Teleoperation over ip network: Network delay regulation and adaptive control Philippe Fraisse, Arnaud Lelevé ## ▶ To cite this version: Philippe Fraisse, Arnaud Lelevé. Teleoperation over ip network: Network delay regulation and adaptive control. Autonomous Robots, 2003, 3 (Special Issue on Internet and Online Robots), pp.225-235. 10.1023/A:1026112419614. hal-00189068 HAL Id: hal-00189068 https://hal.science/hal-00189068 Submitted on 21 Jun 2012 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. # Teleoperation over IP Network: Network Delay Regulation and Adaptive Control P. Fraisse*, A. Lelevé** * LIRMM, 161 rue Ada, Montpellier, 34000, France **ICTT Batiment L. de Vinci 20 av A. Einstein Villeurbanne, 69621, France Philippe.Fraisse@lirmm.fr, Arnaud.Leleve@insa-lyon.fr #### Abstract This paper proposes a solution to control a remote manipulator robot (PUMA560) using IP network. A method is described to control this remote manipulator based on High-Order Sliding Mode so as obtain a product time delay bandwidth constant. Since previous method supposes a constant transmission delay, we put it over a low level mechanism (Network Delay Regulator) satisfying this criterion. This method eliminates the delay jitter in order to make estimation, prediction and control with a constant mean time delay (T_r) . Under this condition, the stability condition of this algorithm is then studied. Some simulation results illustrate the performance of the High-Order Sliding Mode to dynamically forcethe remote system according to the Network Round Trip Time (NRTT). #### 1 Introduction There are situations when firms or laboratories have to resort to remote manipulation. Such cases appear when dangerous objects have to be handled [1] or/and when the environment is too aggressive for humans. Typical applications belong to the nuclear domain (for instance in the dismantling of a nuclear plant), deep-sea domain (work on underwater structures of oil rigs) and spatial domain (exploration of distant planets). Teleoperation has the supplementary advantage of giving the possibility of sharing an experiment between several operators located in distinct places. This way, heavy outdoor experimentations could be easily shared between several laboratories and costs could be reduced as much. However, long distance control of a remote system requires the use of different transmission media which causes two main technical problems in teleoperation: limited bandwidth and transmission delays due to the propagation, packetisation and many other events digital links may inflict on data [3]. Moreover bandwidth and delays may vary according to events occurring all along the transmission lines. In acoustic transmission, round-trip delays greater than 10s and bit-rates smaller than 10kbits/s are common , due to technical limitations. Nowadays, using Internet as a part or the whole communication channel brings a good connectivity at low cost but presents similar drawbacks [2]. These technical constraints result in one hand in difficulties for the operator to securely control the remote system and, in the other hand, make classical control laws unstable. Many researches have proposed solutions when delays are small or constant [4], but when delays go beyond a few seconds and vary a lot as over long distances asynchronous links, solutions not based on teleprogramation [?] are fewer because such delays make master and slave asynchronous and the control unstable. Since 1997, our team has begun a research project on teleoperation. At this time, publications about teleoperation methods when delays are small and/or constant were numerous but there was a lack in long distance teleoperation literature, when delays are prohibitive and variable such as through Internet channels. Starting from an initial experiment with our mobile manipulator, our first work consisted in highlighting practical difficulties inherent to teleoperation of mobile manipulator. We then began to develop a generic teleoperation model which we inserted in a simulation environment using Matlab/Simulink. Working with this tool, we proposed an architecture and a method [1] consisting in buffering data at its arrival in both master and slave. Associated with an