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Abstract. We consider semistructured data as multi rooted edge-labeled
directed graphs, and path inclusion constraints on these graphs. A path
inclusion constraint p � q is satisfied by a semistructured data if any
node reached by the regular query p is also reached by the regular query
q.
In this paper, two problems are mainly studied: the implication problem
and the problem of the existence of a finite exact model.
– We give a new decision algorithm for the implication problem of

a constraint p � q by a set of bounded path constraints pi � ui

where p, q, and the pi’s are regular path expressions and the ui’s are
words, improving in this particular case, the more general algorithms
of S. Abiteboul and V. Vianu, and N. Alechina et al. In the case of
a set of word equalities ui ≡ vi, we provide a more efficient decision
algorithm for the implication of a word equality u ≡ v, improving
the more general algorithm of P. Buneman et al.. We prove that, in
this case, implication for non-deterministic models is equivalent to
implication for (complete) deterministic ones.

– We introduce the notion of exact model: an exact model of a set
of path constraints C satisfies the constraint p � q if and only if
this constraint is implied by C. We prove that any set of constraints
has an exact model and we give a decidable characterization of data
which are exact models of bounded path inclusion constraints sets.

Key words: Semistructured data graph; path inclusion; prefix rewriting; (finite)
exact model

1 Introduction

The development of the World Wide Web has led to the birth of semistructured
data models with languages adapted to these models. A lot of works have been
done to define such models and to extend database techniques to them. In this
paper, we see semistructured data as rooted edge-labeled directed graphs. A
presentation of this model and an overview of works done in this context can
be found in [1]. In order to treat composition of queries, it can be useful to
consider multi rooted data graphs, instead of single rooted ones. In this paper,



we consider the multi rooted case, and the results can often be easily adapted
to the single rooted case.

Let us consider the data graph figure 1 which represents a journal. This journal
contains articles and each article is written by one or two authors.

0

2

author

3

author

4

journal

6 7

article

article

12

title
writtenBy

writtenBy

5

author

writtenBy

1

author

14

name

9

8

name

name

10
name

11 13
title

title

co-author

co-author

Fig. 1. Example of a semistructured data

We can remark that some nodes have several outgoing edges with the same label
(for example, the root has several ”author” edges). In this case, the graph is said
to be non-deterministic. In the deterministic case, the outgoing edges of a given
node must have distinct labels. Moreover, if any node has at least one outgoing
edge for each label of the alphabet, the graph is said complete. Note that XML
documents are usually non deterministic and non complete.

Path : Basic query mecanisms proposed for semistructured data are based on
path expressions. UnQL [14] the language defined by Buneman et al for querying
data organized as edge-labeled graph or Lorel [2] defined by Abiteboul et al as
part of the Lore project are examples of such query languages. Propositions for
querying XML-data such as XML-QL [26], XQL [33], Quilt or the most recent
one XQuery [12] all use the XPath language [10] to select nodes in the documents.
The large number of features of the full XPath language makes it unwieldy for
theoretical study and so fragments of XPath, as Tree pattern queries (or twigs
[7]) for example, are usually investigated.

In this paper, we study regular path expressions (or regular queries) which are
regular expressions on the alphabet of labels appearing in the data. The result
of the regular query q, is the set of nodes reached from the root(s) by a path
labeled by any word u of q.



For example, author, author.name, journal.article.title are paths of the
data graph D (figure 1). The regular expression author.co-author∗ is a regular
query whose result on D is {1, 2, 3, 5}.

Path inclusion: To optimize (or to approximate) path queries, it can be useful
to use structural information about the data graph. Some of these are called path
constraints since they give restrictions on the paths. Certain kinds of integrity
constraints found in object-oriented databases and also common in semistruc-
tured databases can be expressed with path constraints. These constraints have
been introduced by Abiteboul and Vianu in [3]. See for instance [16], [30], [11]
or [5] where different classes of path constraints are analyzed. Here, we study
path inclusion constraints. A path inclusion constraint is written p � q where
p and q are regular path queries, and means that the set of nodes result of p is
included in the set of nodes result of q. When p and q describe finite languages,
these constraints are called finite path inclusions.

Continuing the example, since the result of author.co-author+ is {2, 3} and
the result of journal.article.writtenBy is {2, 3, 5}, the path inclusion
author.co-author+ � journal.article.writtenBy is satisfied.
If we denote by p ≡ q the conjunction p � q ∧ q � p, the data graph D satis-
fies author.co-author≡ author.co-author.co-author. On this example, the
constraint is of the form u ≡ v where u and v are words. We call word equality
this kind of constraint. Similarly, the constraint u � v is called word inclusion.
More generally, when p is a regular path query and u is a word, the constraint
p � u is called bounded path inclusion.

Implication problem: A set of path inclusions C implies a path inclusion p � q

denoted C |= p � q if every data model of C is also a model of p � q.

Given a set C of path inclusions, and two regular queries p, q, the implication
problem for C, p, q is to decide whether C |= p � q.

Let us note that sometimes the data are seen as single rooted graphs (see [1], [5],
[15]) and sometimes they are seen as multi rooted graphs (see for instance [32]).
In this paper we work with multi rooted graphs but in many cases, the results
and the proof techniques are similar to the single rooted case. For instance we
prove that the implication problem with single rooted graphs is equivalent to
the implication with multi rooted graphs as soon as each query of the set C is
ε-free. As in the single rooted case [3,5] the implication problem is EXPTIME.
Moreover we give a decision algorithm for the implication problem of a path
inclusion p � q by a set of path inclusions pi � ui, where p, q, the pi’s are
regular path expressions, and the ui’s are words. We prove that this decision
problem is PSPACE complete .

In the particular case of deciding if a word equality u ≡ v is implied by a finite
set of word equalities ui ≡ vi we have an ad-hoc decision algorithm. In [15],
the authors give a cubic decision algorithm in the case of the implication for
deterministic models (with more general forward constraints). Here, we build a
quasi-linear algorithm and we prove that, in this very particular case of word
equalities, the implication problem for non-deterministic models is equivalent to
the implication problem for (complete and) deterministic ones.



Boundedness property: A regular query p has the boundedness property
(strong boundedness property) w.r.t a set C of path inclusions if there exists
a regular query f such that C |= p � f (C |= p ≡ f) and L(f), the lan-
guage described by f , is finite. On the example, since author.co-author ≡
author.co-author.co-author, the regular query author.co-author+ has the
strong boundedness property. Since it is easier to answer a finite query, we can
see the strong boundedness property as a query optimization method. More gen-
erally, if a query q has the boundedness property, it is possible to approximate
q with a finite query f since the answer to f is a superset of the answer to q.
We extend the result of [8] giving an algorithm which computes such a finite
query f when it exists. Moreover, this result applies on the strong boundedness
property.
Exact (finite) models: In this paper, we are mainly interested in models of
a set of constraints. Of course, any set of path inclusions has a model (e.g. the
complete model reduced to one root which models any path inclusion); here we
focus on the notion of exact model: a model of C is said to be exact if it models
only constraints satisfied conjointly by every model of C. In other words, a data
DC is an exact model of C if DC is a model of p � q if and only if C implies p � q.
We prove that the existence of an exact model is ensured for any set of con-
straints. So a natural question arises: is there a finite exact model? Having
effectively a finite exact model of the set of constraints provides an effective
manner of checking whether a (regular) path inclusion is implied by the set of
constraints. It ensures also that every query is strongly bounded.
First, we consider the case of bounded path inclusions (p � u where p is a regular
query and u is a word). In this case, we propose a decidable characterization of
sets C which have a finite exact model. Moreover, we give an effective way of
computing such a model when it exists.
Secondly we consider only word equalities (u ≡ v where u and v are words).
In this case, we give a more efficient algorithm for deciding existence of a finite
exact model and for constructing such a model.

