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ABSTRACT 

Drop-on-Demand (DOD) technology enables to 
control the ejection of drops, from a vertically 
capillary nozzle, by piezoelectric stimulation. DOD 
applies in microfluidics, from the ink-jet printers to 
Bio-MEMS. This study emphasizes on the 
numerical simulation of the drop evolution during 
its formation and ejection by DOD technology. The 
highly distorted interface evolution represents an 
axisymmetric transient free-boundary problem, 
which is modelled here through a Boundary 
Element Method. An irrotational flow model can 
reproduce most observed experimental data on drop 
size, velocity, frequency, and conditions for non-
satellite formation. Viscous effects are included to 
some extent, as it is allowed for potential flows of 
fluids with constant viscosity, the normal viscous 
stress at the interface being expressed in terms of 
the velocity potential. The time progression is made 
with a 4th order Runge-Kutta explicit numerical 
scheme. The time step is varied upon a stability 
criterion. The interface evolution is determined 
through a Lagrangian description of a variable 
number of nodes, unevenly redistributed on the 
boundary at each time step. The numerical code 
accuracy is evaluated through the global mechanical 
energy balance, expressed only in surface integrals 
terms. Our computed results fit well the available 
DOD data for ejected drops with volume of 
picolitres order. 

Keywords: Boundary Element Method, drop 

formation, Drop-on-Demand, ink-jet fluid 

microdispensing, interface distortion 

NOMENCLATURE 

Fr [-] Froude number 
H [1/m] total curvature 
M observation point 

P singularity point 
R [m] orifice radius; length scale 

21  , RR [m] local principal radii of curvature 
Re [-] Reynolds number 
We [-] Weber number 
dA [m2] axisymmetric surface element 
g [m/s2] gravity 
n [m] normal co-ordinate 
r [m] radial co-ordinate 
s [m] curvilinear abscissa 
t [s] time 
v [m/s] velocity 
z [m] axial co-ordinate 

s  [m] arc length 
t [s] time step 
  domain in a meridian plane 
  surface; interface 
  [rad] azimuthal angle 
  [m2/s] velocity potential 
  [Pas] dynamic viscosity of the liquid 
  [kg/m3] density of the liquid 
  [N/m] surface tension 
Subscripts and Superscripts 

D domain 
L liquid 
P related to the singularity point 
W solid wall 
n normal direction 
z axial direction 
* dimensionless variable 

1. INTRODUCTION

There are two main approaches in ink-jet 
printing technology [1]. 

Within the “Continuous, Charge and Deflect” 
ink-jet printing technology, also called CIJ for 
Continuous Ink-Jet, the fluid under pressure issues 
from an orifice and breaks up into uniform drops by 
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the amplification of capillary waves induced onto 
the jet, usually by an electromechanical device. The 
ejected drops are electrically charged and deflected 
to their desired location. This approach is suitable 
for high-speed coverage of relatively large areas. 
The “Continuous, Charge and Deflect” ink-jet 
printing technology has been studied for the past 30 
years: the characteristics of the ejected drops, as 
well as the conditions for satellite droplets 
formation are well known and analysed in [2-5]. 

Within the now more widely used “Drop-on-
Demand” (DOD) ink-jet printing technology, 
smaller drops can be ejected from the device orifice, 
by applying a stimulation method (piezoelectric, or 
thermal). A DOD device produces drops of 20-100 
microns in diameter, which are approximately equal 
to the diameter of the drop generator orifice. The 
DOD technology enables to control the size, 
velocity and frequency of the ejected drops. The 
piezoelectric DOD ink-jet method is commonly 
used, and the present paper will focus on it, i.e. on 
the drop ejected at a capillary nozzle tip, when a 
voltage pulse is applied to the nozzle-transducer, 
which is placed up-stream of the nozzle on the 
capillary. Piezoelectric ink-jet print heads have 
dominated the DOD industrial and commercial 
market for last two decades, because they offer high 
jetting frequency, long life expectancy, and the 
ability to jet a wide range of fluids under harsh 
working conditions [6]. The piezoelectrically driven 
DOD ink-jet printing technology has been studied 
experimentally [7-9] and/or numerically [10-12], in 
order to depict the ejected drops characteristics, and 
the conditions for non-satellite formation. The drop 
behaviour depends on the velocity profile at the 
orifice level, thus on the nozzle-transducer [6, 9, 
and 13]. The characteristics of the ejected drops are 
also influenced by the fluid properties [14, 15]. 

