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XPath Typing Using a Modal Logic with Converse for Finite Trees

Pierre Geneds  Nabil Layadda  Alan Schmitt

INRIA Rhdne-Alpes
{pierre.geneves, nabil.layaida, alan.schmitt}@inria.fr

Abstract the XPath equivalence problem: whether or not two queries always
return the same result. It is important for reformulation and opti-
mization of an expressior2{)] , which aim at enforcing operational
properties while preserving semantic equivalerzg.[The most
essential problem for type-checking is XPath containment. It is re-
quired for the control-flow analysis of XSLBE]. It is also needed

for checking integrity constraintd §] and for checking access con-

We present an algorithm to solve XPath decision problems under
regular tree type constraints and show its use to statically type-
check XPath queries. To this end, we prove the decidability of a
logic with converse for finite ordered trees whose time complexity

is a simple exponential of the size of a formula. The logic corre-

sponds to the alternation free modaicalculus without greatest

fixpoint restricted to finite trees where formulas are cycle-free. trol in XML secu_rity applications_l_?)]. .
Our proof method is based on two auxiliary results. First, XML ' he complexity of XPath decision problems heavily depends on
: : . r.Fhe language features considered. Previous w@8sJ] showed

to cycle-free formulas. Second, the least and greatest fixpoints aretha’[ including general comparisons of data values from an infinite

equivalent for finite trees, hence the logic is closed under negation, d°main may lead to undecidability. Therefore, we focus on a XPath
With these proofs, we describe a practically effective system agment which covers all features except countifipgnd data

for solving the satisfiability of a formula. The system has been Values. .

experimented with some decision problems such as XPath empti-, 11 order to solve XPath decision problems, wo problems need

ness, containment, overlap, and coverage, with or without type con- ©© P& solved. First, identify the most appropriate logic with suf-

straints. The benefit of the approach is that our system can be effecICient expressiveness to capture both regular tree types and our

tively used in static analyzers for programming languages manipu- <Path fragment. Second, solve efficiently the satisfiability problem
lating both XPath expressions and XML type annotations (as input which allows to test if a given formula of the logic admits a satis-

and output types). fying finite tree. o _ .
puttypes) The essence of our results lives in a sub-logic of the alternation

1. Introduction fre_e modalu-calculus (A_FMC) with converse, some syntactic re-

: strictions on formulas, without greatest fixpoint, and whose models
This work is motivated by the the need of efficient type checkers for are finite trees. We prove that XPath expressions and regular tree
XML-based programming languages where XML types and XPath type formulas conform to these syntactic restrictions. This allows
queries are used as first class language constructs. In such settingsp prove that formulas of the logic are cycle-free. Boolean closure
XPath decision problems in the presence of XML types such as is the key property for solving the containment (a logical implica-
DTDs or XML Schemas arise naturally. Examples of such decision tion). In order to obtain closure under negation, we prove that the
problems include emptiness test (whether an expression ever seleast and greatest fixpoint operators collapse in a single fixpoint op-
lects nodes), containment (whether the results of an expression areerator. Surprisingly, the translations of XML regular tree types and
always included in the results of another one), overlap (whether two a large XPath fragment comes at no cost since they are linear in the
expressions select common nodes), and coverage (whether nodesize of the corresponding formulas in the logic. The combination
selected by an expression are always contained in the union of theof these ingredients lead to our main result: a satisfiability algo-
results selected by several other expressions). rithm for a logic for finite trees whose time complexity is a simple

XPath decision problems are not trivial in that they need to be exponential of the size of a formula.
checked on a possibly infinite quantification over a set of trees. An-  The decision procedure has been implemented in a system for
other difficulty arises from the combination of upward and down- solving XML decision problems such as XPath emptiness, con-
ward navigation on trees with recursict?]. tainment, overlap, and coverage, with or without XML type con-
The most basic decision problem for XPath is the emptiness straints. The system can be used as a component of static analyzers
test of an expressior8]. This test is important for optimization of ~ for programming languages manipulating both XPath expressions
host languages implementations: for instance, if one can decide atand XML type annotations for both input and output.
compile time that a query result is empty then subsequent bound
computations can be ignored. Another basic decision problem is

2. Outline

The paper is organized as follows. We first present our data model,

trees with focus, and our logic §B and§4. We next present XPath

and its translation in our logic i5. Our satisfiability algorithm

is introduced and proven correct §6, and a few details of the
Proceedings of the 5th ACM SIGPLAN Workshop on Programming Language Tech- implementation are discussedyin Applications for type checking
nologies for XML (PLAN-X 2007). and some experimental results are describé@.iVe study related
January 20, 2007, Nice, France. work in §9 and conclude ir§10.



Detailed proofs and implementation techniques can be found in
a long version of this papefl g].

3. Trees with Focus

In order to represent XML trees that are easy to navigate wéodse
cused treesinspired by Huet's Zipper data structu24]. Focused
trees not only describe a tree but also its context: its previous sib-
lings and its parent, recursively. Exploring such a structure has the
advantage to preserve all information, which is quite useful when
considering languages such as XPath that allow forward and back-
ward axes of navigation.

Formally, we assume an alphaligzbf labels, ranged over hy.

= ot tree
t o= list of trees
€ empty list
| ttl cons cell
¢ u= context
(tl, Top, tl) root of the tree
(tl, clo], tl) context node
f o= (t0) focused tree

In order to deal with decision problems such as containment, we

need to represent in a focused tree the place where the evaluation

was started usingstart mark often called “mark” in the following.

To do so, we consider focused trees where a single tree or a single

context node is marked, as i [t] or (¢, c[¢®], t1). When the
presence of the mark is unknown, we write iteef§¢l].

We write F for the set of finite focused trees with a single mark.
Thenameof a focused tree is defined as(o°[¢l], ¢) = 0. We now
describe how to navigate focused trees, in binary style. There are
four directions that can be followed: for a focused tygef (1)
changes the focus to the children of the current tfe@) changes
the focus to the next sibling of the current tr@*e(,D changes the
focus to the parent of the tréfghe current tree is a leftmost sibling
and f (2) changes the focus to the previous sibling.

