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ABSTRACT

A novel valveless micro impedance pump is proposed and
analyzed in this study. The pump is constructed of a upper
glass plate, two glass tubes, a PDMS (polydimethylsilxane)
diaphragm with an electromagnetic actuating mechanism
and a glass substrate. The actuating mechanism comprises
an electroplated permanent magnet mounted on a flexible
PDMS diaphragm and electroplated Cu coils located on a
glass substrate. The upper glass plate, PDMS diaphragm
and the glass substrate were aligned and assembled to
form a micro channel with a compressible section
surrounded by a rigid section, creating an acoustic
mismatch in the channel. The electromagnetic force
between the magnet and the Cu coils causes the
diaphragm to deflect and then creates the accumulative
effects of wave propagation and reflection at the junction
of the compressible and rigid sections. The resulting
pressure gradient in the fluid drives the flow from the inlet
to the outlet of the micropump. The constituent parts of
the electromagnetic actuator, namely the diaphragm, the
microcoils, and the magnet are modeled and analyzed in
order to optimize the actuator design. The design models
are verified both theoretically and numerically and the
relationships between the magnetic force, diaphragm
displacement, and diaphragm strength are established. The
magnitude of the magnetic force acting on the flexible
diaphragm are calculated using Ansoft/Maxwell3D FEA
software and the resulting diaphragm deflection simulated
by ANSYS FEA software are found to agree with the
theoretical predictions. Different diaphragm shapes are
investigated and their relative strength and flexibility are
compared. It is found that a circular PDMS diaphragm
represents the most appropriate choice for the actuating
mechanism in the micropump. The desired diaphragm
deflection of 15 m is obtained using a compression

force of 16 N , generated by a coil input current of 0.9A.
The diaphragm deflection can be regulated by varying the
current passed through the microcoil and hence the flow
rate can be controlled. The valveless micro impedance
pump proposed in this study is easily fabricated and can
be readily integrated with existing biomedical chips. The

results of the present study provide a valuable
contribution to the ongoing development of Lab-on-a-
Chip systems.

1. INTRODUCTION

The valveless pumping effect now known as the Liebau
phenomenon was first reported by Gerhart Liebau in 1954
and was subsequently examined by Borzi [1]. For the
Liebau phenomenon, the application of a periodic force at
a position which lies asymmetric with respect to the
system configuration generates a valveless pumping effect.
Rinderknecht et al. [2] proposed a new valveless,
substrate-free impedance-based micropump driven by
electromagnetic actuation. An impedance pump is
composed of an elastic section connected at the ends to
rigid sections. In the valveless micro impedance pump
reported by Wen [3], a PZT actuator was used to deflect a
thin film of Ni. The resulting resonance of the diaphragm
vibration generated a larger diaphragm deflection, which
consequently produced a greater driving pressure. The
micropump design developed in this study considers
particularly the requirement to achieve the desired flow
rate while maintaining a safe operation. The flow rate in
the micropump is directly related to the volume change of
the channel caused by the deflection of the diaphragm.
Therefore, the first stage in the design procedure is to
specify the diaphragm deflection required to generate the
desired flow rate. The second stage involves designing a
micropump structure capable of producing a sufficient
actuating force to achieve this desired deflection in a safe
manner.

2. DESIGN

The valveless micro impedance pump illustrated
schematically in Fig. 1 incorporates PDMS walls, a
PDMS diaphragm attached to a wet-etched glass upper
plate, a permanent magnet electroplated on the upper
surface of the diaphragm, and Cu coils electroplated on a
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lower glass substrate. When a current is passed through
the coils, the resulting magnetic force between the coils
and the permanent magnet compresses the diaphragm
causing a volume change of the channel. This creates an
acoustic impedance mismatch in the fluid, which in turn
establishes a pressure gradient within the fluid as a result
of wave interference. The pressure potential then drives
the fluid from the inlet to the outlet. In the present study,
the desired membrane deflection is specified as 15 m
and the microchannel is assigned similar dimensions to
that in Wen’s study [3] to construct the models and 
improve on the designed micropump.

2.1. Electromagnetic force
The electromagnetic force between a permanent

magnet and a microcoil which are located along the center
line of the coil is given by Feustel et al. [4]:

)/( zBVMF zmzz  (1)

where zM is the magnetization of the magnet, mV is the

volume of the magnet, and zB is the flux density
produced by the coil in the vertical direction. Equation (1)
indicates that the magnetic force is proportional to the
change in flux density produced by the coil in the vertical
direction. To optimize the actuator performance, the
magnet should be placed in such a position that the
gradient of the vertical magnetic field is maximized. The
magnetic field, zB , and the gradient of the magnetic field,

zBz  / , are calculated and analyzed in coil design
using Ansoft/Maxwell 3D FEA software.

2.2. Actuator Component Design
2.2.1. Diaphragm design
This study chooses PDMS as the diaphragm material.
PDMS has the advantages of good flexibility, excellent
biological compatibility and a high yield strength (elastic
modulus E = 750 KPa, Poisson’s ratio 5.0 , and yield
strength 130y KPa [5]). Therefore, the PDMS

diaphragm provides a safe and efficient pumping effect
even under resonance conditions. In the study, the PDMS
diaphragm is in the form of an edge-clamped thin circular
plate with a uniform load q exerted over a central circular
area. The plate radius is deliberately specified as
1955 m such that its surface area is equivalent to that of
the rectangular plate in Wen’s study [3]. The maximum 
deflection occurs at the center of the plate and the
equation of displacement was derived by Timoshenko and
Woinowsky-Krieger [6], which is:

  )4/3(ln16/ 22
max  DFcw (2)

where qcF 2 is the total load acting on the plate,

ca / , where a is the radius of the plate and c is the
radius of theloaded area which also is the area “occupied” 
by the magnet. The limiting force for a circular plate with
clamped edges and a uniformly distributed load over its
central circular area was derived in the study [6,7], and
which is:

 )36/(4 222  kkhF ylmt  when 5.4k
(3a)

 )3log12)(1/(8 222  kkkhF ylmt 
when 5.4k (3b)

where y is the yield strength of the diaphragm material.

As stated previously, this study specified a desired
deflection value of 15 m , i.e. the maximum deflection
value (the channel depth) of the micro impedance pump
presented by Wen et al.[3]. The force required to achieve
this deflection is determined from Equation (2) to be
16 N with 6.1k . In this study, the thickness of the
PDMS diaphragm is specified as 80 m since the limiting
force of the diaphragm with this thickness is far more than
the force of 16 N which is required to achieve the
desired deflection of 15 m .

2.2.2. Magnet design
The magnet considered in this study is a CoNiMnP
electroplated permanent magnet with a magnetic
coercivity of 47.7 kA/m and a magnetic remanence of
0.2~0.3 T [8]. In determining an appropriate magnet
radius, c, it is important that the diaphragm is of a
sufficient area to move freely and to be operated safely.
Therefore, the radius of the current magnet is specified as
1222 m and its thickness as 20 m where having an

appropriate value of 6.1 and the maximum
retentivity of 0.3 T. Note that these parameters are
deliberately assigned conservative values to ensure that
the diaphragm will not collapse during operation.

2.2.3. Coil design
The coil design parameters include the inner radius of the
coil, the spacing of the turns, and the cross-sectional area
of the conductor material. Initially, this study examined
the interrelationships between the coil parameters by
considering single planar coils with a constant inner radius
of 400 m , but varying the number of turns, the width of
conductor and the spacing of turns. The results yield some
interesting findings, e.g. (a) for coils of the same spacing,
width and pitch, no appreciable enhancement of the
magnetic force is obtained by increasing the number of
turns in the coil; (b) for coils with the same spacing, pitch,
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and number of turns, the magnetic force increases as the
coil width is decreased; and (c) for coils with the same
width, pitch, and number of turns, the magnetic force
reduces as the spacing is increased.

3. RESULTS AND DISCUSSION

To achieve the required actuating force of 16 N and
operation safely, this study specified a spiral planar coil
with the parameters presented in Table 1, also the
required diaphragm and magnet with the parameters are
present in table 2 and table 3.he paper title (on the first
page) should begin 44 mm (1.73 inch) from the top edge
of the page, centered, completely capitalized, and in
Times 12-point, boldface type. The authors’ name(s) and 
affiliation(s) appear below the title in capital and lower
case letters. Papers with multiple authors / affiliations may
require more lines.

The vertical magnetic field produced by the coil from
the coil plane and its derivative were calculated for coil
input currents of 0.2-1.0 A using Ansoft/Maxwell 3D FEA
software. In Fig. 2, it can be seen that the maximum
gradient of the magnetic field occurs at a point located
620 m above the planar coil. Therefore, the magnet
should be located at this position to optimize the
electromagnetic actuation effect. Clearly, the value of the
magnetic force generated by the actuator depends on the
value of the coil input current. Fig. 3 illustrates the
variation of the magnetic force calculated by
Ansoft/Maxwell3D FEA software for input currents in the
range 0.2 to 1.0 A. It is observed that at these values of
input current, the magnetic force varies from 4.58 to
18.4 N . With the magnet located at the optimal position
of 620 m above the planar coil, an input current of 0.9

A is sufficient to produce the actuating force of 16 N
required to generate the desired diaphragm displacement
of 15 m .

ANSYS FEA software was used to model the
deflection at the center of the circular diaphragm for
magnetic forces in the range 4.58 to 18.4 N . It was
found that the deflection ranged from 4.2 to 17 m . To
validate the models established for the actuator
components, the theoretical results for the deflection at the
center of the diaphragm were calculated using Equation
(2). Fig. 4 plots the theoretical and simulation results for
the variation of the diaphragm deflection with the
magnetic force. It is apparent that a good agreement exists
between the two sets of results. When choosing a suitable
diaphragm for the current actuator, this study considered a
circular plate, a square plate and a rectangular plate. Note

that the various plates were of equivalent dimensions
(same surface areas and same thickness) and had similar
material properties. Fig. 5 plots the variation in the
diaphragm displacement with the applied load for each
type of diaphragm. The ANSYS FEA simulation results
for the plate deflection under an applied force of
18.4 N are presented in Fig. 6. It can be seen that under
this magnitude of applied force, the circular plate
undergoes a significantly greater deflection than the other
plates. In other words, the circular plate is more readily
deflected than the square or rectangular plates.

4. CONCLUSIONS

(1) This study has designed and modeled a novel
valveless micro impedance pump incorporating an
asymmetric force chamber, a flexible polymer membrane,
and a permanent magnetic actuator. The parameters of the
actuator components have been optimized.

(2) A novel design method has been proposed for the
micro impedance pump. This method enhances the
micropump performance while maintaining a safe
operation. The corresponding analysis models have been
verified theoretically and numerically.

(3) The permanent magnetic actuator presented in
this study is capable of producing a sufficiently large
displacement of the biocompatible PDMS membrane.
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Table 1. Parameters of designed spiral planar coil.

Parameter Material Width Pitch Spacing

Data Cu 25μm 20μm 20μm

Parameter Turns Inner radius Outer radius Resistance ( at 20 )℃

Data 10 1250μm 1725μm 3.23Ω
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Table 2. Parameters of designed diaphragm.

Parameter Material Radius Thickness Limiting force

Data PDMS 1955μm 80μm 377μN

Table 3. Parameters of designed magnet

Parameter Material Radius Thickness Remanence(Br)

Data CoNiMnP 1222μm 20μm 0.3T

Figure 1 Schematic illustration of valveless micro
impedance pump with PDMS diaphragm driven by
electromagnetic force.
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Figure 2 Variation of zBz  / with vertical distance
from coil plane for designed coil with input currents in
range 0.2 to 1.0 A.

Current(A)

Figure 3 Variation of magnetic force generated by
designed actuator with input currents in range 0.2 to 1.0A.

Figure 4 Theoretical and simulation results obtained for
deflection at center of diaphragm with magnetic forces
given in Fig.3.

Figure 5 Variation of deflection at center of different
plates with applied magnetic force.
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(a) square plate

(b) rectangular plate

(c) circular plate
Figure 6 Simulation results for deflection of different
plates under actuating force of 18.4 N .
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