2 Path constraints

In this section we give the framework of the paper: we define semistructured
data graphs, regular queries and path inclusion constraints. Then we introduce
implication problem and the notion of exact model.
In the sequel we use the following notions which were introduced in [3]. Let A

be a fixed finite alphabet of labels.

Definition 1. A multi rooted data graph is a triple D =< N, Root, T > where

– N is a set of nodes,
– Root, the set of roots, is a subset of N

– T , the set of transitions, is a subset of N × A × N .

and N , T are enumerable sets.



As N and T are enumerable sets, any node of a data graph may have an infinite
number of ingoing edges and an infinite number of outgoing edges. If the set of
nodes N is finite then the data graph D is said to be finite. If Root is reduced
to a singleton then D is said to be single rooted.

Definition 2. A data graph < N, Root, T > is said

– deterministic if it is single rooted and for all n in N , for all a in A, there is
at most one transition (n,a,n’) in T .

– complete if, for all n in N , for all a in A, there is at least one transition
(n,a,n’) in T .

We are interested in the set of nodes which are reached by some paths in a data
graph. Then we can define the notions of regular query and result of query.

Definition 3.

– Given D a data graph, u a word of A∗, let resultD(u) be defined by:

1. if u = ε, then resultD(u) = Root

2. if u = u′a (u′ ∈ A∗ and a ∈ A) then

resultD(u) = {n ∈ N | ∃n′ ∈ resultD(u′), (n′, a, n) ∈ T }

– A regular query p is a regular expression over A.

– L(p) denotes the regular language described by p. If ε does not belong to L(p)
then p is said ε-free.

– The result of a regular query p over a data graph D is the set

resultD(p) = ∪
u∈L(p)

resultD(u)

In the following, we shall only consider that any node of D is reachable from
some root. Now, we formally define path inclusions.

Definition 4.

– A path inclusion is an expression of the form p � q where p, q are regular
queries.

– A path equality p ≡ q represents the conjunction (p � q) ∧ (q � p).
– A data graph D satisfies (is a model of) a path inclusion p � q, denoted

D |= p � q, if the set of nodes resultD(p) is included in resultD(q).

– D satisfies a set C of path inclusions, denoted D |= C, if D satisfies each
path inclusion of C.

– Two sets of path inclusions C and C′ are said to be equivalent if for each data
graph D, D |= C if and only if D |= C′.

From now, we only consider finite sets of path inclusions .



2.1 Implication Problem

In this section, we introduce the implication problem and the equivalence prob-
lem and prove they are decidable in EXPTIME.
First, let us define the implication of a constraint p � q by a set of constraints
C.

Definition 5. A set of path inclusions C implies a path inclusion p � q(denoted
by C |= p � q) if for each data graph D

D |= C ⇒ D |= p � q

Definition 6.

– The implication problem is to decide given a set C of path inclusions, and
two regular queries p, q, whether C |= p � q.

– The equivalence problem is to decide given a set C of path inclusions, and
two regular queries p, q, whether C |= p ≡ q.

– The size of p � q is the sum |p| + |q|, where |p| is the length of the regular
query p, and the size of the set of constraints C, denoted by |C|, is the sum
of the sizes of its constraints.

In [3], S. Abiteboul and V. Vianu have proved the following result with single
rooted data graphs in which any node has a finite number of outgoing edges.
Their proof can easily be adapted to our kind of data graphs (see appendix):

Proposition 1. A set C of path inclusions implies a path inclusion p � q, de-
noted C |= p � q, if and only if for each finite data graph D such that D |= C,
D |= p � q.

This proposition and its proof provide a way of deciding the implication problem.
Indeed, if a set of path inclusions C does not imply a path inclusion p0 � q0 there
exists a finite data graph Df s.t. Df models C but Df does not model p0 � q0.
Moreover, we know from the proof of proposition 1 that we can bound the size of
Df exponentially w.r.t. |C|+|p0|+|q0|. So, in order to decide whether C |= p0 � q0

it is sufficient to check D |= p0 � q0 for D whose size is bounded exponentially
w.r.t. |C| + |p0| + |q0|. This proves that the implication problem is decidable in
co-NEXPTIME.
An other way of deciding the implication problem is to express it in Propositional
Dynamic Logics with converse (converse-PDL), following N. Alechina, S. Demri
and M. de Rijke in [6]. Indeed, let us associate with the constraint C = p � q the
converse-PDL formula ΦC = ¬root ∨ [p]〈q−1〉root where root is a propositional
variable; intuitively, Df models C if and only if ΦC is valid in the corresponding
structure; then the constraint C0 is implied by the constraints {C1, ..., Cn} if
and only if the set of axioms {ΦC1

, ..., ΦCn
} implies the formula ΦC0

; this can
be reformulated in terms of satisfiability of a converse-PDL formula [18,31] and
therefore decided in EXPTIME [27]:

Theorem 1. The implication problem is decidable in EXPTIME.



Remark 1. The finite model property of converse-PDL yields another proof of
proposition 1.

The following proposition and remark compare the single rooted model and the
multi rooted model. We denote by |=1 the implication in the single rooted model
(i.e. C |=1 p � q if for any finite single rooted data graph D, D |= C implies
D |= p � q). See [3] or [9] for more details.

Proposition 2. Let C = {pi � qi, 1 ≤ i ≤ n} be a set of ε-free constraints. For
any regular queries p0 and q0, we get

C |= p0 � q0 if and only if C |=1 p0 � q0

Proof. Obviously C |= p0 � q0 implies that C |=1 p0 � q0. We have to prove
the converse. Let D =< N, R, T > be a multi rooted document model of C. Let
us consider the single rooted model Dr =< N ∪ {r}, {r}, T ∪ {(r, x, n) | ∃r′ ∈
R ∧ (r′, x, n) ∈ T } > (this construction corresponds to the standardization in
the automata theory). We remove from N the non accessible nodes. It can be
easily proved by induction that

∀u ∈ A+ resultD(u) = resultDr
(u) (1)

For a query q, qε denotes a query s.t. L(qε) = L(q) \ {ε}. It follows from 1 that
for any queries p and q, D |= pε � qε if and only if Dr |= pε � qε. As any query
of C is ε-free, D models C if and only if Dr models C.
Let us suppose C |=1 p0 � q0 and D models C. Then Dr models C and then
Dr |= p0 � q0. As the root of Dr is the only node reached by ε and is only
reached by ε, Dr |= p0 � q0 implies Dr |= pε

0 � qε
0, and so D |= pε

0 � qε
0. Now,

if p0 = pε
0, we get D |= p0 � qε

0 and then D |= p0 � q0. Otherwise, ε belongs to
L(p0); then, the root of Dr is reached by p0 and then by q0. As the root of Dr has
no ingoing edge, ε belongs to L(q0) too. So D |= pε

0 � qε
0 implies D |= p0 � q0.