Formally, we have:

(o°[t:
(t, (tl, c[o® ] ¢
(t, (e

tll7

def

1
2

tl, (€,

(

clo®], 1))

tll, [
,€)

tll,c[a ],

o
@

c)
tl))
t))
1))

°l, 1))

a

e

(1) =(,
2=
() = (°
(', (t: ) (2) = (¢, = tl))

Ly2¢, ¢ = formula
T true
| o | -o atomic prop (negated)
| ® | —® start prop (negated)
| X variable
| oV disjunction
| oA conjunction
| (@) | —(a)T existential (negated)
| uXi@iiny least nary fixpoint
| vX,piingy greatest nary fixpoint
Figure 1. Logic formulas
def def
[Tlv = [olv ={f [ on(f) = o}
[X]v £ V(X) [-olv £ {f | an(f) # o}

def

levelv Zlelv Ullv  [O1v 2 {f1f=(°[tl,0)}
le Al Zlelv nvlv -8y 2{f | £ = (oltl], )}
[(a)elv 2 {f (@) | f € [¢lv A f () defined
[=(a) TIv = {f | f (a) undefineg
(X inolv ZietT, = ({7 C 7| [Py ST},
in [y 7 7%
(U{T <717 coilvmre }),

in [¥1y 7 7%

def

[[VXZ‘.QDZ n ’(/)]]V =letT; =

Figure 2. Interpretation of formulas

ally recursive definitions, making their translation in our logic more
succinct. In the following we writei X ." for “ uX.p in ¢".

We define in Fig2 an interpretation of our formulas as sets of
finite focused trees with a single start mark. The interpretation of
the nary fixpoints first compute the smallest or largest interpretation
for eachyp;, then returns the interpretation ¢f

We now restrict the set of valid formulas¢gcle-free formulas

When the focused tree does not have the required shape, thesée. formulas that have a bound on the numbemafality cycles

operations are not defined.

4. The Logic

We introduce the logic to which XPath expressions and XML
regular tree types are going to be translated, a sub-logic of the
alternation free modal-calculus with converse. We next introduce

a restriction on the formulas we consider and give an interpretation
of formulas as sets of finite focused trees. We then show that the
logic has a single fixpoint for these models and that it is closed
under negation.

In the following definitionsa € {1,2,1,2} areprogramsand
atomic propositions correspond to labels froxi. We also assume
thata = a. Formulas, defined in Fid. include the truth predicate,
atomic propositions (denoting the name of the tree in focus), start
propositions (denoting the presence of the start mark), disjunction
and conjunction of formulas, formulas under an existential (denot-

independently of the number of unfolding of their fixpoints. A
modality cycle is a subformula of the forfa) ¢ wherep contains
atop-levelexistential of the form@) ¢. (By “top-level” we mean
under an arbitrary number of conjunctions or disjunctions, but not
under any other construct.) For instance, the formul& (1) (¢V

<T> X)in X" is not cycle free: for any integen, there is an
unfolding of the formula witm modality cycles. On the other hand,
the formula ‘u.X. (1) (X VY), Y.(I) (Y VT) in X"is cycle free:
there is at most one modality cycle.

Cycle-free formulas have a very interesting property, which we
now describe. To test whether a tree satisfies a formula, one may
define a straightforward inductive relation between trees and for-
mulas that only holds when the root of the tree satisfies the formula,
unfolding fixpoints if necessary. Given a tree, if a formylés cy-
cle free, then every node of the tree will be tested a finite number
of time against any given subformula gf The intuition behind
this property, which holds a central role in the proof of lemfra

ing the existence a subtree satisfying the sub-formula), and leastis the following. If a tree node is tested an infinite number of times
and greatest nary fixpoints. We chose to include a nary version of against a subformula, then there must be a cycle in the navigation in
the latter because regular types are often defined as a set of mututhe tree, corresponding to some modalities occurring in the subfor-



mula, between one occurrence of the test and the next one. As we

consider trees, the cycle implies there is a modality cycle in the for-
mula (as cycles of the forni) (2) (T) (2) cannot occur). Hence
the number of modality cycles in any expansione,dé unbounded,
thus the formula is not cycle free.

We give in the appendix an inductive relation that decides
whether a formula is cycle free.

We are now ready to show a first result: in the finite focused-tree
interpretation, the least and greatest fixpoints coincide for cycle-

free formulas. To this end, we prove a stronger result that states

that a given focused tree is in the interpretation of a formula if it
is in a finite unfolding of the formula. In the base case, we use the
formulac A —o as “false”.

DEFINITION 4.1 (Finite unfolding).Thefinite unfoldingof a for-
mulay is the setunf () inductively defined as

unf(¢) £ {g} forp = T,0,-0,®,-®, X,~ (@) T

unf (o V) £ {¢' Vo' | ¢ € unf(p), 9’ € unf(v)}
unf (o A ) £ {Q A’ | ¢ € unf(p), ¢ € unf(¥)}
unf ((a) @) £ {(a) ¢’ | ¢ € unf(p)}

unf (uXpi in ) = unf (p {520 X/ 1)

unf (vX;.pi in ) E unf (p{X9 " Xi/g Y

unf (uX;.p; inY) N

unf(VXi0i inY) E o Ao

unf (uX;.p; i) 4 unf (v X;.i iN ) Lo Ao
LEMMA 4.2. Lety a cycle-free formula, thefio]v = [unf (p)]v.

The reason why this lemma holds is the following. Given a tree
satisfyingy, we deduce from the hypothesis thatis cycle free
the fact that every node of the tree will be tested a finite number of
times against every subformula @f As the tree and the number
of subformulas are finite, the satisfaction derivation is finite hence
only a finite number of unfolding is necessary to prove that the tree

LxpahD e = XPath expression
/D absolute path
| »p relative path
| eie union
| e1Nes intersection
Path p = path
P1/p2 path composition
| plgl qualified path
| aio step with node test
| aux step
Qualif ¢ = qualifier
q1 andgz conjunction
| qorg disjunction
notq negation
p path
Axis a = tree navigation axis

child | self| parent
descendanitdesc-or-self
ancestolt anc-or-self
foll-sibling | prec-sibling
following | preceding

Figure 3. XPath Abstract Syntax.

navigates from the root of a document (designated by the lead-
ing “/") through the top-level “book” node to its “chapter” child
nodes and on to its child nodes named “section”. The result of the
evaluation of the entire expression is the set of all the “section”
nodes that can be reached in this manner. The situation becomes
more interesting when combined with XPath’s capability of search-
ing along “axes” other than “child”. For instance, one may use the
“preceding-sibling” axis for navigating backward through nodes of
the same parent, or the “ancestor” axis for navigating upward re-
cursively. Furthermore, at each step in the navigation the selected
nodes can be filtered using qualifiers: boolean expression between
brackets that can test the existence or absence of paths.

