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ABSTRACT 
 
The packaging effects of an acoustic particle velocity 
sensor have been analysed both analytically and by means 
of finite volume simulations on fluid dynamics. The 
results are compared with acoustic experiments that show 
a large magnification of the output signal of the sensor 
due to the mounting inside a cylindrically shaped 
package. The influences of the package consist of a 
decrease of the output signal at frequencies below 1 Hz, 
whereas signals with frequencies above 10 Hz are 
amplified by a constant factor of approximately 
3.5 (11 dB). The analysis leads to an improved insight 
into the effects of viscosity and fluid flow that play a role 
in flow sensing and opens the way for further 
optimisation of sensitivity and bandwidth of the sensor. 

 

1. INTRODUCTION 
 
The ‘Microflown’ is a micromachined acoustic sensor 
that measures the particle velocity instead of the sound 
pressure, the quantity that is measured by conventional 
microphones [1-6]. Originally a flow sensor [7], it has 
been optimised for sound measurements. The sensor 
consists of two or three thin platinum wires (length 
1500 µm, spacing 240 µm) on a silicon nitride carrier, 
that are electrically heated to about 600 K (see fig. 1). 
The metal pattern acts as temperature sensor and as 
heater. When a particle velocity is present, the 
temperature distribution around the resistors is 
asymmetrically altered. The temperature difference, and 
therefore the resistance difference, between the sensor 
wires is proportional to the particle velocity associated 
with the sound wave. 
For measurement purposes, the sensor is placed in a 
package: a 7 cm long cylindrical probe of 13 mm 
diameter with two small cylinders of about 5 mm 
diameter at its end, with the microflown in between (see 
fig. 2). These two tiny cylinders on top protect the 
fragile wires of the sensor while the holder contains the 
electrical connections. Moreover, this packaging of the 

sensor influences also the fluid flow. It improves its 
sensitivity by a factor 3.5, or approximately 11 dB. That 
observation raised the need for a detailed investigation 
of these packaging effects, in order to optimise the 
sensor performance further. In this paper, this 
investigation is achieved both by a numerical analysis 
using a finite-volume simulation program, and by a 
theoretical description of the flow profile around the two 
small cylinders of the package. 
 

 
Fig. 1.  SEM photograph of a two-wire type 
‘Microflown’. 

 
Fig. 2. The current probe, with the flow sensor packaged 

in between two tiny cylinders. 
 

2. NUMERICAL SIMULATIONS 
 
2.1. The approach 
 
For numerical calculations on the complex structure of 
the package, we used a commercially available software 
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program, CFDRC, for fluid dynamical simulations 
[12, 13]. This software provides a variety of tools for the 
simulation and analysis of fluid flow. In our approach for 
the numerical simulation of the fluid behaviour around 
the sensor, three successive steps are to be distinguished.  
The volume of interest (the solution space) is divided into 
discrete control volumes or cells. 
The boundary conditions, the initial conditions and the 
equations to be solved at each cell are defined, as well as 
the numerical technique to solve the equations. 
After the simulation, we extract the needed information 
from the large amount of data generated in the solution 
process. 
The solution space was defined as a cylinder of 
approximately 8 cm radius and 15 cm height, in which the 
probe was positioned. A structured grid of tetrahedric and 
prismatic volume elements was designed in the fluid 
space around the probe. The number of cells amounted to 
about 70,000; in the middle, around the sensor, the cells 
were made very dense. 
As a boundary condition, a plane propagating wave was 
imposed at the wall of the large outer cylinder. This wave 
was described by a varying fluid particle velocity of 
magnitude u0 and radial frequency ω : 

)cos(),( 0 kytutyu −= ω ,  
with k the wave number in the propagation direction y. 
The Navier−Stokes equations were solved at each fluid 
space element, together with the no-slip boundary 
condition on the probe surface and the assumption of a 
fully adiabatic process.  Besides, a constant temperature 
and constant dynamic viscosity of respectively T = 300 K 
and ν = 1.5895·10-5 m2/s were assumed, an equilibrium 
fluid density of ρ = 1.1614 kg/m3, and an equilibrium 
pressure of p0 = 1.0·105 Pa in the fluid around the probe. 
It must be mentioned that the temperature effects of the 
sensor, that causes a local temperature increase of the 
fluid due to the heated wires, have not been taken into 
account. Since this temperature effect is very localised 
and will therefore only slightly influence the fluid flow 
around it [4, 5], this assumption seems to be justified.  
The numerical calculations were performed with a 
convergence criterion of 10-4, using the SIMPLEC solution 
method, coupled with ideal gas law [11].  
 