So, we have proved that C |=1 p0 � q0 implies that C |= p0 � q0.

a

{a � ε} 6|= a ≡ aa

a

b

{ε � a + b} 6|= ε � aa + bb

Fig. 2. Differences between |= and |=1

Remark 2. Proposition 2 does not hold when C contains queries with the empty
word. Indeed for any word u, for any single rooted document D, D |= u � ε



means that either resultD(u) is empty or resultD(u) is the root of the document.
It follows that {a � ε} |=1 a ≡ aa whereas {a � ε} 6|= a ≡ aa as shown in
figure 2.

If ε appears in the left hand-size of a path inclusion, the proposition 2 does not
hold either. For instance {ε � a+ b} |=1 ε � aa+ bb since any single rooted data
graphs D which satisfies {ε � a + b} satisfies either ε � a or ε � b. However
{ε � a + b} 6|= ε � aa + bb (figure 2).

2.2 Models

In the previous subsection we have introduced the definition of path inclusions
and the notion of model of a set of path inclusions. Of course, any set of path
inclusions has a model: the complete model reduced to one root which models
any path inclusion (figure 3). In this subsection we define exact models of path
inclusions and prove that any set of path inclusions has an exact model.

root A

Fig. 3. Any set of path inclusions has a model

Definition 7. Let C be a set of path inclusions. A data graph DC is an exact
model of C if

DC |= p � q if and only if C |= p � q

A well known property is that an implication problem can be reduced to an
equivalence problem. Indeed, as resultD(p)∪resultD(q) is equal to resultD(p+q),
D models p � q if and only if D models p + q ≡ q and then:

C |= p � q if and only if C |= p + q ≡ q (2)

It follows that we could give the equivalent definition of an exact model:

Corollary 1. Let C be a set of path inclusions and DC be a document. DC is an
exact model of C if and only if

DC |= p ≡ q if and only if C |= p ≡ q

We are now able to prove:

Proposition 3. Any set C of path inclusions has an exact model.



Proof. Let MC be the countable set of all finite models of C (we do not dif-
ferentiate two isomorphic data graphs). An element d of MC is of the form
< Nd, Rd, Td >. Without loss of generality, we assume that the intersection
Nd ∩ Nd′ is empty if d and d′ are different.
We now prove that D =< ∪

d∈MC

Nd, ∪
d∈MC

Rd, ∪
d∈MC

Td > is an exact model of C.

It is clear that

D |= p � q if and only if ∀d ∈ MC d |= p � q

So D is a model of C.
Let p and q be two queries s.t. C 6|= p � q. We already know from proposition 1
that there exists a finite data graph Df s.t Df |= C and Df 6|= p � q. By
definition of MC, Df belongs to MC and then D does not model p � q.

Remark 3. It is already known from [24] that the proposition doesn’t hold for
single rooted model: {a � ε, b � ε} has no single rooted exact model.

Let us consider now the “converse” problem: is every finite data graph D an
exact model of a set of path inclusions? The answer is yes:

Proposition 4. For every finite data graph D, there exists a (finite) set of finite
path inclusions C(D) such that C(D) |= p � q if and only if D |= p � q

Proof. Let D =< N, R, T > and S(D) = {resultD(u) | u ∈ A∗}. S(D) is
included in 2N and can be exponentially bigger than N .
For any set s of S(D), lex(s) will denote a word of {u | resultD(u) = s}. For
ensuring the correction of the construction, the only restriction is that lex(R)
must be ε. Here, we will take the shortest and the first word in alphabetical
order, which will provide a bound of the size of the constraints.
So let us define C(D) as C(D) = {lex(s)x ≡ lex(s′) | s′ = {n′ | ∃n ∈ s∧(n, x, n′) ∈
T }} ∪ {lex(s1) � lex(s′1) + . . . + lex(s′k) | s1 ⊆ ∪

1≤i≤k
s′i, k ≤ N}.

(By lex(s)x ≡ lex(s′), we mean that we add lex(s)x � lex(s′) and lex(s′) �
lex(s)x.)
If C(D) |= p � q then D |= p � q holds since, by construction, D is a model of
C(D).
Conversely, we have to prove that D is exact. As lex(R) is ε, we can prove by
induction that C(D) |= u ≡ lex(resultD(u)) and then

C(D) |= q ≡ +
u∈L(q)

lex(resultD(u))

Now, if D |= p � q,

∀u ∈ L(p), resultD(u) ⊆ ∪
u∈L(q)

(resultD(u))

As resultD(u) contains at most N states, it follows that, for every u in L(p) we
can find u1, . . . , uk in L(q) with k ≤ N such that:



resultD(u) ⊆ ∪
1≤i≤k

(resultD(ui))

Therefore,

{lex(resultD(u)) � lex(resultD(u1)) + . . . + lex(resultD(uk))

belongs to C(D). So, for every u in L(p), C(D) |= u � q and then C(D) |= p � q:
D is an exact model of C(D).

Moreover, an easy analysis shows that the cardinal of C(D) is bounded by

2N2+2N , and so its size is bounded by 2 × N2 × (2N2+2N ), as we can choose
for each lex(s) a word of length at most N − 1. This provides an EXPTIME

algorithm for the construction of C(D).

Example 1. Let us consider the following data graph D with one root named 0:

0

1 2

b

b

a

b

a

S(D) = {{0}, {0, 2}, {0, 1}, {1}, ∅},
lex({0}) = ε, lex({0, 2}) = a, lex({0, 1}) = ab, lex({1}) = b, lex(∅) = ba and
after removing trivial equivalences,
C(D) = {a ≡ aa, aba ≡ a, abb ≡ b, bb ≡ ba,

ba � ε, ba � a, ba � ab, ba � b

ε � a, ε � ab, b � ab, ab � ε + b}.

3 Bounded Path Inclusions

From now on we will consider exclusively the case of a finite set of inclusions
of the form p � u where p is a regular expression and u is a word: we shall
call such path inclusions bounded path inclusions. This kind of constraints have
been introduced in [8]. In this case, following and slightly generalizing [3] and [9],
we associate with a set C of bounded path inclusions a prefix rewriting system
such that there is a prefix rewriting from u to v, if and only if C |= u � v. This
technique provides also an uniform way for deciding implication of constraints
or properties such as (strong) boundedness.



3.1 Prefix rewriting

First, let us associate with a set of bounded constraints a binary relation on A∗

as follows:

Definition 8. Let C = {pi � ui, 1 ≤ i ≤ n} be a finite set of bounded path
inclusions over an alphabet A. We consider the relation on words defined by
u −→

C
v if and only if there exists i such that u belongs to L(pi) and v = ui. By

extension, we denote also −→
C

its right congruence closure. Then
∗

−→
C

denotes

the reflexive, transitive closure of −→
C

.

This relation is a prefix rewriting relation as defined in [19] based on an infinite
rewrite system. As proved by the following proposition, the relation simulates
the constraints on words:

Proposition 5. Let C be a set of bounded path inclusions. For any words u, v,
u

∗
−→
C

v if and only if C |= u � v.