We consider a large XPath fragment covering all major features

satisfies the formula, which is what the lemma states. As least andof the XPath standardg] except counting and data value joins.

greatest fixpoints coincide when only a finite number of unfolding
is required, this is sufficient to show that they collapse. Note that
this would not hold if infinite trees were allowed: the formula
uX. (1) X is cycle free, but its interpretation is empty, whereas
the interpretation of X. (1) X includes every tree with an infinite
branch of(1) children.

We now illustrate why formulas need to be cycle free for the
fixpoints to collapse. Consider the formylaX. (1) (1) X. Its in-
terpretation is empty. The interpretation:oX’. (1) (1) X however
contains every focused tree that has ¢hechild.

In the rest of the paper, we only consider least fixpoints. An
important consequence of Lemma2 is that the logic restricted
in this way is closed under negation using De Morgan’s dualities,
extended to eventualities and fixpoints as follows:

def

—{a)p==(a) T V{a) ~p
—uX;.pi iNY &t uXi.—i{Xiox, b in—p{Xi[x, }

5. XPath and Regular Tree Languages
XPath [p] is a powerful language for navigating in XML documents

Fig. 3 gives the syntax of XPath expressions. Figind Fig.5 give
an interpretation of XPath expressions as functions between sets of
focused trees.

5.1 XPath Embedding

We now explain how an XPath expression can be translated into an
equivalent formula inC,, that performs navigation in focused trees
in binary style.

Logical Interpretation of Axes The formal translations of navi-
gational primitives (namely XPath axes) are formally specified on
Fig. 6. The translation function noted4 [a], " takes an XPath
axisaas input, and returns it§,, translation, in terms of &, for-
mula y given as a parameter. This parameter represents a context
and allows to compose formulas, which is needed for translating
path compositionA ™ [a],, holds for all nodes that can be accessed
through the axis from some node verifying.

For instance, the translated formwa” [child],, is satisfied by
children of the contexi. These nodes are composed of the first
child and the remaining children. From the first child, the context
must be reached immediately by going once upward vi@om the

and selecting a set of matching nodes. In their simplest form, XPath femaining children, the context is reached by going upward (any

expressions look like “directory navigation paths”. For example,
the XPath expression

/child::book/child::chapterchild::section

number of times) vi@ and then finally once via.

Logical Interpretation of Expressions Fig. 7 gives the translation
of XPath expressions int6,,. The translation functionE~ [e] "



Sel'] : Lxpan— 27 — 27

Sel/plr = Splplroot(r)
Se H:pﬂ F

d:asp[[pﬂ{(o(@[tl],c)EF}
Sclerr ex]r E Sefer]r U Sefez]
Seler Nealr & Sefer]r N Sele2]r

Path— 27 — 27

Spll] -
Splp1/p2]r = {f |f'es ﬂp?ﬂ(svﬂplﬂF)}

def

Splplallr = {f | f € Splplr A Sqlal s}
Splaio]r E{f | f € Safa]r Anm(f) = o}
Splar E{f | f € Sala]r}

Sql]- -
Sqllqr andao] s = Sylar]s A Sqlla=ls
= Salarls V Sallaz1s
== 8,[dls
= Splplsy #0

Qualif — F — {true false}

Sqlar org2] s
Syllnotq] ¢
Sq H,p]]f

: Axis — 27 — 27

def

=F

def

= fchild(F') U Sa[foll-sibling]¢cniracr)

Sal]-

Sa[self] »
Safchild]r =
Sa[foll-sibling] » 4 nsibling(F) U Sa[foll-sibling]asiv1ing(#)
Sa[[prec-siblindp = ps1b11ng(F) U Saf[prec-sibling s b1 ing( )
Sa[paren}p &

Sa[descendafiir =

& parent(F )

def

= Sa[child] » U Sa[descendafis, fchid] )

def

Sa[desc-or-seffr = F' U Sa[descendatfi

Safancestdfr £ Sy[parenir U Saancestdf(s,fpareni »)

Sa[anc-or-selfr £ F U Sa[ancestdf

Safollowing] » < Sa[desc-or-seff

Salfoll-sibling] (s, fanc-or-seff ;) )

Sa[precedingr < Sa[[desc-or-se]]f(

Saprec-sibling (s, fanc-or-seff F) )

Figure 4. Interpretation of XPath Expressions as Functions Be-
tween Sets of Focused Trees.

fchild(F) £ {f (1) | f € F A f(1) defined
nsibling(F) £ {f (2) | f € F A f(2) defined
psibling(F) £ {f(2) | f € F A f(2) defined
parent(F) £ {(¢°[rev_a(tl;,  :: tl,)], c)
| (t, (1, c[o°], tl,)) € F}

rev_a(e, tl,) £ tl,
rev.a(t :: thy, tl,) L rev_a(tl, t :: tl,)
root(F) £ {(a®[tl], (tl, Top, t1)) € F}
U root(parent(F))

Figure 5. Auxiliary Functions over Sets of Focused Trees.

AT ] : AXis— L, — Ly

def

A7 [self],, =
A7 [ehild] £ pZ.(T)x v (2) Z
A~ [foll-sibling], = pZ.(2)x v (2) Z
A~ [prec-siblind, £ 2. (2) x vV (2) Z
A [parent,, = (1) uZ.x v (2) Z
A~ [descendait, = uZ. (1) (x vV Z) Vv (2) Z

A~ [desc-or-self, £ pZ.x Vv uY. (1) (Y VZ)V (2)Y
A~ [ancestof, & (1) uZx V(1) ZV (2) Z
EUZXN (W) uY.Z v (2)Y

det 4

A~ [anc-or-self,

A~ [following] A~ [desc-or-self,,

def

A~ [preceding, = A~ [desc-or-self,,
m = A~ [foll-sibling] 4 fanc-or-sell
12 £ A~ [prec-sibling a— fanc-or-sef,

Figure 6. Translation of XPath Axes.

takes an XPath expressierand aZ, formulay as input, and re-
turns the corresponding,, translation. The translation of a relative
XPath expression marks the initial context wigh The translation

of an absolute XPath expression navigates to the root which is taken
as the initial context.

For example, Fi@ illustrates of the translation of the XPath ex-
pression “child:a[child::b]”. This expression selects alk™ child
nodes of a given context which have at least obiechild. The
translatedC,, formula holds for 4" nodes which are selected by
the expression. The first part of the translated formulacorre-
sponds to the step “child:? which selects candidates:” nodes.