adaptive predictor we could offer a real-time estimation of slave state over a virtual constant delay transmission link. In order to validate these results, we developed a software based on this model, which we applied on our mobile manipulator. The main drawback was that this buffering method induced a very high global delay in short distance, due to an unsuitable transmission period. Therefore, we completed our model by a real-time network round-trip delay measure ($Network\ Round\ Trip\ Time,\ NRTT$) and forward prediction in order to adapt the transmission period ($Network\ Delay\ Regulator,\ NDR$) and buffer parameters to small frequency network behavior. First simulation results are presented in this paper. Having a constant mean time delay ($by\ way\ of\ NDR\ for\ instance$), we can propose an original remote decentralized controller on the manipulator based on High-Order Sliding Modes. This controller allows to adapt the manipulator dynamics in closed loop according to the (GRTT). We prove in the next section, under some specific assumptions, that same stability level is obtained if the product closed-loop bandwidth of the remote system by the GRTT is constant. We then propose to force dynamically each axis of the robot to verify this condition using the High-Order Sliding Modes algorithm whose the coefficients be adapted with respect to the GRTT. Stability is also proved in the 3rd section. Afterwards, some simulations results are provided to illustrate the efficiency of this solution. ### 2 Teleoperation Environment In this section we introduce the teleoperation architecture as well as the model of the experimental platform including the actuators of the manipulator robot, the network and the base station. #### 2.1 Teleoperation Architecture We consider a classical teleoperation diagram including two parts (the master alias Base and the slave alias Remote System) separated by a network transmission link. Figure 2 gives a global view of the teleoperation diagram and details what each part includes. We will use the term "Base" to refer to the host computer that Figure 1: Teleoperation Architecture features the operator and the man-machine interface (MMI). The "Remote System" will point out the system to be teleoperated, i.e. the transmitter and the low-level control associated with the robot. To simplify the reasoning, we will consider a monodimensional system. We just make the assumption that every axis of a complex system can be independently controlled, which is feasible by mean of computed torque methods, for instance. Signals exchanged between the master and the slave are periodically emitted back and forth every 200 ms before being delayed by the network both way. This period was the smallest our platform could handle in the first experiments. #### 2.2 Teleoperation Platform We use a terrestrial vehicle equipped with a 6 degree-of-freedom manipulator (d.o.f) [1]. It consists of a 6x6 vehicle fitted with a PUMA manipulator. Several control laws are featured: global motion of the whole mobile manipulator, force-driven control laws, PID per axlecontrol law,... In this present work, we use a computed torque method [7] to control the arm. A dSpace $\stackrel{\text{C}}{C}$ DSP board is dedicated to the low-level control of the 8 axis(6 for the arm and 2 for the vehicle). A laptop PC fitted with a wireless 2Mbps Ethernet network board takes care of the transmission and of a global control of the whole mobile manipulator. The operator sends and receives data Figure 2: Experimental Setup to the remote site at least through his lab network. This data roams through the Internet if necessary, it reaches the remote site LAN and, at last, it is sent at 2Mbps through at 802.11b-like radio transmission link. Figure (2) pictures this trip. We have chosen TCP versus UDP because TCP is reliable: the received data is exactly the same as the sent data (no packet loss or disorder). The main drawback is an higher NRTT than with UDP, due to packet checking and reordering. #### 2.3 Modeling The modelisation step describes the dynamic model including the network, the remote system and the base station. We consider that the remote manipulator robot as a set of linear subsystems. The nonlinearities (Gravity, Coriolis) are included in the disturbance term. Figure 3: Transmission model The linear model of the manipulator robot actuators can be expressed as : $$\tau_i \ddot{q}_i(t) + \dot{q}_i(t) = k_{vi} \left(u_i(t) - d_i(t) \right) \tag{1}$$ where $\mathbf{u}(t) = [u_1..u_6]^t$ is the control vector, $\mathbf{q}(t) = [q_1..q_6]^t$ the position output vector, $\mathbf{d}(t)$ the disturbance vector and τ_i the time response of each actuator. The base station is always controlled by an human operator whose explicit modeling is complex. However, the stability study needs an explicit model. Also, we assume the base station as a proportionnal loop and the network reacts as a constant delay: either we use a channel that provides constant delay T_r , or we use our NDR wich provides a constant virtual delay T_r . We obtain the following delayed equation: $$\mathbf{u}(t) = \mathbf{K}_0 \mathbf{E}(t) e^{-T_r s} \tag{2}$$ with $\mathbf{E}(t) = \mathbf{q}_d(t) - \mathbf{q}(t)$ the tracking error and a constant global delay T_r . #### 3 Network Delay Regulation This section will introduce you the low-level transmission architecture we have set up [5]. It features a mean to easily compute an estimation of the state of the remote system (before backward data has reached the base) and also a prediction of movements at the moment when corresponding data is generated by the operator. This assumes delays have been made constant, which is the first subject we will develop. #### 3.1 Principle In order to eliminate the delays jitter that is typical in asynchronous networks, we have thought of inserting two "Network Delay Regulator" (NDR), located at the input of both Base and Remote System. Each one stacks incoming data as it is asynchronously received; meanwhile each NDR unstacks previous data (in the same order: First-In, First-Out) at a constant sampling rate (T_r) common to the whole teleoperation structure. The results are that signals find again the initial shape they initially had. The main drawback of this operation is the growth of the mean delay. In our study, we have observed the network round-trip-time (NRTT) and the global round-trip-time (GRTT) including NRTT and both NDRs through time. Figure 4 illustrates the difference between NRTT and GRTT. In a first approach, we have assumed that both sites are too far to be synchronized so that we don't have access to single-trip-times. We have had to assume that forward and backward trip times can be deduced from NRTT by dividing it by 2. We are currently working on this subject; several solutions are conceivable: we could try to synchronize both hosts through the network using methods like [13] or using GPS clock up to a resolution of 500ns, which is quite enough for our experimentations. Figure 4: NRTT and GRTT #### 3.2 Queue Dimensioning In order to fit the size of the NDRs queue to the network behavior, there is an initialization pattern at the beginning of teleoperation experiment. 10 frames are exchanged in order to measure the network round-trip delays. Theses measures are then analyzed; we use the maximum time (m_t) between two receptions (ie maximum difference between delays) of these NRTT to set the nominal size (n_s) of the NDR queue, with a factor of security η : $$n_s = 2 + E\left(\eta \frac{m_t}{T_r}\right)$$ When $\eta = 1$, the queues can handle delays corresponding to a maximum time between two receptions equal to m_t . Whenever this case occurs, the queue empties down to 2 samples, the minimum size we permit. $\eta = 1, 3$ ensures that the queue won't go beyond this limit even if network delays deteriorate a bit. Moreover, this security factor limits the lack of precision of the NRTT measure, due to the initialization pattern short duration. #### 3.3 Experimental Results We have experimented the NDR at short distance (two hosts 75km apart) and at virtual long distance (a relay delayed network data with values corresponding to a transmission between Paris, France and New York, USA). Figure 5 allows to compare the Network Round-Trip-Time (NRTT) with the Global Round-Trip-Time (GRTT) in steady pattern. At long distance, statistics give a mean GRTT to 7s (vs. 610ms for the NRTT) with a standard deviation of 12ms (vs. 