2.2. The fluid flow around the probe 
 
In the different simulations, the frequency ω was varied 
between 0 and 104 rad/s, and the magnitude u0 was 
chosen as  3⋅10-5 < u0 < 1⋅10-3 m/s. Each simulation result 

 
Fig. 3. A grid containing about 70 thousand cells was 
defined to model the probe geometry, very densely 
structured at the place of interest (the centre).  
 

 
 
Fig. 4. Simulation result visualising both the streamlines 
and a contour plot of the particle velocity at v0 =1 mm/s; 
f = 1  Hz. 
 
provided the magnitude and phase of the particle velocity 
and the pressure at each point in space, such that the 
streamline pattern in the fluid could also be investigated 
(fig. 4). It was observed that for the region of interest, 
3⋅10-5 < u0 < 1⋅10-3 m/s, all dynamics were linear in u0, 
i.e. an increase of the amplitude of the imposed acoustic 
wave led to an entirely equal increase of all velocities and 
pressures in space. 
We defined a number of points located in and around the 
probe to consider in particular:  
Point A is located in between the two small cylinders 
(where the sensor is placed).  
Point B is found at a distance of 8 cm in front of the 
probe (on the outer boundary where the acoustic wave is 
imposed). 
Point C is located at 6.5 cm left from the centre. 
Point D as a reference point for the phase of the wave, at 
5 cm above A. 
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Fig. 5a. Amplitude of the particle velocity at different 
points in and around the probe. Point A: in between the 
two cylinders, B: at large distance in front of the probe, 
C: left from the probe, 6.5 mm from the center, D: 3 cm 
above A. 
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Fig. 5b. As fig. 5a, on a linear frequency scale.  
 
When the frequency rises, the particle velocity 
(normalised to the value u0 of the imposed wave) is seen 
to increase at both point A and C. One sees in fig. 5 that, 
especially at A, a large amplification of the particle 
velocity is attained. This magnification approaches a 
constant value of about 3.2 for frequencies above 10 Hz. 
However, for frequencies below 1 Hz, the normalised 
particle velocity at A is smaller than 1, and decreases to 
0.1 at zero frequency. The same tendency is observed at 
C, a representative point for the region just next to the 
probe. The normalised signal increases from 0.2 at 0 Hz 
up to 1.7 at 10 Hz and then remains constant. The figures 
5a and 5b show this behaviour on a linear and logarithmic 
frequency scale. At frequencies below the characteristic 
frequency of about fc = 1.5 Hz, the (scaled) particle 
velocity amplitudes at A and C are lower than one, 
whereas for f > fc, they increase. 
 
 

3. THEORY 
 
3.1. Introduction 
 
To describe the flow behaviour around the sensor, the full 
Navier−Stokes equations for the three-dimensional 
geometry should be solved. Due to the complex geometry 
of the probe, an exact solution cannot be found. However, 
the region of interest is well approximated by two parallel 
long circular cylinders, so that the problem becomes 
actually two-dimensional. Oscillatory viscous flows 
around bodies of various shapes have been investigated in 
literature, see [8, 9]. We consider an incompressible 
viscous fluid with kinematic viscosity ν and density ρ in 
which two separated parallel cylinders are immersed. At 
infinity, the fluid oscillates harmonically, perpendicular 
to the plane containing their axes, with a velocity 

tu ωcos0 . We show that this problem can be solved 
analytically and an explicit expression for the flow profile 
around the cylinders is found. Two regions of interest can 
be distinguished: a frequency range ω << ωc, in which 
viscous effects are dominant and the viscous boundary 
layers around the cylinders become large, and a region 
 ω >> ωc, where the fluid behaviour approaches that of an 
ideal gas. 
Besides, we show that for the ideal-gas case, a solution of 
the Navier−Stokes equations for this geometry is formed 
by vortices. In the entire description of the total solution, 
the contribution of vortices around the cylinders is largely 
responsible for the large magnitude of the particle 
velocity in between the cylinders at the location of the 
sensor; the observed ‘package gain’. 
 
3.2. Assumptions and problem definition 
 
To find the flow profile in and around the probe, we have 
to solve the equations of motion of a viscous fluid, the 
Navier−Stokes equations, for the current geometry. To 
determine if the fluid in the case of propagating acoustic 
waves can be regarded as incompressible, we considered 
the conditions under which the assumption of 
incompressibility is justified. It was seen that for normal 
sound waves and frequencies well below 10 kHz, for the 
current geometry one can describe the gas as 
incompressible. 
In their most general form the Navier−Stokes equations 
for an incompressible fluid then read  

 vpvv
t
v vvvvv
v

21)( ∇+∇−=∇⋅+
∂
∂ ν

ρ
  (1.) 

with vv the (vectorial) velocity, p the pressure, ν the 
kinematic viscosity and ρ the fluid density. 
Besides, the continuity equation has to be obeyed: 
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 0)( =⋅∇+
∂
∂ v

t
vv

ρρ     (2.) 