The second partp, navigates downward in the subtrees of these
candidate nodes to verify that they have at least éheHild.

Note that without converse programs we would have been un-
able to differentiate selected nodes from nodes whose existence is
tested: we must state properties on both the ancestors and the de-
scendants of the selected node. Equippingdhdogic with both
forward and converse programs is therefore crucial for supporting
XPath. Logics without converse programs may only be used for



E7[] : Lxpan— L, — L, Q'] : Qualif - L, — L,

E71/plx & P I0]((uz(1) 7w (2)2) nGuvxnov iy vy (2)v) Q" [a1 andgo]y £ @ [ar]x A Q7 [az)x
E” ol & P~ bl une) Q [ orgz]x £ Q [ai]x v @ [a:]x
E”er1 ey @ E” [e]y Vv E” [ea]y Q" [rotg] £ = Q" [q]x
E~[er Nealy & B~ Jer]x A B [eay Q" [plx & P [plx
P[] :Path— L, — L, P[] :Path— L, — L,

P~ [p1/p2]x dzﬁpﬁ[[pﬂ](pﬂ[lml]x) P p1/p2]x d:aphﬂplﬂ(pk[[m]]x)
P [plallx & P [l A @ lal+ P Iplallx = P IPlxne-tam)
P lazo]y o A A7 [a], P [azo], £ A7 [ no)

P a]y & A~ [a]y P [as]y £ A7 [a]x
Figure 7. Translation of Expressions and Paths. AT : AXis— L, — L,

def

A" [a]y = A7 [symmetri€a)]y

/39 Figure 9. Translation of Qualifiers.
e pAY
e
9 9
\9 \a) @ axis corresponding to the axas(for instancesymmetri¢child) =
parent).
Translated Query: child::a [child:b] ~We may now state that our translation is correct, by relating the
interpretation of an XPath formula applied to some set of trees to
an (X (D) (xA®)V{2)X) A (HpYbV(2)Y the interprt_atation of its translation_, l_:)y stating tha_t the tra_nslation _of
—_— a formula is cycle-free, and by giving a bound in the size of this
® v translation.

We restrict the sets of trees to which an XPath formula may
be applied to those that may be denoted by anformula. This
restriction will be justified in Sectiof.2where we show that every
regular tree language may be translated t€arformula.

Figure 8. XPath Translation Example.

solving XPath emptiness but cannot be used for solving other deci-

sion problems such as containment efficiently. ) .
XPath most essential constryet/p- translates into formula PrRoOPOSITION5S.1 (Translation Correctnessjhe following hold

composition inZ,,, such that the resulting formula holds for all ~for an XPath expression and aL£,, formula ¢ denoting a set of
nodes accessed through from those nodes accessed frommby focused trees, with = £ [e],:

p1. The translation of the branching constrygy] significantly

differs. The resulting formula must hold for all nodes that can be 1- [M]@ = Selele1,

accessed throughand from whichg holds. To preserve semantics, 2. % is cycle-free

the translation ofp[q] stops the “selecting navigation” to those 3. the size of) is linear in the size of and

nodes reached hy; then filters them depending on whetlédrolds

or not. We express this by introducing a dual formal translation )

function for XPath qualifiers, note@ ], and defined in Figo, 5.2 Embedding Regular Tree Languages

that performs “filtering” instead of navigation. Specifical§;” [ -]. Several formalisms exist for describing types of XML documents
can be seen as the “navigational” translating function: the translated (e.g. DTD, XML Schema, Relax NG). In this paper we embed
formula holds for target nodes of the given path. On the opposite, regular tree languages, which gather all of th&@% nto £,,. We

Q" [] can be seen as the “filtering” translating function: it states rely on a straightforward isomorphism between unranked regular
the existence of a pathithout moving to its resulfThe translated tree types and binary regular tree typ23][ Assuming a countably
formula Q¢ (respectivelyP~[p],) holds for nodes from infinite set of type variables ranged over & binary regular tree
which there exists a qualifier (respectively a pathp) leading to type expressions are defined as follows:

a node verifyingy.

XPath translation is based on these two translating “modes”, Lgpr > T tree type expression

the first one being used for paths and the second one for qualifiers. 0 empty set
Whenever the “filtering” mode is entered, it will never be left. € leaf

They use the specific translations for axes inside qualifiers, based o(X1, Xo2) label
on XPath symmetrysymmetri¢a) denotes the symmetric XPath let X; T, inT binder

\

Translations of paths inside qualifiers are also given on %ig. | T Ts union
\
\



We refer the reader t@p] for the denotational semantics of regular

tree languages, and directly introduce their translation o o € Lean(v)) pEet

Tect= (0,0 €t = ,0
(s Lor L 0.0) e Et=({e}.0)
[[m]d:er(j/\ﬂa o1 €t = (Th, F1) P2 €t = (Tn, F3)
[[E]]dZQfO'/\—‘O' (plA(pzét:>(T1UT2,F1UF2)
def
[[Tl ‘T2]]:[[T1}]V[[T2]] ©1 ét:>(T1,F1) gﬁgét:>(T2,F2)
[o(X1, X2)] dZaU/\SUCQ(Xl)/\SUCQ(XQ) ©1 V@2 ét:>(T1,F1) Y1V P2 ét:>(T2,F2)
let X, T in T] £ u X, .[T.] in [T] PR TS €t (T F)
— R ex a0 IN ct— s
where we use the formula A —o as “false”, and the function Ld - L(p_ -
succ(-) takes care of setting the type frontier: ~pet=(T,F) pXipiing €t = (T, F)
—{a) T V{a) X if nullable(X) ¢ € Leanv) pdt

suce,(X) = { (@) X if not nullable( X) odt= 0,{e})

according to the predicateullable(-) which indicates whether a

type contains the empty tree. o1 ¢t = (Th, F1) 02 &t => (Ta, Fy)
Note that the translation of a regular tree type uses only down- -
ward modalities since it describes the allowed subtrees at a given pr1Vp ¢t = (T1UTz, F1U F3)
context. No additional restriction is imposed on the context from
which the type definition starts. In particular, navigation is allowed 1 ¢t = (T1, 1) 2 ¢t = (Ty, Fy)
in the upward direction so that we can support type constraints for - -
which we have only partial knowledge in a given direction. How- w1 A2 ¢ t = (T1, F1) 01 N2 &t = (T2, F2)
ever, when we know the position of the root, conditions similar to
those of absolute paths are added. This is particularly useful when  , ¢  — (T, F) exp(uXi.g; int) & t = (T, F)
aregular type is used by an XPath expression that starts its naviga- . - .
tion at the root (p) since the path will not go above the root of the ~ —¢ ¢ t = (T, F) puXipiiny ¢t = (T, F)
type (by adding the restrictionZ.— (1) T Vv (2) 2).
On the other hand, if the type is compared with another type Figure 10. Truth assignment of a formula