500ms). There were 13 desired data samples in each queue which contained between 4 and Figure 5: Comparison between NRTT and GRTT 16 samples. At short distance, mean GRTT grows up to 1,2s (vs 23ms for NRTT) and the standard deviations are identical. There were 2 desired samples in each queue which size varied between 1 and 3 samples. We observe the following relation (s(t) is the evolution of the number of samples in each NDR): GRTT = 2max(s(t)) + NRTT. To put it in a nutshell, long distance results could be better with a real-time environment for NDRs which we didn't have at first for compatibility reasons. Nevertheless they inform us that the principle seems correct even if parameters might be better chosen to limit the embarrassing raising of the mean GRTT. At short distance, mean RTT appears to grow up to 50 times as much; this is due to the sampling period T_r of 200ms (corresponding to technical constraints) which is 10 times as much as the mean NRTT. Thus, it is difficult to have it smaller because the queue size vary between only 1 and 3 samples. As the mean GRTT is a multiple of T_r , the only solution to decrease mean GRTT consists of decreasing T_r . #### 3.4 Enhancement : Dynamic Adaptation As the latest conclusions let us foresee, we need to adapt the transmission period T_r and the nominal size (n_s) of the NDR queues. Consequently it is necessary to predict the evolution of network behavior in order to change the transmission parameters whenever they become out of proportions. A change of these parameters leads the system to pause the teleoperation task and then to go through a new transient pattern as at the first starting. This involves that every calculus made from these parameters (state and network prediction, control laws,...) are able to adapt themselves to the new parameters. Network behavior prediction is achieved this way: we use two discrete Kalman filters coupled with a triple integrator model and an autocorrelation $\phi[k] = \sigma_Q^2 e^{-a|k|T_r}$ [15]. This kind of association is typically used to predict movements of targets in problems of tracking. The first filter is used to predict the mean NRTT and the second one, the evolution of m_t , the maximum time between two receptions (directly used for resizing the NDR queues). Kalman matrices are then: $$\mathbf{A} = \begin{bmatrix} 1 & T_r & \frac{T_r^2}{2} \\ 0 & 1 & T_r \\ 0 & 0 & 1 \end{bmatrix} \mathbf{Q} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \sigma_Q^2 \end{bmatrix} \begin{array}{c} B = [0] & R = \sigma_Q^2 \\ H = [100] \\ P_0 = I_3 \sigma_Q^2 \end{array}$$ (3) This filter, by estimating current value, velocity and acceleration of our both signals, gives us a prediction one step ahead, which corresponds to a few 100ms according to the transmission period. As we need to predict the network behavior further—ahead (a few seconds would be reasonable), we compute the prediction step of the Kalman filter t times, according to the time we need to anticipate: $\hat{x}_{k+1} = A^t \hat{x}_k$. As this extrapolation is very noisy (it acts as a lever), we filter it with a low-pass filter ($\gamma = 50T_r$). This gives us an extrapolation which we have found good enough to be used for further parameter adaptation. The difficulties reside in measuring in one hand the mean NRTT when its standard deviation is high as in TCP transmissions, and in the other hand, the maximum time between two successive frames: $m_t(t)$. To measure the mean NRTT, worked out from the elapsed time between the emission of a frame and the reception of its corresponding acknowledgement, we simply use a low-pass filter with $\gamma = 250T_r$. This is a calculus we have found appropriate according to simulations we had done. To measure the evolution of $m_t(t)$, we compute the time between two successive frames $t_{sf}(t)$ and we keep the superior envelope of this signal. This computation consists in the following algorithm: $$\begin{array}{ll} \text{If} & (t_{sf}[\mathbf{k}]{>}\mathbf{e}[\mathbf{k}{-}1]) \\ \text{Then} & \mathbf{e}[\mathbf{k}]{=}t_{sf}[\mathbf{k}] \\ \text{Else} & \mathbf{e}[\mathbf{k}]{=}\frac{e[k-1]}{v_d} \end{array}$$ Decreasing speed v_d has been set to 1,00005. As this envelope contains high frequencies, we