The DOD study is sustained by its many 
applications in microfluidics, ranging from the 
classical ink-jet printers, to various microdispensers 
and nanolitre dispensers [16-18] in chemical and 
pharmaceutical engineering, to jet printing for large 
area electronics [19, 20], as well as to DNA chips 
(the deposition of polymeric fluids on microchips 
for DNA in-situ synthesis) [21]. 

The present paper points on the numerical 
simulation of drop evolution during its formation at 
a vertical capillary tip, and its ejection by 
piezoelectrically driven DOD technology. The 
phenomenon involves strong nonlinear and coupled 
effects. The rapidity of the phenomenon, of 
microseconds order, and the space scales, of 
microns order, induce difficulties in experimental 
investigations. The advantage of numerical 
computations consists in analysing a large spectrum 
of droplet sizes, velocities, frequencies, and 
conditions for non-satellite formation. The 
modelling is achieved through an axisymmetric 
Boundary Element Method (BEM), assuming an 

irrotational flow of a viscous fluid [22], by using a 
personal numerical code built in Fortran. The 
numerical code has been validated in ultra-high 
speed interface hydrodynamics, especially to 
simulate the collapsing interface evolution for 
bursting bubbles at a free surface, finalised by 
microjet breaking and droplets ejection [23, 24]. 

Initial conditions, boundary conditions, and 
governing motion equations for the physical model 
are depicted in the second section of the present 
paper. The numerical procedure is outlined in the 
3rd section. Results and comments are presented in 
the 4th section. 

2. PROBLEM STATEMENT

An axisymmetric liquid domain L is 
considered in a meridian plane rOz (Figure 1). 
Inside the capillary nozzle, the domain is bounded 
by the liquid surface L  in a radial direction. 
Laterally, it is bounded by the vertical solid wall 

W  of the cylindrical nozzle, and at its bottom by 
the gas-liquid interface (drop surface)  , which is 
attached at the nozzle orifice edge. The orifice level 
is set at 0z . 

Figure 1. Geometrical configuration and 

boundary conditions 

An outward normal unit vector is considered on 
the domain boundary. On the Oz axis, at the liquid 
surface L  level, the curvilinear abscissa s is set to 
zero; its value increases when moving to the right 
along L , then downward along the wall W , then 
along the drop surface  , and reaches its maximum 
at the drop apex, on the Oz axis. Between the 
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tangential unit vector at any point on the boundary, 
and the radial unit vector, the azimuthal angle is 
denoted as  . 

The orifice radius R is adopted as length scale, 
R  as pressure scale,   R  as velocity scale,

where   is the surface tension and   is the liquid 
density. The ratio between the length and velocity 
scale gives the time scale. Accordingly, the Weber 
number equals the unity, 1We , the Froude number 
is  2gRFr  , and the Reynolds number is 

RRe , where   is the dynamic viscosity 
of the liquid. Dimensionless variables will be 
denoted with an asterisk. At the free drop surface, 
the adjacent gas pressure is assumed to be constant, 
since the gas inertia is neglected. 

A potential liquid flow assumption is 
appropriate because of the impulsive character of 
the phenomenon. The dimensionless equations 
governing the potential liquid flow are classically 
the Laplace equation 02    for the velocity 
potential  , and the Euler’s equation. The velocity 
v is defined by its normal component   n , and 
tangential component   s . In this type of 
model, viscous effects can be partially considered 
through a boundary condition, namely the normal 
momentum balance at any point of the interface  , 
which includes the normal viscous stress at the 
interface:  nv  n2 , where nv  is the normal
component of the velocity. 

Combining the Laplace equation and the 
Euler’s equation in order to reduce the pressure 
terms, yields the dimensionless Bernoulli’s 
equation, i.e. the local time derivative of the 
velocity potential: 

 
2

22
2

2 
















nReFr
z

We
Hv

t
 . (1) 

The dimensionless total curvature is written 
   21 11 RRH , where 

1R  and 
2R  are the 

corresponding dimensionless local principal radii of 
curvature. There are distinct forms of Eq. (1) on the 
axis of symmetry Oz, and outside. The singularities 
at 0r  are removed by taking into account that on 
the Oz axis, the axisymmetric curvature, 

    rR sin1 2 , equals the planar curvature,
  sR 11 . The expressions of the normal 

second derivative of the velocity potential 
22   n  outside of the symmetry axis Oz, and on 

that axis, are defined in [23, 25]. 
Initial and boundary conditions are functions of 

the stimulation process, i.e. they depend on the 
excitation waves that are converted into velocity 
variations at the capillary nozzle tip. The 
hydrodynamics of the viscous liquid inside the 

capillary nozzle has been obtained by solving the 
Navier-Stokes equation [9, 26]: the imposed 
periodical wall deformation produces perturbations 
of the pressure field inside the capillary, and 
subsequently perturbations of the velocity field. So, 
the velocity reaches a peak during the voltage pulse, 
and relaxes after. For example [9], over a period of 
0.1 ms, and voltage pulse duration of 20 s, the 
maximum axial velocity inside the capillary nozzle 
varies between about 3.2 m/s (at a voltage of 50 V) 
and 6.5 m/s (at 100 V). 