The proof uses an exact model of C which is close to the one defined in [3]:

Definition 9. With a set of bounded path constraints C, we associate an infinite
data graph IC =< N, R, T > defined by:

– N = {u | u ∈ A∗}

– R = {u | u
∗

−→
C

ε}

– T = {(u, x, v) | v
∗

−→
C

ux}

Example 2. Let C = {ab∗ � ba, b+ � a, a(aa)∗b � a, b � ε}. Figure 4 shows a

finite part of the infinite data graph IC of definition 9. It follows from b
∗

−→
C

ε that

b is one of the root. It follows from bb −→
C

a −→
C

ba −→
C

aa that (a, a, bb) ∈ T . It

follows from b −→
C

a −→
C

ba that (b, a, b) ∈ T .

Then, we get immediately by induction on the length of u:

Lemma 1. resultIC(u) = {v | v
∗

−→
C

u}

Now, let us suppose IC |= u � v, i.e. resultIC (u) ⊆ resultIC (v); by the preceding
lemma u belongs to resultIC (u), so u belongs to resultIC (v); once again by the

preceding lemma u
∗

−→
C

v. Conversely, let us suppose now u
∗

−→
C

v. So for any w,

if w
∗

−→
C

u then w
∗

−→
C

v; by the preceding lemma resultIC (u) ⊆ resultIC(v), that

is to say IC |= u � v:

Lemma 2. IC |= u � v if and only if u
∗

−→
C

v

We obtain now
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a

b

ba

bb
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a, b

a

a

a, b
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a, b

a

a
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a, b

Fig. 4. A part of the model IC

Lemma 3. IC |= u � v if and only if C |= u � v

Proof. First, it is easy to get that IC |= C and so that if C |= u � v, then

IC |= u � v. Now, let us suppose IC |= u � v that is to say u
∗

−→
C

v. Let �C

defined by u �C v if C |= u � v . The relation �C contains −→
C

, is transitive

and closed by right-congruence: it contains
∗

−→
C

; so u
∗

−→
C

v implies u �C v i.e.

C |= u � v.

By the two last lemmas, we obtain proposition 5.

Lemma 4. If IC |= u � q, there is some word v in q such that IC |= u � v

Proof. Indeed, if IC |= u � q, resultIC (u) is included in resultIC (q); in particular,
the state u belongs to resultIC (q), i.e. there is some v in L(q) such that u belongs
to resultIC (v); then, by lemma 1, resultIC (u) is included in resultIC (v), i.e. IC |=
u � v.

The following property summarizes the preceding lemmas and holds only in the
bounded case:

Proposition 6. Let C be a set of bounded path inclusions, and q a regular
query; the following properties are equivalent:

– C |= u � q

– there is some word v in L(q) such that C |= u � v

– there is some word v in L(q) such that u
∗

−→
C

v



Proof. If C |= u � q, as finite and infinite implication are equivalent and as
IC |= C we get IC |= u � q. So, there is some word v in L(q) such that IC |= u � v,
and C |= u � v.
Let us now suppose C |= u � v, for some word v in L(q): IC |= u � v and then

u
∗

−→
C

v.

Lastly, let us suppose u
∗

−→
C

v, for some word v in L(q): then IC |= u � v. So,

C |= u � v and we get C |= u � q.

In some sense this means that the set of word inclusions we can deduce from a set
of bounded path inclusions C is the closure of C by right congruence, reflexivity,
transitivity.
Let us remark that this implies that IC is an exact model of C:

Corollary 2. IC |= p � q if and only if C |= p � q

In the case of bounded path inclusions, we can extend proposition 2 to constraints
pi � ui with pi not necessarily ε-free. Indeed we have already proved in [25] that
if C is a set of bounded path inclusions where no ui is the empty word then
C |=1 u � v if and only if u

∗
−→
C

v.

Corollary 3. Let C = {pi � ui, 1 ≤ i ≤ n} where the ui’s are non empty words.
Let p be a query and u a word. Then C |= p � u if and only if C |=1 p � u

The following example shows that proposition 6 does not hold if we consider
general path inclusions:

Example 3. The following data graph (figure 5) satisfies a+ � (b + c) but does
not satisfy a � b neither a � c.

root

a, c a, b

a

a

Fig. 5. C |= a+ � (b + c) but C 6|= a � b and C 6|= a � c

Now, as constraints have been simulated by prefix rewriting, properties of con-
straints can be expressed by properties of the corresponding prefix rewriting. As
not only the theory of prefix rewriting is decidable ([23]), but also the monadic
theory of prefix rewriting is decidable ([20]), we get directly decidability of many



properties of constraints. The obtained results were mostly already known, but
this approach provides an uniform way to get them. Moreover, it proves decid-
ability for strong boundedness, which is new to our knowledge.

Definition 10. A regular query p has the boundedness property (strong bound-
edness property) w.r.t a set C of path inclusions if there exists a regular query
f such that C |= p � f (C |= p ≡ f) and L(f) is finite.

E.g., let C be {a2 � a}; w.r.t. C, the query a∗ is bounded (by a), whereas the
query ba∗ is not.

The following theorem summarizes some results we get by using prefix rewriting:

Theorem 2. Let C = {pi � ui, 1 ≤ i ≤ n} be a set of bounded path inclusions,
p and q two queries.

1. The implication problem for C, p and q is decidable,

2. The equivalence problem for C, p and q is decidable,

3. The boundedness property for C and p is decidable,

4. The strong boundedness property for C and p is decidable.

Proof. Each property can be expressed by a formula of (monadic) prefix rewrit-
ing theory:

1. C |= p � q is expressed by: ∀up ∈ L(p) ∃uq ∈ L(q) | up
∗

−→
C

uq .

2. C |= p ≡ q =def C |= p � q ∧ C |= q � p.

3. Bounded(p) is defined by

∃F | finite(F ) ∧ ∀up ∈ L(p) ∃uf ∈ L(F ) | up
∗

−→
C

uf .

4. StrongBounded(p) is defined by

∃F | finite(F ) ∧ ∀up ∈ L(p) ∃uf ∈ L(F ) | up
∗

−→
C

uf ∧ ∀uf ∈ L(F ) ∃up ∈

L(p) | uf
∗

−→
C

up.

Formula 1 and formula 2 are obtained directly from lemma 4 and proposition 6.
They are first-order formulae and this provides simple and rather efficient al-
gorithms based on word automata for deciding them. E.g., this would lead to
PSPACE algorithms for deciding these two formulae.

Formula 3 and formula 4 are then directly obtained from the definition of the
boundedness property. These formulae are second-order ones; thus the “canon-
ical” decision algorithms associated with them are based on infinite trees au-
tomata. Let us remark that this provides an effective way to compute one such
F , when p is (strongly) bounded wr.t. C; moreover, formulae can be enriched
e.g. to exhibit a F minimal for inclusion.



3.2 Models

In proposition 3 and lemma 3, we have proved that any set of bounded path
inclusions has an exact model, but the model we construct is always infinite.
In this section we give a characterization of the sets of bounded path inclusions
which have a finite exact model. Then we propose an algorithm to decide if a
set C has this property.
In order to characterize the sets of constraints which have an exact finite model,
we introduce the following equivalence relation:

Definition 11. Let C be a set of path inclusions. We will denote ≡C the relation
on A∗ × A∗ defined by u ≡C v if C |= u ≡ v.

Clearly, ≡C is an equivalence relation. We will denote by [u]C the equivalence class
of the path u for the relation ≡C and we define the data graph DC =< N, R, T >

by:

– N = {[u]C | u ∈ A∗}
– R = {[u]C | C |= u � ε}
– T = {([u]C, x, [v]C) | C |= v � ux}

DC is the quotient of IC by the relation ≡C.