(typically to check inclusion of the result of an XPath expression

in this type), then there is no restriction as to where the root of the

type is (our translation does notimpose the chosen node to be atthe  Wwe call ©(v) the set of atomic propositions usedinalong

root). This is particularly usefgl since an XP_ath expression usually with an other nameg.., representing atomic propositions not oc-

returns a set of nodes deep in the tree which we may compare tocurring in.

this partially defined type. o We note cf (v) = cl(y)) U {—¢ | ¢ € cl(y)}. Every formula
We are considering as future work a modification of the trans- , ¢ cl*(«) can be seen as a boolean combination of formulas of

lation of types such that it imposes the context of a type to also a set called the Lean af, inspired from 7). We note this set
follow the regular tree language definition (stating for instance that Lear(+) and define it as follows:
the parent of a given node may only be some specific other nodes).

Lean(y)) = {(a) T |a € {1,2,1,2}} US(¢)

6. Satisfiability-Testing Algorithm u{®tu{la)¢| (a)p €cl(¥)}
In this section we present our algorithm, show that it is sound and A v-type(or simply a ‘typ€’) (Hintikka set in the temporal logic
complete, and prove a time complexity boundary. literature) is a set C Lean(y) such that:

o . ®V{a)p € Leanv),(a)p € t = (a) T € t (modal consis-
6.1 Preliminary Definitions tency),
Fory = (uXi.@: in¥) we define expp) £ ¢ {#Xi¢iinXi/y 1 e (I) T ¢tV (2)T ¢ t(atree node cannot be both a first child
which denotes the formula in which every occurrence of &; is and a second child);

replaced by(pX;.¢; in X;).

We define theFisher-Ladner closurecl(y)) of a formula
as the set of all subformulas af where fixpoint formulas are
additionally unwounded once. Specifically, we define the relation ® © may belong ta.

—.C L, x L, asthe least relation that satisfies the following: We call Typeg) the set ofi-types. For ap-typet, the comple-
mentof ¢ is the set Leaf) \ ¢.
Atype determines a truth assignment of every formula’ifg)
® P1V P2 e P11V P2 —e 02 with the relationé defined in Fig.10.
o (a) ¢ —e ¢ Note that such derivations are finite because the number of
- - nakeduX;.; in ¢ (that do not occur under modalities) strictly
* nXipiiny —e explpXi.piiny) decreases after each expansion.
The closure @) is the smallest sef that contains) and closed We often write € ¢ if there are somd’, F" such thaty €
under the relatior-., i.e. if o1 € S andy; —. @2 theny, € S. t = (T, F). We say that a formula is true at a type iff ¢ € ¢.

e exactly one atomic propositian € ¢ (XML labeling); we use
the functiono () to return the atomic proposition of a type

® 1 NP2 —e Y1, P1 N\ P2 —e P2




We now relate a formula to the truth assignment of/it/pes.

PROPOSITIONG.1. If ¢ € t = (T, F), then we havd” C ¢,

F C Leanp) \ t, and A\ . A A ver ¥ iMplies ¢ (every
tree in the mterpretatlon o;‘bthe first formula is in the interpretation
of the second). Ifp ¢ t = (T, F), then we havel’ C ¢,

F CLear(p) \ t,and\,cr ¥ A Ay e —¢ implies—p.

We next define a compatibility relation between types that es-
tablishes what formula must hold in a type to be a witness to a
modal formula.

DEFINITION 6.2 (Compatibility relation) Two typest andt’ are
compatibleundera € {1, 2}, written A, (¢, t'), iff

Vi{a)p € Leany),(a)p €t = p Lt

V{a)p € Leany), @ et © pEt

6.2 The Algorithm

The algorithm works on sets of triples of the forft, w1, w2)
wheret is a type, andv, andw- are sets of types which represent
all possible witnesses for according to relationg\, (¢, -) and
Ao(t, ).

The algorithm proceeds in a bottom-up approach, repeatedly

adding new triples until a satisfying model is found (i.e. a triple
whose first component is a type implying the formula), or until no
more triple can be added. Each iteration of the algorithm builds
types representing deeper trees (in th@nd 2 direction) with

pending backward modalities that will be fulfilled at later iterations.

Types with no backward modalities are satisfiable, and if such a pe(t) = a(t) A /\ BCEARRA /\

type implies the formula being tested, then it is satisfiable. The
main iteration is as follows:

X 0
repeat
X —X
X < Upd(X")
if FinalCheck(¢, X) then
return “v is satisfiable”
until X = X’
return “2 is unsatisfiable”

whereX C Typeg)) x 2PPe¥) x 9WPed¥) and the operations
Upd(-) andFinalCheck(-) are defined on FigLL

We note X the set of triples and™ the set of types after
iterations:T" = {type(z) | x € X"}. Note thatI"*" is the set of
types for which at least one witness belongg§to

6.3 Correctness and Complexity

[TIv £ 7 X% £V (X)

[ov ol 2 Iele Ulvly [l 2 {f | an(f) = p}

Lo A YTy Z [ely N [TV [-plv Z {f | m(f) # p}

[(T) el =7 [ 2 {f1f=®Mt.0}

[(2) ¢l = F -G Z{f | f = (oltl],0)}
KD elv* = {f (1) | f € Lol " A f(1) defined
[2) el E{f2) | fe el Af(2) defined

[1) el £

E{r(@) | fe [[go]]"+1 f(T) defined

[2) @l © {7 (2) | felelit A f(2) defined
[ (a) TI% = {f | f (a) undefined

X invlp ZletT = ({7 S 7 | 70y myxy € T }),

in [y 7%

Figure 12. Partial satisfiability

For a typet, we notep.(t) its most constrained formujavhere
atoms are taken from Leé#). In the following,o stands forg) if

® € t, and for—@® otherwise.
N\ (@

(a)pet (a)ogt
We now introduce a notion gdaths written p which are con-
catenations of modalities: the empty path is writteand path con-
catenation is writtepa.
Every path may be givendepth

depth(e) =
depth(pa) € depth(p) +1 if a € {1,2}
depth(pa) £ depth(p) — 1 if a € {1,2}

A forward path is a path that only mentions forward modalities.