Firstly, the resulting time dependent axial 
velocity profile inside the capillary nozzle 
(parabolic Poiseuille profile), has been averaged to 
obtain the mean axial velocity profile [26], for a 
voltage of 80 V. Secondly, its averaged form has 
been approximated for the BEM computations. The 
dimensionless time dependent normal velocity 
profiles    tvv nn  from Figure 2 are considered for 
BEM computations within this paper. The upper 
frame of Fig.2 corresponds to distilled water: at the 
initial moment, and over the first 8.5% of each 
period between two consecutive voltage pulses, the 
normal velocity value is set to   2n  tv . The lower 
frame of Fig.2 corresponds to ink: at 0t , and 
over the first 9.9% of each period (of 3.42 
dimensionless duration) between two consecutive 
voltage pulses, the normal velocity is   5.2n  tv . In
both frames, drop ejection instants are marked (by 
triangles). Ink drop ejection requests a higher 
maximum 

nv  value inside the capillary (so, a higher 
voltage), and a shorter period (ink being 8.7 times 
more viscous than water). 

Figure 2. Dimensionless profile of the time 

dependent normal velocity inside the capillary 

nozzle, for water (a) and ink (b), used in BEM 

For the BEM computations, the normal velocity 
profile    tvv nn  inside the capillary nozzle (Fig.
2) is inserted as a Neumann type boundary
condition on the liquid surface L  (Fig. 1). A 
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Neumann type boundary condition also corresponds 
to the solid wall W , where the normal velocity is 
zero. At the initial moment, the boundary conditions 
of Dirichlet type on the interface   are: 

   00 n   tvzt . For further moments, the
velocity potential  0 t  on   is obtained within 
the BEM (Fig. 1). 

In the absence of non-linear analytical tests, the 
evaluation of numerical code accuracy is checked 
through the global mechanical energy balance, 
expressed only in surface integrals terms [23]: 
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
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(2) 

where   WLD  is the liquid domain 
boundary; dA  is the dimensionless axisymmetric 
surface element. The dissipation of the mechanical 
energy due to shear viscosity depends only on the 
normal component of the velocity, and on the 
normal second derivative of the velocity potential, 

22   n . Upon azimuthal integration, the 
mechanical energy balance deals with line integrals 
of the terms computed through the BEM, thus being 
easy to implement in the computational procedure. 

3. NUMERICAL METHOD

The Boundary Element Method has been used 
in modelling the drop formation of the continuous 
jet [3], or the jet atomization [29], but under simpler 
assumptions, like the pure potential fluid flow, and 
even the absence of the gravity in [29]. Within the 
present study, the DOD modelling is achieved 
through a BEM, by assuming a potential flow of a 
viscous fluid [22]; it is a new approach for this type 
of process, and first results are presented in [26]. 

The drop surface  , highly distorted during its 
formation, represents a transient free-boundary 
problem that involves two types of calculations. We 
have indeed to cope with the task of calculating the 
potentials at a sequence of instants ,2,{  ttt   

  },1 ,   tk  . The small time step t  is
selected according to rules further defined. Firstly, a 
time-stepping scheme applied to Eq. (1) allows to 
link known values of the position of fluid particles 
on the interface, and of the velocity potential values 
on the same interface, evaluated at     tkt 1 , to 
the corresponding values of these quantities at the 
following instant   tkt  . Then, the potential 
values being known from this first type of 

calculation on the interface  , and the normal 
velocity components being also known on 

WL    at   tkt  , the Laplace equation can be 
solved with the BEM, to obtain the velocity 
potential values at the same instant   tkt   in the 
whole liquid domain. The time stepping technique 
requiring the normal component   n , and 
tangential component   s  of the velocity [27] 
on the interface  , can then be used again to 
connect the instants   tkt   and     tkt 1 .