The following lemma, which characterizes resultDC
(u) for any word u, can easily

be proved by induction on the length of u:

Lemma 5. ∀u ∈ A∗ resultDC
(u) = {[v]C | C |= v � u}

We are now able to prove:

Proposition 7. For any set C of bounded path inclusions, DC is an exact model
of C.

Proof. Let us first prove that DC is a model of C: let (p � u) ∈ C, v be a
word in L(p) and [w]C ∈ resultDC

(v). It follows from lemma 5 that C |= w � v.
Since, by transitivity, we get C |= w � u and using again lemma 5, we obtain
[w]C ∈ resultDC

(u) and DC |= p � u.
Let us prove now that DC is exact. Let us suppose that DC |= p � q for some
regular expressions p and q. Let u be a word of L(p). Since [u]C is in resultDC

(u)
and DC |= p � q, there exists a word v of L(q) such that [u]C is in resultDC

(v).
It follows from lemma 5 that C |= u � v and then C |= p � q.

Clearly if ≡C is of finite index then, by construction, DC is finite. Conversely, if
there exists a finite exact model of C then ≡C is of finite index. It follows:

Theorem 3. Let C be a set of bounded path inclusions. Then C has a finite exact
model if and only if ≡C is of finite index.

Corollary 4. A set of bounded path inclusion C has an exact finite model if and
only if DC is finite.



By using prefix rewriting, we get:

Proposition 8. Let C be a set of bounded path inclusions. Deciding whether ≡C

is of finite index is PSPACE in the size of C.

Proof. The property can easily be expressed with a formula of prefix rewriting
theory:

∃F (finite(F ) ∧ ∀u ∈ A∗∃v ∈ L(F )(u
∗

−→
C

v ∧ v
∗

−→
C

u))

In order to get an EXPTIME decision algorithm, we shall transform this second-
order formula into a first-order one. The idea is to transform the question Does
it exist a finite set F ? into the question Is the set X finite? where X is defined
as the set collecting each minimal word of each equivalence class of ≡C.

Let us first define a notion of minimal word which can be expressed with prefix
rewrite systems. We will use the reverse alphabetical order, that we denote by
<R, and which is defined by: u <R v if u is a suffix of v or u = u′xw and
v = v′yw with x < y for some words u′, v′, w and some letters x and y. Now, let
S1 be the prefix rewrite system defined over A∗ by the set of rules {x −→ ε |
x ∈ A} and S2 be the prefix rewrite system defined over A∗ by the set of rules

{x −→ y | x, y ∈ A, x < y}. Then we have u <R v if and only if v
+

−→
S1

u or

∃u′∃v′ | u
∗

−→
S1

u′ ∧ v
∗

−→
S1

v′ ∧ u′ −→
S2

v′.

We can define now X as the complement of the following set Y = {u ∈ A∗ |

∃v ∈ A∗(u
∗

−→
C

v ∧ v
∗

−→
C

u ∧ v <R u)} and it follows that ≡C is of finite index

if and only if the set Y is cofinite. Using only prefix rewrite systems, the set Y

can be defined by:

Y = {u ∈ A∗ | ∃v ∈ A∗(u
∗

−→
C

v ∧ v
∗

−→
C

u

∧(u
+
−→
S1

v ∨ ∃u′∃v′ | v
∗

−→
S1

u′ ∧ u
∗

−→
S1

v′ ∧ u′ −→
S2

v′))}

Using prefix rewriting theory, it is possible to build an automaton which recog-
nizes the set Y in polynomial time in the size of C. Finally, testing whether Y

is cofinite can be done in PSPACE in the size of an automaton recognizing Y ,
this decision problem beeing very close to the universality problem.

In proposition 4, we have proved that any finite data graph is an exact model of
a finite set of finite path inclusions. A natural question arises: is any finite data
graph an exact model of a set of bounded path inclusions? The answer is no as
shown in figure 5. Nevertheless we can characterize data graphs which have this
property.

Proposition 9. Let D be a finite data graph. We can decide in EXPTIME
whether there exists a set of bounded path inclusions C s.t. D is an exact model
of C



Proof. Let C(D) be the set of path inclusions defined in the proof of proposi-
tion 4. There exists Cb(D) a set of bounded path inclusions equivalent to C(D)
if and only if

∀(lex(s1) � lex(s′1) + . . . + lex(s′k)) ∈ C(D),

∃ 1 ≤ j ≤ k | (lex(s1) � lex(s′j)) ∈ C(D)

The condition is obviously sufficient. Conversely, if there exists Cb(D) equivalent
to C(D) then for every lex(s1) � lex(s′1) + . . . + lex(s′k) in C(D), Cb(D) |=
lex(s1) � lex(s′1) + . . . + lex(s′k). Then, from lemma 4 , there exists some j s.t.
Cb(D) |= lex(s1) � lex(s′j). As Cb(D) is equivalent to C(D), we have also C(D) |=
lex(s1) � lex(s′j). Then, from the proof of proposition 4, D |= lex(s1) � lex(s′j)
i.e. resultD(lex(s1)) is included in resultD(lex(s′j)). Therefore s1 is included in
s′j and (lex(s1) � lex(s′j)) belongs to C(D) by definition of C(D).

As the cardinal of C(D) is bounded by 2N2+2N , this provides an EXPTIME-
algorithm for deciding whether there exists a set of bounded path inclusions C
s.t. D is an exact model of C.

3.3 Implication Problem

We have already proved that the implication problem is decidable in PSPACE
using a first order formula of the theory of prefix rewirting. Nevertheless, we
propose now another PSPACE algorithm based on the computation of the an-
cestors in a prefix rewrite system. In the case of word equality constraints, this
construction will allow us to give a more efficient algorithm than the one given
in the proof of theorem 2.

Theorem 4. Let C = {p1 � u1, . . . , pn � un} be a finite set of bounded path
inclusions, and p, q two regular queries. The implication problem C |= p � q is
PSPACE-complete.

Let C = {pi � ui, 1 ≤ i ≤ n} be a finite set of bounded path inclusions, and q

a regular query, we define the set ancestorC(q) = {u | ∃ wq ∈ L(q), u
∗

−→
C

wq}.

Then we can state:

Lemma 6. Let C = {pi � ui, 1 ≤ i ≤ n} be a finite set of bounded path in-
clusions, and p, q two regular queries, then C |= p � q if and only if L(p) ⊆
ancestorC(q).

Proof. This is a direct consequence of proposition 6: C |= p � q if and only
if ∀up ∈ L(p), C |= up � q. From proposition 6 this is equivalent to ∀up ∈
L(p), ∃uq ∈ L(q), C |= up � uq and thanks to the same proposition it is equivalent

to ∀up ∈ L(p), ∃uq ∈ L(q), up
∗

−→
C

uq i.e L(p) ⊆ ancestorC(q).

In order to compute ancestorC(q) for any regular query q, we first build a finite
automaton AC (with ε-moves) which recognizes the language RC = {v ∈ A∗ |

∃i, v
∗

−→
C

ui}. It is already known from [17], [19], [21] that RC is a recognizable



language. We give here a different construction: for each i with 1 ≤ i ≤ n, let
M〉 = (A,Q〉, I〉,F〉, δ〉) be an automaton recognizing the language L(pi + ui).
We can assume, without loss of generality, that for different subscripts i and j,
the intersection Qi∩Qj is empty. Then we can define AC = (A, Q, I, F, ∆) where
Q = ∪n

i=1Qi, I = ∪n
i=1Ii, F = ∪n

i=1Fi and ∆ = ∪k∈N∆k where ∆k, for k in N is
defined inductively by:

– ∆0 = ∪n
i=1δi

– for k > 0, ∆k = ∆k−1 ∪ {(q, ε, q′) | q 6= q′ ∧ ∃i ≤ n, q ∈ Fi, q
′ ∈

resultAC
k−1(ui)} where AC

k−1 is the automata (A, Q, I, F, ∆k−1)

Since only transitions of the form (q, ε, q′) can be added, there exists an integer
K such that ∆K = ∆K+1 = ∆ for some K. As K ≤ 1 + |Q|2, automaton AC

can be built in polynomial time in |C|, the size of C.

Example 4. Let C = {ab∗ � ba, (aa + ba)∗(a + b)b � aa}. An automaton AC is
the following:

0

1

f0

f1

2 3

4

f2

f3

a

a

b

a, b

a

ab

a

b ε

ε

ε

ε

ε

ε

εε

ε

ε

We have now to prove that AC recognizes RC .

Lemma 7. For any word v in A∗, if resultAC
(v)∩Fi 6= ∅ for some i in {1, . . . , n}

then v
∗

−→
C

ui.

Proof. Let v ∈ A∗ and q ∈ resultAC
(v) ∩ Fi for some i in {1, . . . , n}. Then there

exists a k such that q ∈ resultAC
k(v). We will show that v

∗
−→
C

ui by induction

on k. If k = 0, then v ∈ L(pi + ui) and v −→
C

ui or v = ui. Suppose now that

k > 0. There exist q0, q1, . . . , ql in Q and x1, x2, . . . , xl in A ∪ {ε} such that
q = ql, v = x1x2 . . . xl and for any j in {1, . . . , l}, (qj−1, xj , qj) ∈ ∆k. Let m be
the number of such (qj−1, xj , qj) which are in ∆k \∆k−1. We shall now make an
induction on m. If m = 0, then, by induction hypothesis on k, we obtain that
v

∗
−→
C

ui. If m > 0, let p be the integer such that (qp−1, xp, qp) ∈ ∆k \∆k−1 and

for any j with p < j ≤ l, (qj−1, xj , qj) is in ∆k−1. Then xp = ε, qp−1 ∈ Fi′ for
some i′ in {1, . . . , n} and qp ∈ resultAC

k−1(ui′) :



q0 qp−1 qp

q

xp = ε

ui′

x1 . . . xp−1

xp+1 . . . xl

∆k \ ∆k−1

∆k−1

∆k

∆k−1

By induction hypothesis on m, we obtain that x1x2 . . . xp−1
∗

−→
C

ui′ and by

induction hypothesis on k, we obtain that ui′xpxp+1 . . . xl
∗

−→
C

ui. It follows that

v = x1x2 . . . xl
∗

−→
C

ui′xpxp+1 . . . xl
∗

−→
C

ui.

In order to prove the converse of lemma 7, we shall use the following result:

Lemma 8. Let v and w be two words of A∗. If v
∗

−→
C

w, then resultAC
(w) ⊆

resultAC
(v).

Proof. Let j be the length of the derivation v
∗

−→
C

w. We shall make an induction

on j. If j = 0 then v = w and resultAC
(w) = resultAC

(v). If j > 0, then

there exists i in {1, . . . , n} and words v1, v2 such that v
j−1
−→
C

v1v2, v1 ∈ L(pi)

and w = uiv2. By induction hypothesis, we have resultAC
(v1v2) ⊆ resultAC

(v).
Moreover, since v1 ∈ L(pi), there exists a state q in Fi ∩ resultAC

(v1). Let q′

be a state in resultAC
(ui) then (q, ε, q′) ∈ ∆ and q′ ∈ resultAC

(v1). As we
have resultAC

(ui) ⊆ resultAC
(v1), we obtain resultAC

(w) = resultAC
(uiv2) ⊆

resultAC
(v1v2) ⊆ resultAC

(v).

We are now able to prove:

Proposition 10. For any word v in A∗, resultAC
(v) ∩ Fi 6= ∅ for some i in

{1, . . . , n} if and only if v
∗

−→
C

ui. In other words, automaton AC recognizes RC

Proof. From lemma 7, we have only to prove the if part. Let us consider v ∈ A∗

such that v
∗

−→
C

ui for some i in {1, . . . , n}. By definition, resultAC
(ui)∩Fi 6= ∅,

moreover, from lemma 8, resultAC
(ui) ⊆ resultAC

(v) then resultAC
(v) ∩ Fi 6= ∅.

It is proved in proposition 10 that AC recognizes RC , and it is clear that, from
automaton AC , we easily obtain, for any word ui, an automaton which recognizes
ancestorC(ui) in PTIME in the size of C. Indeed we have only to consider the
automata AC

ui = (A, Q, I, Fi, ∆).
Now, in order to answer to the question p ⊆ ancestorC(q), we compute the set

of ancestors of q as the language described by the automaton A
$q

C∪{q�$q}
($q is



a new letter). In [4] the authors give a decision algorithm for the inclusion of
two regular languages L1 and L2, given by two automata A1 and A2. Using this
result, we can state:

Lemma 9. For any set C = {pi � ui, 1 ≤ i ≤ n} of bounded path inclusions,
and for any regular expressions p and q, the implication problem C |= p � q is
PSPACE.

Proof. In [4] the authors give a decision algorithm for the inclusion of two regu-
lar languages L1 and L2, given by two automata A1 and A2. This algorithm is in
PSPACE in the size of the automata. Moreover, we can construct in cubic time
in |p| a (non deterministic) automaton Ap which recognizes p (see for instance
the Gluskov’s algorithm [29]), and in polynomial time in |q|+ |C| an automaton
Aq

C which recognizes ancestorC(q).

We are now able to end the proof of theorem 4, which is a consequence of the
following lemma which states that, even when the regular expression q is reduced
to a word u, the implication problem C |= p � u is PSPACE-complete.

Lemma 10. For any set C = {p1 � u1, . . . , pn � un} of bounded path inclu-
sions, for any regular expression p and for any word u, the implication problem
C |= p � u is PSPACE-complete.

Proof. Inclusion problem of two regular languages, given by regular expressions
p and q is PSPACE-hard [28]. Let us consider the set C = {q � $} where $ does
not appear in q. In this case, ancestorC(q) = L(q) and L(p) ⊆ L(q) is equivalent
to L(p) ⊆ ancestorC($). So deciding L(p) ⊆ L(q) is equivalent to decide p � $.

Nevertheless, for the implication problem of a constraint u � q, we get a poly-
nomial algorithm, since we only check whether u belongs to ancestorC(q):

Proposition 11. Let C = {p1 � u1, . . . , pn � un} a set of bounded path inclu-
sions, u a word and q a regular query. We can decide the implication problem
C |= u � q in PTIME.

Proof. C |= u � q if and only if u ∈ ancestorC(q). We build an automaton

A
$q

C recognizing ancestorC(q) in PTIME and we test the membership of u in
ancestorC(q) using this automaton.