filter it with a first order discrete low-pass filter with the bandwith $\gamma = 25T_r$. #### 3.5 Validation by Simulation In order to validate our network behavior predictor, we have generated delays which mean value and standard deviation vary (see figure 6(a)). We have chosen continuous sine variations with a discontinuity in order to represent long time variations of a real network. As we use a protocol that ensures data will be received in the same order as it has been sent, delays are modified to respect the right order of data reception. The prediction is tested during 20mn. Figure 6: Generated delays The first Kalman filter gives a prediction of the mean delays (ie NRTT) with an advance of $50T_r = 10s$. Figures 6(b) and 6(c) pictures the results. We can remark that the precision of the prediction depends a lot on the initial measure. In this case, the mean delays measure is a bit too slow when discontinuities happen. This prediction is then used to compute a new transmission period T_r at next parameter change. The second Kalman filter gives a 10s prediction of $m_t(t)$, in other words, $m_t(t+10s)$. The results showed in figure 7 are good enough to be used to prevent NDR queue emptying 10s before it would happen. It leaves enough time for the system to get in pause mode. #### 3.6 Computation of New Parameters Experimentations at short distance showed that the average GRTT was equal to 1,2s versus 23ms for NRTT. As $T_r = 200ms$, the time spent in each NDR was equal to $3 \times T_r$. Therefore we had $GRTT = 2 \times 3 \times T_r + NRTT$. In order to have a good resolution during the regulation, T_r should be at most equal to NRTT, but transmission frequency is limited by the network bandwidth (which may vary) and by the speed of computer hosted in the local and remote site. The choice of T_r will then depend on the platform used for the teleoperation. In our case, we have decided to make the following calculus: $T_r = max \left(50ms, \frac{NRTT}{3}\right)$. For our short distance, we would obtain an average GRTT equal to $2\times3\times50ms=300ms$ versus 1,2s in first experiments. And at long distance $2\times16\times\frac{610}{3}ms\approx3,9s$ (T_r would be equal to 200ms so the queues would have the same sizes as in our experimentations) versus 7s. Concerning the nominal size of the NDR queues, we keep the same calculus for η_s as in paragraph 3.1. #### 4 Control Law based on High-Order Sliding Modes Some assumptions are presented in this section to reach the stability level condition with a contant time delay with a first order linear system. We also describe an original method based on *HSOM* allowing to dynamically force each actuator as a first order system under the constraint previously presented. - (a) Mean delays prediction - (b) Prediction of $m_t(t)$ Figure 7: Delays prediction #### 4.1 Stability with constant time delay The stability condition of the second-order system with constant time delay described by the above equations (1) and (2), provides an equation where the bandwidth of the remote system $(\beta_i = \frac{1}{\tau_i})$ according to the delay T_r is nonlinear [9]. However, in the case of the remote system is composed by a set of first-order systems such that: $$\tau_i \dot{q}_i(t) + q_i(t) = k_{vi} u_i(t) \tag{4}$$ We then find the following stability condition: $$T_r \le \frac{\tau_i \arccos(-\frac{1}{K_{0i}k_{vi}})}{K_{0i}k_{vi}\sin\arccos(-\frac{1}{K_{0i}k_{vi}})}$$ $$(5)$$ Assume that gains K_{0i} and k_{vi} are constant, we can rewrite the above equation (5) as: $$T_r \beta_i < C_i \tag{6}$$ where C_i is a constant positive value. In order to verify the equation (6) when T_r takes different values, the bandwidth β_i has to be adapted according to T_r . #### 4.2 **High-Order Sliding Modes** One solution to dynamically force the response of the remote actuators to react as a first-order is the sliding modes control law [10]. This method, when the sliding condition is verified, dynamically force the response of the system such that the sliding surface s=0. However, the sliding condition is obtained with a discontinuous control vector which causes a chattering phenomenon at the equilibrium point. Several works try to vanish this problem, but only one method gives a satisfactory result. This method is called High-Order Sliding Modes HOSM[11]. The main goal is the constraint given by the equation s(x) = 0 has to be a sufficiently smooth constraint function. The discontinuity does not appear in the first (r-1)th total time derivative (cf. 7). $$s = \dot{s} = \ddot{s} = \dots = s^{r-1} = 0 \tag{7}$$ The relative degree r is defined as: $$\frac{\partial s^i}{\partial u} = 0, \ \frac{\partial s^r}{\partial u} \neq 0$$ with i = 1..