Within the second type of calculation, the 
Boundary Element Method allows replacing the 
Laplace’s equation extended in the whole liquid 
domain L , by a second kind Fredholm integral 
equation extended only on the domain boundary 

D . For this direct BEM computation, the velocity 
field is generated by source and normal doublet 
type singularities spread over D . The integral 
equation on D  is written: 

 
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, 
(3) 

where MP  is the dimensionless distance between 
the observation point DM   and the singularity 
point P. The kinetic conditions of Neumann type on 
the surfaces L  and W , where the normal velocity 
is known, as well as of Dirichlet type on the 
interface  , where the velocity potential is known, 
have been already depicted in the previous section 
(Fig.1). 

The temporal interface evolution, which is 
based on Eq. (1), allows a Lagrangian description of 
a variable number of nodes      tztr  ,M , 
representing the position of fluid particles, unevenly 
redistributed on the boundary  tD at each 
instant, with respect to some criteria like the 
adaptation at the surface gradients [23]. This leads 
to a concentration of nodes at places where the 
interface’s curvature is important, or where two 
portions of the interface approach one another. 
Thus, the simulation of the interface evolution is 
performed during the whole process, without 
applying any smoothing techniques that can affect 
the physics of the phenomenon. 

The time step t  is varied in accordance with 
a stability criterion, linked to the gravity-capillary 
dispersion equation [28]: 
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where 
mins  is the minimum value of the arc length

measured between two consecutive points of the 
boundary  tD .

The time progression is made with an explicit 
numerical scheme of 4th order Runge-Kutta type. 
Within this scheme, the material derivative of the 
velocity potential is defined by: 

 
 1 Eq. 

2















t
v

Dt
D  . (5) 

The derivatives of the polar co-ordinates are: 
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4. RESULTS AND COMMENTS

The numerical modelling of drop evolution 
during its formation at a vertical capillary tip, and 
its ejection by piezoelectrically driven DOD 
technology has been systematically performed for 
distilled water and ink (at 20ºC), for different 
orifice sizes,   mR μ 100 ;13 , in order to compare
numerical and experimental data. Ink’s physical 
properties [9, 26] are: 3 1019 mkg ,   

3107.8  sPa  , and mN 034.0 . According to
the investigated orifice sizes, the Froude and 
Reynolds numbers vary between the limits 

 39544 ;743Fr ,  58 ;6.30Re  for distilled water,
and  01252 ;340Fr ,  .766 ;44.2Re  for ink. The
Weber number equals always the unity, 1We , 
because of the scale choice. We note that for small 
orifices, the Froude number has greater values, so 
the gravity becomes negligible in this case. On the 
other hand, the Reynolds number has small values, 
especially for ink, so the viscous effects may be 
important. In this paper the model includes partially 
viscous effects, namely those characteristic to 
irrotational flows. These effects show themselves 
via the normal viscous stress at the interface. 
Irrotational flow is usually a good approximation 
for low viscosity fluids, set in motion from rest. 

We present in Figures 3 and 4 the interface 
temporal evolution during the DOD process, for a 
water drop, and an ink drop, issuing into air. For 
water, the orifice radius is mR μ 35 , and the 
characteristic numbers are: 6064Fr , 1We  and 

3.50Re . For ink, the orifice radius is mR μ 13 , 
and the characteristic numbers are: 20125Fr , 

1We  and 44.2Re . 
The dimensional volume of the ejected water 

drop is of pl 77 . The equivalent radius of that drop 
(the radius of a sphere with the same volume) is of 

mμ 6.42 . The dimensional volume of the ejected ink 
drop is of pl 58.5 , and its equivalent radius is of 

mμ 11 . Thus the ejected drop size is respectively 
about 75%, and 85% of the orifice size, for water, 
and ink case, which is consistent with available 
DOD data. 

Figure 3. Superposed profiles (upper image), and 

some characteristic profiles at specified time t  

in separate frames (lower images), of the 

interface evolution, for a water drop formed by 

piezoelectrically driven DOD technology at an 

orifice of radius mR μ 35  

The temporal variation of the velocity of the 
interface apex (i.e. the normal velocity of the node 
placed on the interface, on the Oz axis), during the 
interface evolution, is presented in Figure 5, for the 
water case (upper frame), and ink case (lower 
frame). The instant corresponding to drop ejection 
is marked on the figure, for both cases. The ejection 
time is 61.2t  for the water drop, and 416.3t  
for the ink drop. For water, the interface apex 
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oscillates during the first 20% of the time period, 
and also after the drop ejection instant, and recovers 
its initial shape at the end of the time period. Due to 
the viscosity, which damps inertial effects, the 
interface apex for ink is more stable, and after the 
drop ejection instant, the interface recovers quickly 
its initial shape, so the DOD process can continue 
after a shorter time period. This should help 
working at a higher frequency with ink. 