We summarize our results (C is a set of bounded path constraints, p and q are
two regular queries and u is a word):

bounded path inclusions new results already known
C |= p � q PSPACE (lemma 9) EXPSPACE [3]

EXPTIME [5]
C |= p � u PSPACE-complete (lemma 10)
C |= u � q PTIME (proposition 11)



4 Word equality constraints

In this section, we consider the case of a set of word equality constraints of the
form u ≡ v where u and v are words. Since this case is a particular case of
bounded path inclusions, any algorithm presented in section 3 can be used on a
set of word equality constraints. As, in this particular case of word equalities, the
implication is symmetric (i.e. C |= u � v implies that C |= v � u) one can improve
some of these algorithms: in particular, it is possible to decide in PTIME whether
a set of word equality constraints satisfies the strong boundedness property.

4.1 A finite representation of the exact model DC

In section 3, definition 11, we have introduced an equivalence relation over path
inclusions, denoted ≡C, and associated with any set C of path inclusions. Recall
that, for any words u and v in A∗, we have u ≡C v if C |= u ≡ v. Now, when C is
a set of word equalities (that is a symmetric relation over A∗), the relation ≡C

satisfies the following property:

Lemma 11. Let C be a set of word equality constraints over an alphabet A.
Then ≡C is the smallest equivalence relation, closed by right congruence, which
contains C and for any words u and v, if C |= u � v then u ≡C v.

Proof. Clearly, ≡C is an equivalence relation which is closed by right congruence
and contains C. Now, if we consider two words u and v such that C |= u � v,
then u −→∗

C v from proposition 5. It follows, from the definition of −→∗
C that

(u, v) belongs to any equivalence relation which is closed by right congruence
and contains C.

In the special case of word equalities, the exact model DC, associated with a set
C of bounded path inclusions, and introduced in section 3.2 is deterministic and
complete. Indeed it is defined as:

– N = {[u]C | u ∈ A∗},
– r = {[ε]C}
– T = {([u]C, x, [ux]C) | u ∈ A∗, x ∈ A}.

For any word u in A∗, we get from lemma 5 that resultDC
(u) = {[u]C}. Then we

can state the following proposition:

Proposition 12. For any set C of word equality constraints over an alphabet
A, the following properties are equivalent:

1. C |= u ≡ v.
2. C |= u ≡ v on the family of single rooted data graphs.
3. C |= u ≡ v on the family of deterministic data graphs.
4. C |= u ≡ v on the family of complete deterministic data graphs.



Proof. Clearly, it is sufficient to prove 4 implies 1. Let u and v be two words
such that C |= u ≡ v on the family of complete deterministic data graphs.
Then DC |= u ≡ v, since DC |= C and it is complete and deterministic. Now,
from proposition 7 which states that DC is an exact model of C, it follows that
C |= u ≡ v.

Corollary 5. For any set C of word equality constraints over an alphabet A, DC

is the unique (complete) deterministic rooted graph D which satisfies: D |= u ≡ v

if and only if C |= u ≡ v.

Generally, the model DC is an infinite graph. Nevertheless, when C is a finite
set of word equality constraints, it is possible to build a finite deterministic sub
graph of DC in order to decide some properties like implication problem, strong
boundedness property or existence of an exact finite model. A quite similar
construction has been introduced by Buneman et al. in [15]:

Definition 12. Let C be a finite set of word equality constraints over A.

– Let us denote by W the set of all prefixes of {w ∈ A∗ | ∃w′ ∈ A∗, (w ≡
w′) ∈ C}.

– For any word in W , let us denote by [w] the equivalence class of w for the
restriction of ≡C over W .

– We define the finite deterministic graph D
f
C as the graph D

f
C =< N ′, r, T ′ >

where
• N ′ = {[w] | w ∈ W},
• r′ = {[ε]} and
• T ′ = {([w], x, [wx]) | w ∈ W, wx ∈ W, x ∈ A}.

Let us consider now the application fC, defined from A∗ to N ′×A∗, where N ′ is
the set of nodes of D

f
C , by: for any word in A∗, fC(u) = (result

D
f

C

(u1), u2) where

u = u1u2 and u1 is the longest prefix of u such that result
D

f
C

(u1) 6= ∅.

Example 5. Let A = {a, b, c, d, e, f} and C = {a ≡ bba, b ≡ c, cb ≡ dd, d ≡

e, fa ≡ aa, ed ≡ f, e ≡ f, aa ≡ bba}. Figure 6 gives the graph D
f
C for this set of

constraints. On this example, fC(a
3) = ([bba], ε), fC(a

3c) = ([bba], c).

[ε]

[bba]

[c]

[cb]

a

b, c

b

a d

d, e, f

a

Fig. 6. graph Df
C



Then we can state:

Proposition 13. C |= u ≡ v if and only if fC(u) = fC(v).

Proof. C |= u ≡ v if and only if resultDC
(u) = resultDC

(v) if and only if fC(u) =
fC(v)

Now, denoting by fC(p) the set ∪u∈L(p)fC(u) for any regular path expression p

we can deduce, from the above proposition, lemma 11 and using the fact that
DC is complete and deterministic:

Corollary 6. For any regular path expressions p and q, C |= p ≡ q if and only
if fC(p) = fC(q).

Moreover, from the above corollary, we obtain:

Corollary 7. A regular path expression p has the strong boundedness property
w.r.t. a finite set of word equalities C if and only if fC(p) is finite.

Concerning existence of an exact finite model for a set C of word equalities, we
can state:

Proposition 14. Let C be a set of word equality constraints. C has a finite exact
model if and only if D

f
C is a complete graph.

Proof. If D
f
C is complete then ≡C is of finite index and then C has a finite

exact model (theorem 3). If D
f
C is not complete there exists a word u such that

result
D

f

C

(u) is empty, that is fC(u) = (result
D

f

C

(u1), u2) and u2 is not the empty

word. Then for a label x and for any integer n, fC(uxn) = (resultD(u1), u2x
n).

It follows from proposition 13 that uxn and uxm (where n and m are different)
cannot be in the same class. So ≡C is not of finite index.

Corollary 8. If ≡C is of finite index then the number of classes is bounded by
the size of C.

Now, in order to decide efficiently these different properties, it remains to produce
an efficient algorithm which can compute the graph D

f
C . This is done in next

section.

4.2 A quasi linear algorithm

The aim of this section is to present an algorithm which constructs the graph
D

f
C with a quasi linear complexity in the size of the set of equality constraints C.

The graph D
f
C is defined to get a finite representation of the relation ≡C defined

over A∗. By definition, it is also a finite representation of the smallest right
congruence which contains the relation {(w, w′) | (w ≡ w′) ∈ C}.
The algorithm will construct this congruence in the following way: let the set of
equality constraints be C = ∪n

i=1{(ui ≡ vi)} and W be the set of all prefixes of
{w ∈ A∗ | ∃w′ ∈ A∗, (w ≡ w′) ∈ C}. For any integer 1 ≤ i ≤ n, let us denote



by Ri the restriction to W of the smallest right congruence, which contains the
relation ∪i

k=1{(uk, vk)} (R0 denotes the identity relation). We shall denote by
[u]i the equivalence class of a word u ∈ W for the relation Ri. Then we want
to compute Rn, starting from R0. At each step i, the algorithm must, for the
constraint ui ≡ vi, merge the equivalence classes [ui]i−1 and [vi]i−1 and compute
the right congruence closure.