(r-1). In the case of r = 1 in order to avoid the chattering phenomenon, the 2-sliding mode control can be used and the time derivative of the plant control $\dot{u}(t)$ may be considered as the actual control vector. In the 2-sliding mode the control vector u(t) is continuous and the chattering phenomenon disappears. #### 4.3 Control Law Strategy Let consider the state representation of the equation (1). $$\begin{cases} \dot{x}_{1i} = x_{2i} \\ \dot{x}_{2i} = -\frac{1}{\tau_i} x_{2i} + \frac{1}{\tau_i} k_{vi} u_i(t) \end{cases}$$ (8) Where $x_{1i}=q_i$ with i=1..6 is the joint position of the i^{th} actuators, τ_i is the time response of the motor and $u_i(t)$ the control variable. We propose a first-order surface equation with the desired output value $x_{1di}=0$: $$s_i(x_i) = -x_{2i} - \lambda_i x_{1i}$$ The 2-sliding mode control considers the time derivative control variable $\dot{u}(t)$ as the control vector. One solution is obtained expressing \ddot{s} with equation (8). The second one is achieved considering the time derivative state model (8) such that the time derivative of the control variable $\dot{u}_i(t)$ appears within \dot{s} . We obtain in the second case, the following model: $$\begin{cases} \dot{x}_{1i} = x_{2i} \\ \dot{x}_{2i} = x_{3i} \\ \dot{x}_{3i} = -\frac{1}{\tau_i} x_{3i} + \frac{1}{\tau_i} k_{vi} \dot{u}_i(t) \end{cases} \tag{9}$$ Working on the new model defined previously (eq.9), we propose a new sliding s_y surface depending on the $s_i(x_i,t)$ function as: $$s_{yi} = y_{2i} + \alpha_i y_{1i}$$ where $y_{2i} = \dot{s}_i$ and $y_{1i} = s_i$. This sliding surface can be expressed according to the state variables as: $$s_{ii} = -x_{3i} - (\alpha_i + \lambda_i)x_{2i} - \alpha_i\lambda_i x_{1i} \tag{10}$$ The time derivative control vector $\dot{s}_i(t)$ can be written as the sum of two functions: $$\dot{u}_i(t) = \dot{u}_{eqi} + \Delta \dot{u}_i \tag{11}$$ where \dot{u}_{eqi} is the equivalent control to achieve $\dot{s}_i = 0$: $$\dot{u}_{eqi} = \frac{\tau_i}{k_{vi}} \left(\frac{x_{3i}}{\tau_i} - (\lambda_i + \alpha_i) x_{3i} - \alpha_i \lambda_i x_{2i} \right)$$ (12) and $\Delta \dot{u}_i$ is the discontinuous second term used to compensate the unmodelled dynamics of the system: $$\Delta \dot{u}_i = K_i sgn(s_{vi}) \tag{13}$$ where K_i is the maximum input value of the actuators. The η -reachability equation defined below (14) is a necessary condition for a finite time convergence. $$s_{ui}\dot{s}_{ui} \le -\eta |s_{ui}| \tag{14}$$ The equations (12) and (13) verify the condition (14) which ensures the finite time convergence. Integrating equation (14), we obtained the following result: $$t_{ei} \le \frac{\alpha_i \lambda_i \tau_i}{k_{vi} K_i} \tag{15}$$ where t_e is the upper bound for the time convergence such that the surface $s_i(t_{ei}) = 0$. Using equations (11), (12) and (13), the global control vector $u_i(t)$ can be expressed as: $$u_i(t) = u_{eqi}(t) + \int K_i sgn(s_{yi})dt$$ This control vector is continuous and the chattering phenomenon disappears. #### 4.4 Stability Let define a Lyapunov function such that: $$V(\mathbf{X}, t) = \frac{1}{2} \mathbf{X}^{\mathbf{t}} \mathbf{P} \mathbf{X}$$ with $\mathbf{X} = [x_1, x_2, x_3]^T$ the state vector and \mathbf{P} a matrix defined by : $$\mathbf{P} = \begin{bmatrix} 0 & 0 & -\alpha_i \lambda_i \\ 0 & \alpha_i \lambda_i - \frac{\alpha_i \lambda_i}{\tau_i} & -(\alpha_i + \lambda_i) \\ -\alpha_i \lambda_i & -(\alpha_i + \lambda_i) & -1 \end{bmatrix}$$ The Lyapunov function V can be expressed as: $$V = \frac{1}{2} \left[-2\alpha_i \lambda_i x_{3i} x_{1i} - 2(\alpha_i + \lambda_i) x_{3i} x_{2i} + (\alpha_i \lambda_i - \frac{\alpha_i + \lambda_i}{\tau_i}) x_{2i}^2 - x_{3i} \right]$$ Then the time derivative term of