Figure 4. Superposed profiles (upper image), and 

some characteristic profiles at specified time t
in separate frames (lower images), of the 

interface evolution, for an ink drop formed by 

piezoelectrically driven DOD technology at an 

orifice of radius mR μ 13  

The conditions for obtaining different drop 
shapes immediately after ejection have been 
examined. We did recover the observed columnar 

liquid bridge joining the nascent drop to its parent 
body. This stage precedes necking and drop 
separation. In Figs 3 and 4 it is not clear whether 
the effective necking occurs at the upper or lower 
part of the column. The break-up occurs at the 
upper part of the column, at 872.0z  for water, 
and 966.0z  for ink case. The ejected drop 
shape is like the one plotted at 581.2t  in Fig. 3 
(just before the water drop detachment at 61.2t ), 
or like the one plotted at 411.3t  in Fig. 4 (just 
before the ink drop detachment at 416.3t ). 

Figure 5. Temporal variation of the interface 

apex velocity during the DOD evolution, for the 

water case (upper frame), and ink (lower frame) 

At the necking instant, unbalanced surface 
tension rapidly accelerates liquid in both liquid 
bodies [30]: this is the recoil stage. Waves due to 
separation then propagate along the column that has 
become a drop tail and may generate one or several 
satellites. This stage is difficult to be captured 
numerically in all the details. However some 
attempts have been made to describe the unique 
satellite formation. As the ejected ink drop from 
Fig.4 has a thin neck, it can be assumed that there 
will be a second pinching at the connection between 
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the long neck and the parent drop. That will lead to 
a satellite, which size can be estimated from the 
neck volume (a quasi-cylindrical shape, of 0.974 
height and 0.026 mean dimensionless radius); the 
corresponding dimensional volume of the satellite is 
of pl 0045.0 , and equivalent radius of about mμ 1 . 
This represents a ratio of 0.09 between the satellite 
radius and its parent drop radius. 

With respect to industrial applications, there are 
desirable configurations as those leading to a simple 
neck pinching and drop detachment, but also 
undesirable configurations that must be avoided 
(e.g. with a wide neck). For too small values of the 
velocity inside the capillary nozzle, drops may not 
be successfully ejected (e.g. for the same Fr and Re 
values as in Figs. 3 and 4, for a maximum value of 

6.0n 
v  for water, and 2n 

v  for ink, there is no 
drop ejection). In those cases, the interface grows at 
the beginning because of the velocity pulse, but the 
liquid has not sufficient inertia, and capillary effects 
pull back the interface to the orifice, then the drop 
hangs up and oscillates slowly. 

Our computed results fit well the available 
numerical and experimental DOD data [8-12] for 
drops with volume of picolitres order. Encouraging 
agreement is obtained, but the numerical model will 
require added sophistication, like the evaluation of 
the whole viscosity effects, which would result in 
the introduction of the rotational part of the flow, 
before detailed agreement can be expected, 
especially for ink drops, which are much viscous 
than water. Moreover surfactants tend to migrate to 
interface when area is created during growth in 
order to restore the interfacial equilibrium 
conditions. As this process has a long time scale 
compared to hydrodynamic scales, they may affect 
the end of drop formation. 

5. SUMMARY AND PERSPECTIVES

The Drop-on-Demand numerical simulation 
was made through a Boundary Element Method, by 
taking into account the capillary effects and only 
partially the viscous effects. In order to prevent 
numerical instabilities, the progression time step 
was obtained from a gravity-capillary waves 
stability criterion. The precision of the numerical 
code was checked through the global mechanical 
energy balance. 

Our computed results fit well the available 
numerical and experimental data, for water and ink 
drops, with volume of picolitres order. 

The present modelling can be refined in the 
future, by introducing the Helmoltz decomposition 
[31] in order to incorporate the rotational part of the 
velocity field, thus to evaluate the whole viscosity 
effects. We have to address the vorticity – stream 
function formulation of axisymmetric unsteady 
incompressible flows in conjunction with moving 
boundaries. The BEM leads in these cases to 

domain integrals that detract from the boundary 
only features. There are several techniques to 
preserve advantages of the BEM and to extend its 
theoretical foundations and numerical 
implementation to tackle this broader class of 
equations. One technique that we will use is based 
on the Greengard and Strain algorithm [32]. 
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