We define a tree of type® as a tree whose nodes are types,
7 (-) = t, with at most two children7 (1) and7 (2). The navi-
gation in tree of types is trivially extended to forward paths. A tree
of types isconsistentff for every forward pathp and for every
child a of 7 (p), we haveT (p) (-) = t, T (pa) (-) = t' implies
()T et, (@ T et andAy(t,t').

Given a consistent tree of typ€Ss we now define a dependency

oEX,0¢t

def

In this section we define the necessary notions to prove the correct-graph whose nodes are pairs of a forward pa#nd a formula in

ness of the satisfiability testing algorithm, and show that its time
complexity is2© (I-ean¥)D)

THEOREM 6.3 (Correctness)The algorithm decides satisfiability
of £,, formulas over finite focused trees.

Termination Fory € L, since clv) is a finite set, Leafy) and
2tea¥) are also finite. Furthermor®pd (-) is monotonic and each
X is included in the finite set Typég) x 2VPeL¥) y gTvpedw)
therefore the algorithm terminates. To finish the proof, it thus suf-
fices to prove soundness and completeness.

Preliminary Definitions for Soundness First, we introduce a no-
tion of partial satisfiability for a formula, where backward modal-
ities are only checked up to a given level. A formuylas partially
satisfied iff[¢]Y # 0 as defined in Figl2.

t = T (p) () or the negation of a formula in the complement of
t. The directed edges of the graph are labeled with modalities con-
sistent with the tree. This graph corresponds to what the algorithm
ultimately builds, as every iteration discovers longer forward paths.
For every(p, ) in the nodes we build the following edges:

* 9 €X(P)U-X) U{®,~®,(a) T,~(a) T}: no edge

e p=candy = (a) ¢’ with a € {1,2}: no edge

e p=paandyp = (a')¢" lett =T (p) (-).
We first consider the case wheré € {1,2} and lett’
T {pa’) (-). As T is consistent, we havg’ € t' hence there
areT, I such thaty’ € ' = (T, F') with T a subset of’,
and F a subset of the complement ©f For everypr € T we

add an edge’ to (pa’, o), and for everypr € F we add an
edgea’ to (pa’, —¢F).



def

Upd(X) & X U {(t,w1(t, X°),wa(t, X°)) | @ ¢ t C Types) A (1) T € t = wi(t, X°) £ DA (2) T € t = walt, X°) # 0}
U {(t,wl(t7XO)7wz(t7X°))© |®etCTypes) A ()T €t =wi(t, X°) £ DA ()T €t = ws(t,X°) # @}

)
}

W (t, X) e {type(z) |z € X A (@) T € type(z) A A.(t, type(z))} X©® {I eXlz=(, ,)®}

def

FinalCheck(y, X) =

def

dsat((t, w1, w2),?) =

U {(t,wl(t,X©),wz(t,X°))® |©¢tCTypeg) AD)T et =wi(t, XO) £ DA ()T €t = wa(t, X°) #0
U{(t,m(t,Xo),wQ(t,X®))©\@gétgTypes{zp)/\ﬂ)Tet:>W1(t,X°)75(2)/\<2>T6t:>wz(t,X®)75@

3z € X® dsat(z,v) AVa € {1,2},(a) T ¢ type(z) X EreX|z=(,)}
¥ €tV I dsat(z’, ) A (2" € wr V' € ws) type((t, w1, ws)) = ¢

Figure 11. Operations used by the Algorithm.

We now consider the case whete € {1,2} and first show 7. Implementation Techniques
that we haver’ = @. As 7 is consistent, we havé&) T in ¢.
Moreover, ag is a tree type, it must contaife’) T. Asa’ is a
backward modality, it must be equald@as at most one may be
present. Hence we hayéaa’ = p’ and we lett’ = 7 (p’) (-).

Our implementation relies on a symbolic representation of sets of
1-types using Binary Decision Diagrams (BDDS).[

First, we observe that the implementation can avoid keeping
track of every possible witnesses of eagkype. In fact, for a

By consistency, we have’ € t', hencey’ € ' = (T, F) formula o, we can tesfp]y # 0 by testing the satisfiability of
anld we add edges as in the previous cas€ptppr) and to the (linear-size) “plunging” formula = pX.¢ v (1) X V (2) X
(', ~or). at the root of focused trees. That is, checkijpgj # 0 while

ep =paandy = —{d)p:lett = T{(p)(-). If ()T ensuring there is no unfulfilled upward eventuality at top leyel
is not in ¢t then no edge is added. Otherwise, we proceed as One advantage of proceeding this way is that the implementation
in the previous case. For downward modalities, wetlet= only need to deal with a current set@ftypes at each step.
T (pa’) (-) and we computey’ ¢ t' = (T, F), which we We now introduce a bit-vector representation/efypes. Types
know to hold by consistency. We then add edgeédd, 1) are complete in the sense that either a subformula or its negation
and to(pa’, ~¢ ) as before. For upward modalities, as we have Mustbelong to atype. Itis thus possible for a formala Lean(y))
(a') T int, we must have’ = @ and we let’ = 7 (') (-). We to be represented using a single BDD variable. For (gan=

{¢1,...,om }, We represent a subsetC Lean(y)) by a vector

t' = (t1,...,tm) € {0,1}™ such thatp; € tiff t, = 1. ABDD

with m variables is then used to represent a set of such bit vectors.
We define some auxiliary predicates on a ve€iior a program

computey’ ¢ t' = (T, F') and we add the edges tp’, 1)
and to(p’, ~¢r) as before.