In order to implement this merging, we need a disjoint-set data structure which
provides algorithms for determining which class a word belongs to, and for com-
bining two equivalence classes. The well-known union-find algorithm performs
these operations (see [35,34] and [22] for data structures that can be used),
supporting the primitives find(u) - which returns the representative of [u]-,
union(u , v) - which computes a new class [u] ∪ [v] and returns the represen-
tative of this new class-, create(u) which creates a class with one element, u,
requiring that u doesn’t belong to any class-.
So, our algorithm builds a graph; initially, the graph is obtained from the prefix
tree of words appearing in C, where nodes are identified with the words of the
set W , and edges are labeled by letters. Then, we apply union (u,v) for each
u ≡ v in C. But, for ensuring right congruence closure, we will ensure that if
there is an edge labeled by x from u to v, there is an edge labeled by x from
find(u) to a node v′ ≡ v . Thus we can define merge(u , v : Node) which
merges two classes and performs the closure by right congruence:

function merge(u , v : Node)

begin

if (find(u) != find(v)) then

Node r := union(u , v) ;

-- w.l.o.g. we suppose r = find(u) or r = find(v)

for each x ∈ A do

if there are some edges (find(u),x,s) and (find(v),x,t) then

merge(s , t) ;

elsif there is some edge (find(u),x,s) and r = find(v) then

add a new edge (r , x , s) ;

elsif there is some edge (find(v),x,t) and r = find(u) then

add a new edge (r , x , t) ;

end if ;

end for ;

end if ;

end merge ;

Finally the algorithm is:

for each u ∈ W do create(u); end for ;

for each constraint (u ≡ v) ∈ C do

merge(find(u), find(v)) ;

end for ;



Let us study the complexity of this algorithm. In the worst case, all the nodes
belong to the same class; so, the total number of calls to function union and
calls to function find is in O(|C|). It is well known that by using union by rank
and path compression the amortized cost of an operation union or find is quasi-
constant, more precisely in O(α(n)), where α is the inverse of f(n) = A(n, n)
with A the Ackermann function, n the number of nodes [35]. So, complexity of
the algorithm is O(|C|.α(|C|)).

Now, since it is easy to prove that D
f
C is the graph < N, r, T > where N =

{find(u) | u ∈ W}, r = {find(ε)} and T = {(find(u), x,find(ux)) | ux ∈ W}, we
can state:

Proposition 15. One can compute D
f
C in quasi linear time in |C|.

Example 6. (example 5 continued) Let A = {a, b, c, d, e, f} and C = {a ≡
bba, b ≡ c, cb ≡ dd, d ≡ e, fa ≡ aa, ed ≡ f, e ≡ f, aa ≡ bba}. The figure 7 shows

the data structure used to compute the graph D
f
C . Since (b ≡ c) ∈ C, b and c

are in the same class. Then bb and cb are in the same class. Since bba ∈ W and
cba 6∈ W , we add an edge from the class of cb to the class of bba labeled by a. It
follows from a ≡ bba ≡ cba ≡ dda ≡ eda ≡ fa that find(a) = find(fa) = bba.
Since f ≡ ed ≡ fd, we get find(fd∗) = find(f). Finally, after merging the

equivalent nodes, we obtain the graph D
f
C shown in figure 6.

4.3 Some complexity improvements

In this section, we shall use the graph D
f
C in order to improve the complexity

of some algorithms for implication problem, strong boudedness property and
existence of an exact finite model for a finite set of word equalities C. Clearly,
for this last problem, we can state:

Proposition 16. Let C be a set of word equality constraints. Deciding whether
C has a finite exact model is quasi linear in the size of C.

Proof. From the proposition 14, C has a finite exact model if and only if the graph
D

f
C is complete. One can compute the graph D

f
C with a quasi linear algorithm

and to decide whether D
f
C is complete can be done with an algorithm linear in

the size of D
f
C .

Concerning implication problem, we can improve the algorithm of [15] which
decides whether a set of word equality constraints implies a word equality con-
straint. We can also answer whether a regular query p has the strong boundedness
property for a finite set of word equalities C with a PTIME algorithm in the sum
of the sizes of p and C. Nevertheless, we prove that deciding whether a set of
word equality constraints implies that a query p is equivalent to a query q is
PSPACE complete.
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Fig. 7. Steps of the union-find algorithm



Lemma 12. For any regular path expressions p and q, and given the graph D
f
C ,

1. the test of finiteness of fC(p) can be done in PTIME in the sum of the size

of D
f
C and the size of p.

2. a comparison between fC(p) and fC(q) can be done in PSPACE in the sum

of the size of D
f
C and the size of the two regular expressions.

Proof. We will first show that, for every node n of D
f
C , we can compute an

automaton AC,p(n) in PTIME in the sum of the size of D
f
C and the size of p such

that the language recognized by AC,p(n) is the language {w ∈ A∗ | (n, w) ∈
fC(p)}. This construction follows five steps:

1. construct an automaton Ap which recognizes the language described by p,
where all states are accessible and co accessible, this automaton can be
constructed in quadratic time w.r.t. |p| (see, for example, [13]).

2. complete the graph D
f
C with a hole node ⊥, and with transitions (n, x,⊥)

for each node n and each letter x such that there is no transition labelled by
x from n in D

f
C ; this can be done in size of D

f
C .

3. compute now the cartesian product of this complete graph and automaton
Ap: in this graph, the transitions are in the form ((n1, s1), x, (n2, s2)) where

n1 and n2 are nodes of D
f
C or equal to ⊥, s1 and s2 are states of automaton

Ap and x is a letter.
4. remove, in the previous graph, all transitions ((n1, s1), x, (n2, s2)) where n2

is a node of D
f
C (i.e. not equal to ⊥).

5. finally AC,p(n) is obtained from the previous graph, setting the initial states
to nodes which are in {n} × S where S is the set of states of automaton Ap

and the final states to nodes which are in {⊥}×F where F is the set of final
states of automaton Ap.

The whole construction can be done in PTIME in the sum of the sizes of Ap

and D
f
C .

Now, to answer the question whether fC(p) is finite, we can check for every node

n of D
f
C if automaton AC,p(n) recognizes a finite language, this leads to a PTIME

algorithm in the sum of the sizes of Ap and D
f
C .

At last, in order to compare fC(p) and fC(q) for some regular path expressions p

and q, we can check if, for each node n of D
f
C , the automata AC,p(n) and AC,q(n)

are equivalent. This can be made in PSPACE in the sum of the size of AC,p(n)
and AC,q(n).

Remark 4. For the comparison of fC(p) and fC(q) for some regular path expres-
sions p and q, we cannot obtain a better complexity, since if we consider an
empty set C of word equality constraints, we have C |= p ≡ q if and only if the
language described by p is equal to the language described by q, and it is known
from [28] that this problem is PSPACE complete in the sum of the size of the
two regular expressions p and q. It follows that the problem to know whether,
given a finite set C of word equality constraints, we have C |= p ≡ q for some
regular expressions p and q is PSPACE complete.



Then, summarizing the complexity results of proposition 15, proposition 13,
corollary 6, corollary 7 and lemma 12, we obtain:

Theorem 5. For any finite set of word equality constraints C,

– it is decidable to know whether C |= u ≡ v for some paths u and v in quasi
linear time in the sum of |C| and the size of the constraint u ≡ v.

– the problem to know whether C |= p ