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ABSTRACT

Advances in material processing such as silicon
micromachining are opening the way to vacuum
microelectronics. Two-dimensional vacuum components
can be fabricated using the microsystems processes. We
developed such devices using a single metal layer and
silicon micromachining by DRIE. The latter technological
step has significant impact on the characteristics of the
vacuum components. This paper presents a brief
summary of electron emission possibilities and the design
leading to the fabrication of a lateral field emission diode.
First measurement results and the aging of the devices are
also discussed.

1. INTRODUCTION

The development of silicon micromachining led to the
development of a variety of MEMS devices. High Q
resonators are for instance useful in selective filtering or
sensor applications. However they need to be operated at
low pressures to minimize viscous damping. On the other
hand, vacuum electronics components can now be
fabricated with similar processes. Associations of MEMS
devices with vacuum electronics are thus possible and can
enable new functions.

Using a single mask fabrication process, our work
enables the rapid prototyping of vacuum micro-
components. The first prototypes, including lateral diodes
and triodes, have been produced with a low-cost
aluminum process, consisting of one metal layer, one
lithography step and silicon micromachining. The effects
of the process optimization on the characteristics will be
assessed. Early measurement results and first aging study
will show some drift of their performances over time.
New applications such as the real time monitoring of the
vacuum level in various MEMS devices could use this
effect. Different configurations using more suitable and
stable field emitter materials such as tungsten will be
studied in the future.
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2. ELECTRON EMISSION AND VACUUM
MICROELECTRONICS

Despite the progress made in solid-state electronics,
vacuum tube-based components are still employed but
only in very specific applications. Indeed some of their
performances are still unattained by solid-state devices
[1]. Systems sustaining high powers and frequencies still
use vacuum tubes. Indeed, the scattering probability of
electrons traveling in vacuum is very low, leading to a
quasi ballistic transport. Devices with cut-off frequencies
in the range of tens of gigahertz are feasible with such
technologies. Moreover their radiation hardness and
power handling make them indispensable in space and
harsh environment applications.

2.1. Thermionic Emission
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Figure 1 : Thermionic Emission Principle

Before the emergence of solid state electronics after the
invention of the semiconductor transistors by Bardeen,
Brattain and Shockley in the 1950s, most of the circuits
were using vacuum tubes [4]. Since then, vacuum tubes
disappeared from most applications mainly due to the
difficulty to integrate them as their semiconductor
counterparts. Indeed, vacuum tubes were using the
thermo-ionic principle, shown in Figure 1, to generate a
current flow. Electrons at the Fermi level have enough
thermal energy to be extracted into vacuum. The
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corresponding current density is given by the Richardson-
Dushmann equation [5]:
4
J=AT?e*
where A4 is Richardson’s constant, 7 is the temperature in
Kelvin, ¢ is the metal work function and k& is the
Boltzmann constant.

The typical operating temperature of such tubes is thus
above 800°C, making high integration density difficult.
The advances in micro- and nano-fabrication techniques
have led to a renewed interest in vacuum electronics.
Indeed thanks to micromachining technology, their
integration on silicon substrate is now possible, opening
the way to vacuum microelectronics [1]. Micrometer and
sub-micrometer-spaced electrodes can now be fabricated
thanks to the dimensions achievable by lithography. High
electric fields can be obtained by applying relatively
small voltages, allowing electron tunneling and/or field
emission. Such devices can furthermore be integrated
with MEMS devices [2]-[3] allowing the design of
relatively new functions.

2.1. Field Emission

Energy
(eV)

Metal Vacuum
Vacuum Level
Potential

Barrier
Height

.

.
% Electrical Field
"

.
[
— O~ A= O
Fermi Level Y Tunneling Electron
'

Position
(Hm)

Figure 2 : Field Emission Principle

Contrary to thermionic emission, field emission does not
require to heat a cathode. Indeed, it is based on the
principle represented in Figure 2. Electrons tunnel from
the Fermi level into vacuum under high electric field.
Most part of the energy brought into the system is thus
used to extract electrons, increasing the emission
efficiency compared to the thermionic principle.

Field emission is principally governed by the Fowler-
Nordheim theory, which uses the so-called triangular
barrier approximation. The current density equation at
0°K is given by [1]:

o
J(F)=— s \/aF ex
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where F'is the electric field, x4 is the Fermi level, % is the
Plank constant, g is the charge and m is the particle mass.
In various works [6]-[7], this equation is simplified and
leads to the following one:

J(F) = ap F* exp(—byy ! F)

where apy and bpy are two constants depending on ¢ only
if u= ¢, which is true for metals.

Kl
Apy =—
¢ , K; and K, constants.
_ 3/2
bFN = K2¢

For a given electric field, the current density only
depends on the material properties. The electrical field
and the materials are the two parameters that can be tuned
in order to increase the electron emission for a given
geometry.

In fact F=pV, high electrical field values can be
obtained by increasing either the voltage V' or the field
enhancement factor f, which is preferable for low voltage
operation. This factor § only depends on the geometry.
The sharpest the tip is, the greater is this factor. The
distance between electrodes can be reduced but it should
be kept in mind that electrical breakdown can occur under
intense fields [8].

New materials such as carbon nanotubes or diamond-
like carbon either increase f§ or decrease ¢. They allow the
emission of electron with good uniformity and rather high
current up to 1pA per tip. They are for example used in
Field Emission Displays [9].

For a given geometry, the field enhancement factor
can be tuned during the fabrication process. For a two-
dimensional device fabricated on silicon, the Deep
Reactive Ion Etching step would allow the tuning of this
factor f, therefore changing the characteristics of the
devices.

3. VACUUM MICRODIODES DESIGN
Cathode Anorie

Guca¥.

Figure 3 : Vacuum Diodes Test Structure
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Early electrical measurements were planned to take place
at atmospheric pressure, therefore low current levels were
expected. Then, 20 parallel planar diodes as in Figure 3
were designed in order to increase the total emission
current. The electrodes were spaced with 2pm-wide air-
gap. The periodicity of the diode structure was chosen to
minimize the self screening effect that can occur when
two cathodes are too close to each other.

4. FABRICATION PROCESS

Resist Resist
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Silicon Silicon
(a) Oxide growth and (b) Mask formation and

Aluminum Deposition Aluminum etching

Resist Resist
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(c) Oxide etching (d) Silicon etching by

DRIE and Mask removal
Figure 4 : Main Fabrication Process Steps

A schematic process flow is illustrated in Figure 4. Only
one photomask combined with one metal layer are needed
to achieve the fabrication of a lateral field emission diode.
First of all, a thick thermal oxide was grown on the top of
the silicon wafer. The early prototypes were fabricated
with a 4000 A SiO2 layer on a P-type substrate. The
metal was then deposited using either an electron beam
evaporator or by sputtering as shown in Figure 4 (a). A 1
pm-thick aluminum film was used on our first devices. A
hard mask was then formed by standard lithography and
by etching the aluminum layer in chlorine plasma at step
(b). The thermal oxide was then removed by fluorine
anisotropic plasma etching through the mask as in Figure
4 (c). Deep Reactive Ion Etching, DRIE of silicon was
then performed to release the emitter tip using an Alcatel
601E reactor. Varying process parameters allowed the
control of the silicon etching profile. In fact, the length of
the lateral etching and its deepness were easily controlled
by alternating etching and passivation steps of the so-
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called Bosch process. The photoresist was finally stripped
by O2 plasma at step (d).

As this structure tends to bend due to the residual
stress of the silicon oxide layer, a misalignment between
the two electrodes can happen. To avoid this, a High
Resistivity Silicon (HRS) wafer can be used. Indeed the
Si02 layer purpose is to ensure a good insulation between
the metallic electrodes. This can also be done with HRS,
and it simplifies the process since neither thermal
oxidation nor oxide etching are needed.