the Lyapunov function can be written as: $$\dot{V} = (-\alpha_i - \lambda_i + \frac{1}{\tau_i})x_{2i}^2 + \frac{\alpha_i \lambda_i}{\tau_i} x_{1i} x_{3i} - \frac{k_{vi} K_i}{\tau_i} |s_{yi}|$$ where V is positive defined and V is negative defined under the following condition: $$\frac{\alpha_i \lambda_i}{\alpha_i + \lambda_i} < \frac{1}{\tau_i} \tag{16}$$ We therefore conclude, under the stability condition (eq. 16) that the system is exponentially stable. #### 5 Simulation Results First of all, we validate in simulation the theorical results obtained previously (stability, finite time convergence). Afterwards, we introduce global simulation results made up of base station, network and remote system using the HOSM control law whose the sliding surface coefficients are adapted according to NRTT, verifying equation (6). #### 5.1 High-Order Sliding Mode Algorithm A Simulink model based on the equivalent model of the remote actuators defined by the equation (9) allows to verify the stability equation. This condition achieved in (16) can be rewritten as: $$\alpha_i < \frac{\lambda_i}{\lambda_i \tau_i - 1}$$ We have performed the model by tuning the coefficients λ_1 and α_1 in order to reach the stability limit. We present the figure (??) these values. This simulation result is achieved with $\tau_1 = 0, 1s, K_1 = 15V$ and $k_{v1} = 1rd/V$. We also added the theorical points of the stability condition. These curves show a similar behavior between the - (a) Stability limit - (b) Finite time convergence - (c) Position Response Figure 8: Step Response simulator and the theorical result. The finite time convergence observation is carried out with $\alpha_1 = 1rd/s$ and $\lambda_1 = 20rd/s$. Using previous values of the actuator model and equation (15), we achieve $t_{e1} = 0, 13s$. This simulation result is showed figure 8(a) where $(t_e \sim 0, 1s)$. The time step response of the remote system is then forced dynamically by the sliding surface $s_{y1}(t)$ (eq.(10)). Reaching the sliding straight, the time response is defined by the solution of the ordinary differential equation $s_{y1}(t) = 0$. In the case of this step response $(x_{1d}(t) = u(t))$, the timesolution can be expressed as: $$x_{1T}(t) = u(t) \left(1 - \frac{\alpha_1}{\alpha_1 - \lambda_1} e^{-\lambda_1 t} + \frac{\lambda_1}{\alpha_1 - \lambda_1} e^{-\alpha_1 t} \right)$$ If the coefficient $\alpha_1 << \lambda_1$, the time response of x_{1T} is equivalent to the first-order time response. This theorical time response $x_{1T}(t)$ is showed figure 8(b) versus the simulation result. The simulation time response $x_{1T}(t)$ is closed to the theorical time response of the sliding surface. That proves the position trajectory is always defined by the sliding surface when $t > t_e$. It is an important result given in the worst case when the operator sends brutal step orders in a teleoperation task. #### 5.2 Switching of sliding surfaces When the constant delay T_r is changed by the NDR, the HOSM algorithm has to modify each α_i . Figure (9) shows a time step response of a sliding surface switching with two values of α_1 : $\alpha_1(1) = 0, 4rd/s$ and $\alpha_1(2) = 2rd/s$ with $\lambda_1 = 20rd/s$. The experimental curve is very close to theorical responses. This remark allows us to conclude that the sliding condition is always verified even during the switching period. Figure (9) presents the switching of sliding surface with $-x_{21}(t) = f(1 - x_{11}(t))$. #### 5.3 Teleoperation with time delay We have performed this control algorithm based on HOSM method on a simulation of teleoperation task. The operator sends some desired position steps (see figure (10)) to the remote manipulator. We assume that the network delay (T_r) takes two different values during the simulation time: $T_r(1) = 1s$, $t \le 12s$ and $T_r(2) = 250ms$, t > 12s. This can happen when the network behavior changes drastically and the NDR has to switch to a new T_r to be able to provide a constant virtual delay anew. - (a) Time Response - (b) Switching of sliding surfaces Figure 9: Switching of Surface Figure 10: Teleoperation task The equation (6) gives a solution to keep a same stability level when the average delay changes. Choosing $C_1 = 0, 2$ for the base station, we obtain two values of the sliding surface coefficient $\alpha_1(1) = 0, 2rd/s$ and $\alpha_1(2) = 0, 8rd/s$. Figure (11) illustrates a teleoperation task using a HOSM algorithm. The bandwidth of the remote system is adapted with respect to the network delay. The operator has always a stable system and if the mean delay tends to infinity then the manipulator bandwidth (α) will tend to zero. #### 6 Conclusion The method we have proposed in this paper concerns a global stable solution to remote control a manipulator robot via an asynchronous network such Internet. This method assumes a slow step varying delay. This way, it can be used as an upper layer of previous low-level works such as our NDR, upon a real network with jitter. This study should be implemented on experimental setup in fews months to validate these results. This control method associated with (NDR), provides an efficient tool for the telerobotics systems using TCP/IP network. Figure 11: Effects of the HOSM on $q_1(t)$ #### References - [1] A. Lelevé, P. Fraisse, A. Crosnier, P. Dauchez, F. Pierrot, "Towards Virtual Control of Mobile Manipulators", Proc. of the IEEE ICRA'98, Leuven, Belgium, pp.2971-2976, 1998. - [2] R. Oboe, P. Fiorini, "Internet-based telerobotics: problems and approches", *Proc. International Conference on Advanced Robotics*, Monterey, USA, pp765-770, July 1997. - [3] K. Taylor, B. Dalton, "Issues in Internet Telerobotics", Proc. of the Intl. Conf. on Field and Service Robotics (FSR'97), Canberra, Australia, 1997. - [4] G. Niemeyer, J.J. Slotine, "Designing Force Reflecting Teleoperators with large time delays to appears as virtual tools", *Proc. of the IEEE ICRA'97*, pp. 2212-2218, 1997. - [?] J. Founda, "Teleprogramming: Towards Delay-Invariant Remote Manipulation", PHD Thesis, University of Pennsylvania, Computer Science Department, 1991. - [5] A. Lelevé, P. Fraisse, P. Dauchez, "Telerobotics over IP Networks: Towards a low-level Real-Time Architecture", *Proc. of the IROS'01*, *IEEE/RSJ*, Maui, Hawaii, USA. Oct.2001. - [6] P. Fraisse, A. Lelevé, "Teleoperation with Time Delay : Adaptive Control Law based on High-Order Sliding Modes" Submitted of the ICRA'03, IEEE, Taipan, Taiwan, May 2003. - [7] E. Freund, "Fast nonlinear control with arbitrary pole placement for industrial robots and manipulators", The International Journal of Robotics Research, Vol. 1(1), pp.65-78, 1982. - [8] A. Lelevé, P. Fraisse, P. Dauchez, F. Pierrot, "Teleoperation through the Internet: Experimental Results with a Complex Manipulator", Proc. of the International Conference on Robotics, Tokyo, Japan,pp. 63-70, 1999. - [9] A. Lelevé, "Contributions à la téléopération de robots en présence de délais de transmission variables", *Thèse de doctorat*, *Université Montpellier II*, in french, December 2000. - [10] V. Utkin, "Variable structure systems with sliding modes", *IEEE Trans. on Automatic Control*, Vol. AC-22, No2, pp212-222, 1977. - [11] L. Fridman, A. Levant, "High-Order Sliding Modes", in Sliding Modes control in Engineering, Ed. W. Perruquetti, J.P. Barbot, Marcel Dekker, Inc., New York, pp.53-101,2002. - [12] K. Hirai, Y. Satoh, "Stability of a system with Variable Time Delay", *IEEE. Trans. on Automatic Control*, Vol. AC-25, N°3, June 1980. - [13] S. Moon, P. Skelley, D. Towsley, "Estimation and Removal of Clock Skew from Network Delay Measurements", Proc. of IEEE Infocom'99, New-York, March 1999. - [14] F. Janabi-Sharifi, V. Hayward, C-S. J. Chen, "Novel Adaptive Discrete-Time Velocity Estimation Techniques and Control Enhancement of Haptic Interfaces", http://citeseer.nj.nec.com/22148.html - [15] G. Hirzinger, K. Landzettel, CH. Fagerer, "Telerobotics with large time delays the ROTEX experience", Proc. of the Intl. Conf. on Intelligent Robots and Systems (IROS' 94), Munich, Germany, 1994, pp. 571-578. - [16] P. K. Pook, D. H. Ballard "Remote Teleassistance", Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA'95), Nagoya, Aichi, Japan, 1995, pp. 944-949. - [17] K. Goldberg and R. Siegwart, "Beyond Webcams: an Introduction to Online Robots", MIT Press, 2002 - NB: This paper sums up our works on this topic. Therefore, this bibliography proposes many self-citations which, in turn, refer to other works.