LEMMA 6.4. The dependency graph of a consistent tree of types of

a cycle-free formula is cycle free. a€{1,2}:
LEMMA 6.5 (Soundness)etT be the result set of the algorithm. ~ ® isparent () is read ¥ is a parent for program” and is true iff
For any typet € T and anyy such thatp € ¢, then[e]g # 0. the bit for (a) T is true int

« ischild, (%) is read 'is a child for programa” and is true iff the

Proof outline: The proof (detailed in19] ) proceeds by induction bit for (@) T is true inf’

on the number of steps of the algorithm. For eveip 7" and
every witness tre@ rooted att built from X", we show thatZ is

a consistent tree type and we build a focused fi¢kat is rooted Forasefl’ C 2-°") we noteyr its corresponding character-

(i.e. of the shapéo®[tl], (¢, Top, t))). istic function. Encoding(rypeg ) is Straightforward. The predicate

We then proceed to show thatsatisfiesy.(t) at level0. To do status () is the equivalent of on the bit vector representation.
so, we use a further induction on the dependency tree. O We now construct the BDD of the relatiak, for a € {1,2}. This
BDD relates all pairg®, %) that are consistent w.r.t the program

LEMMA 6.6 (Completeness)or a cycle-free closed formula € i.e., such thay supports all oft’s (a) ¢ formulas, and vice-versa

Ly, if [¢lp # 0 then when the algorithm terminates with a set of % supports all of;’s (@)  formulas:
triples X such thatFinalCheck(p, X), there exists some € X

such thatp € type(z).

x; — status,(y) if ;i = (a) p
Proof outline: As the formula is satisfiable, we consider a smallest Aa(Z, ) & /\ y; < status (Z) if o, = (@) ¢
focused treef satisfying it. We then use Lemma2 to derive a i<i<m | T otherwise

finite satisfaction relation ap that containg’. We then rely on this
relation to build a run of the algorithm that produces a type with no ' . .
backward modality implying the formula. Fora € {1, 2}, we define the set of witnessed vectors:
LEMMA 6.7 (Complexity).For a formulay € L, the satisfia- Xuse, (1) (£) £ isparent () — 37 [ h(7) A Aa(Z,7) ]
bility problem [¢]y # 0 is decidable in time°™ wheren =

|Lean(y)|. whereh(§) = xr (%) A ischild, (7).



Then, the BDD of the fixpoint computation is initially set to the
false constant, and the main functigpd(-) is implemented as:

JER — — —
Xupa(r) (F) Z X1 (%) V| X1ypess) (£) A /\ Xiito () (Z)
ae{1,2}

Finally, the solver is implemented as iterations over the sets
Xupa() Until & fixpoint is reached. The final satisfiability condition
consists in checking whethep is present in ai-type of this
fixpoint with no unfulfilled upward eventuality.

We use two major techniques for further optimization. First,
BDD relational products3y [ h(y) A Aa(Z,¥) ]) are computed
using conjunctive partitioning and early quantificatidi9]f Sec-
ond, we observed that choosing a good initial order of Igan
formulas does significantly improve performance. Experience has
shown that the variable order determined by the breadth-first traver-
sal of the formulay) to solve, which keeps sister subformulas in
close proximity, yields better results in practice.

8. Typing Applications and Experimental Results
For XPath expressions, ..., e,, we can formulate several decision
problems in the presence of XML type expressi@hs..., T, :

e XPath containmentty™ [e1][7,] A ~E7 [e2] [y (if the for-
mula is unsatisfiable then all nodes selecteccbyinder type
constraintl} are selected by, under type constrairifs)

e XPath emptinessE [e1] 7]
o XPath overlapE~ [e1] 7,5 A B~ [e2] 7]
* XPath coveragely ™ [e1]r,) A Ag<icn, ~E 7 [ei]ri)

Two decision problems are of special interest for XML static
type checking:

e Static type checking of an annotated XPath query:
E~[ei]prg A —[T2] (if the formula is unsatisfiable then all
nodes selected by, under type constrairif; are included in
the typeTz.)

o XPath equivalence under type constraints:
E~ [[61]] [T1] AN-E™ [[62]] [T2] and—E— [[61]] [T1] ANE™ Hezﬂ [T2]

ex  Jal.//ble/*//d]/ble/ /d]fble/d)]
ex  Jal.//ble/*//d)/ble/d]

es a/b//c/foll-sibling::d/e

es a/b//d[prec-sibling::¢/e

es a/c/following::d/e

es  a/b[//c]/following::d/en a/d[preceding::f/e

er  */lswitch[ancestor::head]//seqg//audio[prec-sibling::video]
es  descendant::a[ancestor::a]

e9 [/descendant::*

e1o html/(head body)

e11 html/head/descendant::*

e12 html/body/descendant::*

Figure 13. XPath Expressions Used in Experiments.

DTD Symbols| Binary Type Variableg
SMIL 1.0 19 11
XHTML 1.0 Strict 7 325

Table 1. Types Used in Experiments.

XPath Decision Problenh XML Type [ Time (ms)
e1 C ez andez € er none 353
es C ez andes C e3 none 45
eg C es ande5 Z €6 none 41
ey is satisfiable SMIL 1.0 157
es is satisfiable XHTML 1.0 2630
€9 g (610 U €11 U 612) XHTML 10 2872

Table 2. Some Decision Problems and Corresponding Results.

9. Related Work

The XPath containment problem has attracted a lot of research
attention in the database communi82] 36, 38]. The focus was
given to the study of the impact of different XPath features on the
containment complexity (se@§| for an overview). Specifically,

(This test can be used to check that the nodes selected after §36] proves an EXPTIME upper-bound (in the presence of DTDs)

modification of a typél; by T, and an XPath expressien by
eo are the same, typically when an input type changes and the
corresponding XPath query has to change as well.)

We carried out extensive te${49], and present here only a few
of them. The tests use XPath expressions shown oriBifyhere
“II" is used as a shorthand for “/desc-or-self::*/”) and XML types
shown on Tablel. Table2 presents some decision problems and
corresponding performance results. Times reported in milliseconds
correspond to the actual running time of thg satisfiability solver
without the extra (negligible) time spent for parsing XPath and
translating intaC,,.

The first XPath containment instance was first formulated in
[32] as an example for which the proposed tree pattern homomor-
phism technique is incomplete. Theg example shows that the of-
ficial XHTML DTD does not syntactically prohibit the nesting of
anchors. For the XHTML case, we observe that the time needed
is more important, but it remains practically feasible, especially
for static analysis purposes where such operations are performe
at compile-time.

1Experiments have been conducted with a JAVA implementation running
on a Pentium 4, 3 Ghz, with 512Mb of RAM with Windows XP.

of queries containing the “child” and “descendant” axes, and union
of paths. The complexity of XPath satisfiability in the presence
of DTDs also is extensively studied ir8][ From these results,
we know that XPath containment with or without type constraints
ranges from EXPTIME to undecidable.

