop.

Transfections were repeated at least three times and an average of 100 cells were

examined.

4.3 Radioactivity and fluorescence -based guanine nucleotide exchange

assays.

GST-fused GTPases and exchange factors were expressed in E. coli, purified

on glutathione-S-Sepharose 4B beads (Amersham) as described previously (Blangy
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et al., 2000; De Toledo et al., 2000). Recombinant Arf1 and ARNO (Antonny et al.,

1997) were purified as described (Beraud-Dufour et al., 1998).

Radioactivity based guanine nucleotide exchange assays were performed as

described (Blangy et al., 2000; De Toledo et al., 2000). Briefly, 0.3 µM [3H]GDP-

loaded RhoG was mixed with 1 mM GTP and 0.1 µM TRIO-GEFD1 in exchange

buffer (50 mM Tris pH7.5, 2 mM MgCl2) containing 5% DMSO and the inhibitor at the

desired concentration. Reactions were performed at 20°C. At appropriate time points,

reaction was stopped with 50 mM Tris pH7.5, 10 mM MgCl2 and the amount of

[3H]GDP-loaded RhoG was determined by filtration on 0.2 µm nitrocellulose as

described (Blangy et al., 2000). The GEF activities were presented as radioactivity

bound to RhoG relative to samples without GEF defined as 100%.

Fluorescence based guanine nucleotide exchange assays were performed using N-

methylanthraniloyl (mant)-GTP (Molecular Probes) in a FLX800 microplate

fluorescence reader (BIO-TEK Instruments) at 25°C. Exchange assays containing

0.1 µM GEF were incubated for 30 minutes in reaction buffer (20 mM Tris-HCl pH7.5,

50 mM NaCl, 2 mM MgCl2, 1 µM Mant-GTP and 50 µg/ml BSA) containing 5%

DMSO and the inhibitor at the desired concentration. The exchange reaction was

started by addition of 1µM GTPase. The relative Mant fluorescence (excitation = 360

nm, emission = 460 nm) was monitored for 10 minutes and measurements were

taken every 10 seconds. The rates (kobs) of guanine nucleotide exchange were

determined by fitting the data as single exponential association or decay equations

using Graphpad Prism 4 as described (Rossman et al., 2003).
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Figure legends

Figure 1: RhoG-T17N mutant does not inhibit the exchange factor TRIO-

GEFD1. A: Two-hybrid protein interactions. Interaction between RhoG-wt, -G12V or -

T17N fused to LexA DNA binding domain (LexA) and TRIO-GEFD1 (GEFD1, aa

1232-1429), TRIO-GEFD2 (GEFD2, aa 1849-2450) or Kinectin (aa 630-935) fused to

GAL4 activation domain (GAL-AD) was visualized in TAT7 by monitoring the lacZ

reporter gene expression using a filter assay for ß-galactosidase activity. B: Effects

of RhoG-T17N and -D118A on TRIO-GEFD1 induced actin reorganization. REF-52

cells expressing myc tagged TRIO-GEFD1 alone (a and b) or with GFP tagged

RhoG-T17N (c-e) or -D118A (f-h) were processed for detection of myc epitope (a and

d), GFP fluorescence (c) and filamentous actin (b and e). Bar in b, 10 µM. C: Yeast

Exchange Assay. (a) Principle of the yeast exchange assay (De Toledo et al., 2000).

Wild type GTPase does not bind to its effector and the ß-galactosidase reporter gene

is not expressed unless a specific GEF is expressed (b) ß-galactosidase activity in

TAT7 expressing RhoG-wt, -T17N, -D118A or -G12V fused to LexA DNA binding

domain, Kinectin RhoG binding domain fused to GAL4 activation domain and no

exchange factor (none) or myc tagged TRIO-GEFD1 (GEFD1) or TRIO-GEFD2

(GEFD2). D: Two-hybrid protein interactions performed as in A. Interaction between

RhoG-T17N and kinectin fused to LexA DNA binding domain (LexA) and TRIO-

GEFD1  or Kinectin (aa 630-935) fused to GAL4 activation domain (GAL-AD)

Figure 2: Adaptations of the Yeast Exchange Assay to isolate Rho GEF

inhibitors. A: Principle of the GEF inhibitor detection system based on the Yeast

Exchange Assay. Wild type GTPase does not bind to its effector and reporter genes

are not expressed (a) unless a specific GEF is expressed (b). Addition of a peptide or

a chemical compound that inhibit the GEF results in GTPase inactivation and the lack
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of expression of the reporter genes (c). B: Specific inhibition of TRIO-GEFD2 by the

TRIPα peptide in the Yeast Exchange Assay. ß-galactosidase activity in TAT7

expressing RhoC-wt fused to LexA DNA binding domain, GAL4 activation domain

fused to ROCK, no GEF (none) or myc tagged TRIO-GEFD2 or ARHGEF17 and myc

tagged thioredoxin (a: - TRIPα) or thioredoxin fused to TRIPα (b: + TRIPα). C: The

disruption of erg6 allows X-gal entry into yeast. Detection of ß-galactosidase activity

with a filter assay after yeast breakage with liquid nitrogen (a) or directly on X-gal

containing plates (b) in TAT7 yeast bearing the erg6 gene disruption (ERG6-) or not

(ERG6+) and expressing RhoG-wt fused to LexA DNA binding domain, GAL4

activation domain fused Kinectin and no GEF (none) or myc tagged TRIO-GEFD1.

Figure 3: Characterization of 1-(3-nitrophenyl)-1H-pyrrole-2,5-dione as a

TRIO-GEFD1 inhibitor. In vitro exchange assays were performed by measuring the

decrease with time of radioactivity associated with RhoG. The data shown are

representative of three individual experiments. Means and SEM are shown for

duplicate measures.  A: Structure of 1-(3-nitrophenyl)-1H-pyrrole-2,5-dione (NPPD),

B: 0.1 µM TRIO-GEFD1 (GEFD1) was incubated for 30 minutes in exchange buffer

with 5% DMSO or for 30, 15 or 5 minutes in 5% DMSO containing 100 µM NPPD. 0.3

µM [3H]-GDP loaded RhoG and 1 mM GTP were then added and the amount of

radioactivity associated with the GTPase was measured after 15 minutes. 100% was

determined by incubating [3H]-GDP loaded RhoG alone in exchange buffer

containing 1 mM GTP and 5% DMSO for 15 minutes (-GEF). C: 0.1 µM TRIO-

GEFD1 (GEFD1) was incubated for 30 minutes in exchange buffer containing 5%

DMSO alone or with 50 µM or 100 µM NPPD. 0.3 µM [3H]-GDP loaded RhoG and 1

mM GTP were then added and the amount of radioactivity associated with RhoG was

measured after 5 minutes. 100% was determined by incubating [3H]-GDP loaded
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RhoG alone in exchange buffer containing 1 mM GTP and 5% DMSO for 5 minutes (-

GEF). D: 0.1 µM TRIO-GEFD1 was incubated for 30 minutes in exchange buffer with

5% DMSO (squares) or 5% DMSO containing 100 µM NPPD (lozenges). 0.3 µM [3H]-

GDP loaded RhoG and 1 mM GTP were then added and the amount of radioactivity

associated with RhoG was measured after 0, 1, 2, 5, 10 and 15 minutes. As a

control, [3H]-GDP loaded RhoG was incubated alone in exchange buffer containing 1

mM GTP and 5% DMSO (triangles).

Figure 4: Analysis of TRIO-GEFD1 inhibition by NPPD, PEPD and CPEPD.

In vitro exchange assays were performed by measuring the increase in fluorescence

emitted with time upon incorporation of Mant-GTP into RhoG. A: Structure of 1,1'-

(1,2-phenylene)bis(1H-pyrrole-2,5-dione) (PEPD, a) and 1,1'-(2-chloro-1,4-

phenylene)bis(1H-pyrrole-2,5-dione) (CPEPD, b). B: 0.1 µM TRIO-GEFD1 was

incubated with 1 µM RhoG in the presence of NPPD (a), CPEPD (b) and PEPD (c) at

0 µM (DMSO), 25 µM, 50 µM and 100 µM. (d) Kobs, inhibition of the exchange

reactions shown in a-c and IC50 of the compounds.

Figure 5: Analysis of NPPD, PEPD and CPEPD specificity. In vitro exchange

assays were performed by measuring the amount in fluorescence emitted with time

upon binding of Mant-GTP into RhoG. A: 1 µM of Mant-GTP loaded RhoG was

incubated alone (DMSO in a-c) or with 100 µM NPPD (a), CPEPD (b) or PEPD (c) or

with the exchange factor (TRIO-GEFD1 in a-c). B: 1 µM RhoA was incubated alone

(no GEF, a-c) or with 0.1 µM ARHGEF17 alone (DMSO in a-c) or in the presence

NPPD (a), CPEPD (b) and PEPD (b) at 100 µM, corresponding to a 1000 fold molar

excess compared to the exchange factor. C: 1 µM Arf1 was incubated alone (no

GEF, a-c) or with 0.02 µM ARNO alone (DMSO in a-c) or in the presence NPPD (a),

CPEPD (b) and PEPD (b) at 20 µM, corresponding to a 1000 fold molar excess
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compared to the exchange factor. D: Kobs and inhibition of the exchange reactions

shown in B (RhoA+ARHGEF17) and C (Arf1+ARNO).



Blangy et al. Figure1

A
RhoG:

wt

G12V

T17N

KinectinGEFD2GEFD1
GAL-AD:

B

C

a

Exchange factor :

none GEFD1 GEFD2

+ GAD-kinectin

RhoG:

wt

G12V

T17N

D118A

b

ß-gal +

Specific
GEF

GTPase
GTP

LexA

effector

ß-gal -

GTPase
GDP

LexA

effector
G
A
D G

A
D

c

hg

e

f

d

ba

RhoG-T17N

RhoG-D118A

TRIO-GEFD1

TRIO-GEFD1

TRIO-GEFD1

Actin

Actin

Actin
D

LexA :

GAL-AD :

GEFD1 Kinectin

Kinectin

RhoG-T17N



ß-gal +
HIS+

ß-gal -
HIS-

Specific GEF

Specific GEF

Inhibitor

ß-gal -
HIS-

A

B

TRIO-
GEFD1

none

ERG6+ ERG6-

none

none
TRIO-

GEFD1

TRIO-
GEFD1

ERG6-

a b

a b c

Blangy et al.,  Figure 2

C

ERG6+

effector

GTPase
GDP

LexA

G
A
D

LexA

effector

GTPase
GTP

G
A
D

GTPase
GDP

LexA

effector

G
A
D

none

TRIO-
GEFD2

a

none

ARH-
GEF17

- TRIP α

TRIO-
GEFD2

+ TRIP α

b

ARH-
GEF17



A B

C

Blangy et al.,  Figure 3

0

20

40

60

80

100

 - GEF
GEFD1
DMSO

GEFD1
NPPD
50µM

GEFD1
NPPD
100µM

% [3H]-GDP bound RhoG at 5 minutes

D

% [3H]-GDP bound RhoG at 15 minutes

 - GEF
GEFD1 
DMSO
30 min

GEFD1
NPPD 
30 min

GEFD1
NPPD 
15 min

GEFD1
NPPD 
5 min

0

20

40

60

80

100

1-(3-nitrophenyl)-1H-pyrrole-2,5-dione 

% [3H]-GDP bound RhoG

time (min)
0

20

40

60

80

100

0 5 10 15

TRIO-GEFD1 + NPPD

TRIO-GEFD1

No GEF

N N
+

O

O

O

O

NPPD



A

Blangy et al.,  Figure 4

a

NN

O O

O O

1,1'-(1,2-phenylene)bis(1H-pyrrole-2,5-dione)

PEPD

b

NN

O

O

O

O

Cl

1,1'-(2-chloro-1,4-phenylene)bis(1H-pyrrole-2,5-dione)

CPEPD

B

200 400 600
0

250

500

750

Time (s)

RFU
c: PEPD

25 µM

DMSO

100 µM

50 µM

200 400 600
0

250

500

750

Time (s)

RFU b: CPEPD
25 µM

DMSO

50 µM

100 µM

200 400 600
0

250

500

750

Time (s)

RFU a: NPPD
25 µM

DMSO

50 µM

100 µM

d

Inhibitor: NPPD CPEPD PEPD

0 µM
25 µM 2.37 (0.4) 1.84 (22.7) 2.12 (10.9)
50 µM 2 (16) 1.45 (39.1) 1.14 (52.1)
100 µM 1.22 (48.7) 0.18 (92.4) 0.005 (99.8)

IC50 (µM) 115,5 55,8 51

2.38 (0)
Kobs (%inhibition)



A

Blangy et al.,  Figure 5

B   RhoA +ARHGEF17

C  Arf1 + ARNO

a: NPPD

200 400 600
0

400

800

1200

Time (s)

RFU

0 500 1000 1500
70

80

90

100

Time (s)

%Mant-GTP bound RhoG

a: NPPD

no GEF

DMSO

NPPD

200 400 600
0

250

500

750

Time (s)

RFU a: NPPD

no GEF

DMSO

NPPD

DMSO

NPPD

TRIO-GEFD1

c: PEPD

c: PEPD

%Mant-GTP bound RhoG

0 500 1000 1500
70

80

90

100

Time (s)

no GEF

DMSO

PEPD

c: PEPDRFU

200 400 600
0

250

500

750

Time (s)

no GEF

DMSO

PEPD

DMSO

PEPD

TRIO-GEFD1

RFU

200 400 600
0

400

800

1200

Time (s)

b: CPEPD

b: CPEPD

%Mant-GTP bound RhoG

0 500 1000 1500
70

80

90

100

Time (s)

no GEF

DMSO

CPEPD

b: CPEPD
RFU

200 400 600
0

250

500

750

Time (s)

no GEF

DMSO

CPEPD

DMSO

CPEPD

TRIO-GEFD1

RFU

200 400 600
0

400

800

1200

Time (s)

D
Inhibitor: none NPPD CPEPD PEPD

GTPase+GEF:
RhoA+ARHGEF17 1.0  (0) 0.93 (9.2) 0.94 (8.3) 0.90 (11.7)

Arf1+ARNO 7.76 (0) 7.16 (7.7) 6.14 (20.9) 7.6 (2.1)

Kobs (%inhibition)