For the three-dimensional geometry of the probe it is 
rather complicated to solve these equations analytically. 
But since the flow profile around the package in which 
the sensor is located is of main interest, we consider in 
particular the two cylindrical tubes of the package with 
the microflown in the middle. 
Let us assume an infinite incompressible viscous fluid in 
which two parallel circular cylinders of radius R are 
immersed. The fluid oscillates in the direction 
perpendicular to the plane containing the axes of the 
cylinders with velocity tu ωcos0 at infinity where u0 is 
the magnitude of the particle velocity and ω the radial 
frequency. The problem can be well described in a two-
dimensional system of bipolar cylindrical coordinates 
(ξ,η), defined by the transformations 

0,
coscosh

sin,
coscosh

sinh
>

−
=

−
= ccycx

ξη
ξ

ξη
η  (3.) 

where x and y are the usual Cartesian coordinates, 0 ≤ ξ < 
2π and  -∞ < η < ∞ (see fig. 6). 
The two cylinders are therefore defined by η = η1 > 0 and 
η = η2 < 0, where R = c/|sinhη1| = c/|sinhη2|. The fluid 
region is given by η2 < η < η1, 0 ≤ ξ < 2π, while 

0== ξη at infinity.  
The problem is scaled using the dimensionless parameters  

 
ν

ωµντ
2

2 , lt
l

==    (4.) 

where l represents a characteristic length, for example the 
cylinder radius.  
The Navier−Stokes equations in the form (1.) are non-
linear because of the second term on the left-hand side. 
This nonlinear problem has been analysed by Zapryanov et 
al. [8]. They used a perturbation theory in terms of 
asymptotic expansions in the inner and outer regions 
around the cylinders [8, 9]. 
 
3.3. Solution 
 
For the current values in our problem, u0 ~ 2⋅10-4 m/s, l ~ 
6⋅10-3 m, ν ~ 1.5·10-5 m2/s, and ω > 60 s-1, the nonlinear 
convection term is of the order u0

2/l and therefore 
relatively small compared with the other terms. Hence, 
we neglect the term vv vvv )( ∇⋅ in the further approach. 
Moreover, we can assume µ >> 1. 
The Navier−Stokes equations, (1.), are often written in  

 
                                           y 
 
η = - ½     η = ½ 
               eξ 

                                          η = 0                      eη 

       η = -1         η =1 
                           .                           .                                x 
            
 
 
 
 (-c,0); η = - ∞     (c,0);  η = ∞ 

 
Fig. 6. Representation of the bipolar cylindrical 
coordinate system. 
 
terms of the stream function Ψ , that in this coordinate 
system can be defined by 

ξ
ξη

η
ξη ηξ ∂

Ψ∂
−−=

∂
Ψ∂

−= )cos(,)cos( chvchv  (5.) 

We now have to solve the equations of motion for Ψ. For 
that purpose the fluid region around the two cylinders is 
divided in three regions: the two boundary layers adjacent 
to the cylinders, of thickness δ ~ µ-1/2, and a region in 
between. The solution Ψ in the intermediate region forms 
the basis for a perturbation approach with a perturbation 
parameter µ, in the boundary layers. We deduced that one 
can write for the stream function in this region [10]: 

)exp(
))arctan((2exp1

))arctan((2exp

))arctan((2exp1

))arctan((2exp
),(
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1

1

1
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       (6.) 
In the boundary layer adjacent to the right cylinder, a 
scaled variable ζ is defined:  
 µηηζ )( 1 −=     (7.) 

The boundary layer extends from ζ = 0 to ζ = 1. The 
stream function in this region is Ψb, and µ is large but 
finite. The solution Ψ in the intermediate region forms the 
basis for a perturbation approach with a perturbation 
parameter µ, in the boundary layers. One finds then for 
the stream function in the boundary layer [10]: 

))cos(coshsinh(),( 1 ζξηζξ −=Ψ iCbb  (8.) 

with 

))cos(coshsinh()cos(cosh

cos)exp(2
)cos(cosh
1coscosh

1)(
11

1
12

1

1

ξηξη

ξη
ξη

ξη

µ
ξ

−−

−+
−

−

−=
∑
∞

=

ii

nnn
C n

b
 (9.) 
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Fig. 7 Stream function Ψ. Contour lines of Ψ form 
streamlines in the flow. 
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Fig. 8. The averaged normalised velocity as a function of 
the ratio of the cylinder radius and the spacing between 
the cylinders.  
(ρ = cylinder radius/distance between cylinders). 
 