Most formalisms used in the context of XML are related to one
of the two logics used for unranked trees: first-order logic (FO),
and Monadic Second Order Logic (MSO). FO and relatives are
frequently used for query languages since they nicely capture their
navigational feature<]. For query languages, Computational Tree
Logic (CTL), which is equivalent to FO over tree structures has
been proposed3p, 30, 2]. In a attempt to reach more expressive
power, the work found in1] proposes a variant of Propositional
Dynamic Logic (PDL) [L4] with an EXPTIME complexity. MSO
is one of the most expressive decidable logic used when both
regular types and querieg][are under consideration. Specifically,
the appropriate MSO variant which exactly captures regular tree
ypes is the weak monadic second-order logic of two successors
WS2S) B0, 9]. WS2S satisfiability is known to be non-elementary.
A drawback of the WS2S decision procedure is that it requires the
full construction and complementation of tree automata.

Some temporal and fixpoint logics closely related to MSO have
been introduced and allow to avoid explicit automata construction.



The propositional modgli-calculus introduced inZ7] has been
shown to be as expressive as nondeterministic tree autodta |
Since it is trivially closed under negation, it constitutes a good
alternative for studying MSO-related problems. Moreover, it has
been extended with converse programs4@].[ The best known
complexity for the resulting logic is obtained through reduction to
the emptiness problem of alternating tree automaton which is in

20(n* g m) \wheren corresponds to the lenght of a formul2d].
Unfortunately the logic lacks the finite model proper®8], we
know that WS2S is exactly as expressive as the alternation-free
fragment (AFMC) of the propositional modatcalculus. Further-
more, the AFMC subsumes all early logics such as CT]Lajpd
PDL [14] (see P] for a complete survey on tree logics). 8], the
author considers XPath equivalence under DTDs (local tree types)
for which satisfiability is shown to be in EXPTIME.

The goal of the research presented so far is limited to establish-
ing new theoretical properties and complexity bounds. Our research
differs in that we seek precise complexity bounds, efficient imple-

mentation techniques and concrete design that may be directly ap-

plied to the type checking of XPath queries under regular tree types.

In this line of research, some experimental results based on
WS?2S, through the Mona tooR§], have recently been reported
for XPath containmentl[7] and even for query evaluatior2§).
However, for static analysis purposes, the explosiveness of the
approach is very difficult to control due to the non-elementary
complexity. Closer to our contribution, the recent work found in
[39] provides a decision procedure for the AFMC with converse
whose time complexity i8°(*°9 ) However, models of the logic
are Kripke structures (infinite graphs). Enforcing the finite tree
model property can be done at the syntactic le86],[and this has
been further developed in the XML setting ihg. Nevertheless,
the drawback of this approach is that the AFMC decision procedure
requires expensive cycle-detection for rejecting infinite derivation
paths for least fixpoint formulas. The present work shows how this
can be avoided for finite trees. As a consequence, the resulting
performance is much more attractive. In an earlier work on XML
type checking, a logic for finite trees was presentt],[but the
logic is not closed under negation.

The work B4] presents an approximated technique that is able
to statically detect errors in XSLT stylesheets. Their approach
could certainly benefit from using our exact algorithm instead of
their conservative approximation. The XDu@2], CDuce #], and
XStatic [L5] languages support pattern-matching through regular
expression types but not XPath. Although some recent work shows
how to translate XPath into Xtatid @], the XPath fragment con-
sidered does not include reverse axes nor negation in qualifiers. A
survey work on existing research on statically type checking XML
transformations can be found i83.

10. Conclusion

The main result of our paper is a sound and complete algorithm for
the satisfiability of decision problems involving regular tree types
and XPath queries with a tightef’"™) complexity in the length of
a formula. Our approach is based on a sub-logic of the alternation-
free modalu-calculus with converse for finite trees.

Our proof method reveals deep connections between this logic
and XPath decision problems. First, the translations of XML regu-

lar tree types and a large XPath fragment are cycle-free and linear

in the size of the corresponding formulas in the logic. Second, on
finite trees, since both operators are equivalent, the logic with a
single fixpoint operator is closed under negation. This allows to ad-

dress key XPath decision problems such as containment. The cur-
rent solver can also be used to support conditional XPath proposed

in [31].

Finally, there are a number of interesting directions for further
research that build on ideas developed here: extending XPath to
restricted data values comparisons that preserves this complexity,
for instance data values on a finite domain, and integrating related
work on counting §] to our logic. We also plan on continuing to
improve the performance of our implementation.
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Cycle-free formulas

In the judgementA | T ¥ ¢ of Fig. 14, A is an environment
binding some recursion variables to their formulBspinds vari-
ables to modalitiesR is a set of variables that have already been
expanded (see below), aiids a set of variables already checked.
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Figure 14. Cycle-free formulas

The environmenf™ used to derive the judgement consists of
bindings from variables (from enclosing fixpoint operators) to
modalities. A modality may be, no information is known about
the variable{a), the last modality takefu) was consistent, at, a
cycle has been detected. A formula is not cycle free if an occurrence
of a variable under a fixpoint operator is either not under a modality
(in this casd(X) = _), or is under a cycleI{(X) = ). Cycle
detection uses an auxiliary operator to detect modality cycles:

T < (a) € {X : (T(X) < (a))}



where
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To check that mutually recursive formulas are cycle-free, we
proceed the following way. When a mutually recursive formula is
encountered, for instangeX;.y; in ¥, we check every recursive
binding. Because of mutual recursion, we cannot check formulas
independently and we need to expand a variable the first time it's
encountered (rule RC). However there is no need to expand it
a second time (rule NReC). When checkingy), as the formula
bound to the enclosing recursion have been checked to be cycle
free, there is no need to further check these variables (@ng To
account for shadowing of variables, we make sure that newly bound
recursion variables are removed fralmand R when checking a
recursion. One may easily prove thatAf | T' F  holds, then
INR=0.

This relation decides whether a formula is cycle free because,
if it is not, there must be a recursive binding &f to ¢; such that
¢i{?/x, }{¥7/x;} exhibits a modality cycle abov&;, where the
X; are recursion variables being defined (either in the recursion
defining X; or in an enclosing recursion definition).




	Introduction
	Outline
	Trees with Focus
	The Logic
	XPath and Regular Tree Languages
	XPath Embedding
	Embedding Regular Tree Languages

	Satisfiability-Testing Algorithm
	Preliminary Definitions
	The Algorithm
	Correctness and Complexity

	Implementation Techniques
	Typing Applications and Experimental Results
	Related Work
	Conclusion
	Cycle-free formulas