This alternative process using HRS substrates can be
very fast and offers prototypes in a matter of hours. The
silicon oxide removal by plasma etching was indeed the
slowest step of the process.

5. CHARACTERIZATIONS

5.1. Optical Characterization
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Figure 5 : SEM Picture of a Diode Structure
Fabricated with Various DRIE Parameters

Optical characterizations were performed on the first
prototypes. An interferometric optical profiler was used
to control the silicon etching depth, while a scanning
electron microscope was used to visualize the emitter
profile and tip apex, as shown in Figure 5. Even though a
standard lithography was used on the first samples, a
100nm-apex was found, which theoretically helps to
enhance the electrical field.

5.2. Electrical Characterization

Preliminary measurements at atmospheric pressure were
performed on the first prototypes. The on-wafer test setup
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illustrated in Figure 6 was composed of two electrical
probes connected to the anode and the cathode. A voltage
was applied through a Hewlett-Packard 4140B pico-
amperemeter.

Silicon

Figure 6 : Electrical Test Setup

5.3. Surface Conditioning Influence

Six months after their fabrication, some devices were
characterized and then cleaned by acetone and
orthophosphoric acid to remove the oxide layer formed
on the aluminum surface. A very noisy response was
recorded before the cleaning procedure. Current peeks
during the measurement disappeared after the surface
reconditioning as shown in Figure 7. However a smaller
current value was detected, suggesting that impurities and
protrusions can participate to the emission process.

25210 I(V) Characteristic for 20 parallel diodes with 2um
spaced electrodes at atmospheric pressure
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Figure 7 : I(V) Curve of 20 Parallel Vacuum Diodes
Before and After Surface Reconditioning

The device composed of 20 parallel diodes with 2
micrometers-spaced electrodes showed a turn-on voltage
of 25V and a current of 0.3uA when biased at 100V in
atmospheric pressure before cleaning. The surface
reconditioning increased the turn-on voltage to about 70V
and reduced the current to 0.15uA at 100V. The devices
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are thus sensitive to the emitter surface chemistry and
state.

Impurities deposited on non-encapsulated emitters can
participate to the conduction, thus increasing the current
but also instabilities given the high electric field between
the anode and the cathode. Gases can also modify the
emitter surface chemistry and the real work function.
Oxygen found in the atmosphere can oxidize the surface
of the conductor, consequently adding a barrier to the
electron emission. Low work function materials are
unfortunately more reactive chemically. Field emission
devices must therefore be encapsulated in an inert
environment such as nitrogen or even vacuum.

6. PACKAGING MONITORING

Pressures below 10™ mbar are typically required to ensure
good lifetimes and operating conditions in vacuum
microelectronics [1]. The devices can still be operated at
higher pressures but electrons would then collide with
residual gases, possibly creating heavy ions, which would
then bombard the emitters.

Such sensitivity to the pressure can allow the design of
real-time monitoring structures inside micromachined
vacuum cavities. The pressure level inside the cavity can
be measured through a change of quality factor in MEMS
resonating structures [10]-[11] or a frequency drift [12].
Field emitters would allow such monitoring without any
mechanical structures. Indeed, the electron scattering
probability and the surface chemistry are influenced by
the gas type and pressure inside the cavity, thus
modulating the current. New applications of our vacuum
microelectronics devices could then be studied.

7. CONCLUSION

First prototypes of lateral vacuum microdiodes were
fabricated and characterized at atmospheric pressure. The
aging of the structures was studied. Changes in the
current characteristics are mainly due to impurities and
surface chemistry modifications. Such sensitivity to the
environment can further be exploited in applications like
real time vacuum monitoring in MEMS devices. Further
experiments by encapsulating field emitters using either
aluminum or other materials in an inert gas or in vacuum
will be conducted in the near future. However this latter
solution requires the use of getter materials, gas absorbers
activated at high temperatures, to insure a low pressure
level. Indeed, desorption will occur, various gases would
be then trapped inside the cavity and increase the overall
pressure.
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