In figure 7, the stream function according to eq. (6.) is 
visualised, for the half-infinite region x > 0 and a cylinder 
radius R = sinh-11. (c = η1 = 1). Contour lines of Ψ form 
the streamlines of the flow. With the expression obtained 
for the stream function, we can investigate the influence 
of the geometry on the velocity at the location of the 
sensor. Figure 8 shows the dependence of the flow 
velocity between the cylinders as a function of the ratio of 
the cylinder radius and the cylinder spacing. A good 
correspondence to the simulation results can be seen. 
 

4. EXPERIMENTS 
 
To determine the sensor sensitivity as a function of 
frequency, both a packaged and an unpackaged sensor 
were placed on a ‘shaker’ providing a broadband 
vibration. It was verified before that the response of the 
sensors, when both unpackaged, was identical. The ratio 
of the output signal of the packaged and unpackaged 
sensor was then measured using an audio analyser. 
Results are shown in fig. 9. The signal could be measured 
accurately down to frequencies of about 1 Hz. 

    
Fig. 9a. Ratio of the output signal of a packaged and an 
unpackaged sensor, as measured in a particle velocity 
measurement, for 0 < f < 5 Hz. The squares denote 
simulation results. 
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Fig. 9b. As fig. 9a, for the frequency range 1 < f < 
500 Hz. The squares represent simulation results. 
 
For f < 4 Hz, the ratio packaged / unpackaged output 
signal is smaller than 1, while for f >>4 Hz, it approaches 
3.2, remaining almost constant up to 10 kHz. 
 

5. DISCUSSION 
 
The Navier-Stokes equations were solved for the stream 
function Ψ, that provides all the information about the 
fluid velocity, in the different flow regions around the 
cylinders. The solution Ψ in the intermediate region 
formed the basis for a perturbation approach with a 
perturbation parameter µ, in the boundary layers. 
Analysing the form of Ψ in eq. (6.), one can recognise 
three different elementary plane flow contributions 
[13, 14]: a contribution of the uniform flow, a ‘doublet’ 
flow or ‘dipole’ solution, and a so-called vortex flow. It is 
this vortex flow, which has an non-zero circulation along 
a contour around each of the cylinders, that is mainly 
responsible for the large magnification of the velocity in 
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between the cylinders. In between the two cylinders, the 
contributions of the two vortices around the two cylinders 
are of equal sign and therefore add. 
This non-zero circulation along a contour around a 
cylinder is also observed in the numerical simulations. 
Since the frequency parameter µ  = ωl2/ν is proportional 
to the frequency ω, the situation µ → ∞ describes the 
ideal fluid limit, and we are left with the solution for Ψ in 
the intermediate region; the boundary layer thickness 
decreases to zero. For µ small, say µ ~ 1 (a low 
frequency, small characteristic length or high viscosity), 
the perturbation approach used cannot be applied. In this 
frequency range, the numerical simulations supplement 
the theoretic analysis. One can determine a certain 
characteristic frequency at which the boundary layers 
extend over all space between the cylinders. For the 
current geometry this frequency is approximately 
fc ≈ 1.5 Hz. This distinction between low and high 
frequencies is important for the acoustic measurement 
purposes of the microflown. The aim of the sensor is to 
measure frequencies in the acoustic range (from 20 Hz to 
10 kHz) while lower frequencies are preferably 
suppressed. Experiments show that the current geometry 
of the probe magnifies signals higher than, and attenuates 
signals lower than, f = 4 Hz (which is in the same order of 
magnitude as fc).  

  

6. CONCLUSIONS 
 
We have analysed the effects of the package of the 
microflown on the velocity profile around the flow 
sensor. Numerical simulations show a large magnification 
of the particle velocity in between the two small cylinders 
of the package where the sensor is mounted, for 
frequencies above 4 Hz. The magnification increases up 
to approximately 3.2 at high frequencies (10 Hz-10 kHz) 
and then remains constant. An analytic expression for the 
flow profile was also deduced, that explains adequately 
the package gain at high frequencies. The existence of 
vortices in the fluid flow is mainly responsible for this 
magnification. For low frequencies, viscous effects 
dominate and signals are attenuated. This is important for 
acoustic measurement applications, in which low 
frequency noise should be suppressed (to prevent 
overburding of the amplifier) and higher frequencies be 
amplified. We found a good correspondence between 
simulations, theory and experiments. This opens the way 
for further optimisation of the package geometry. 
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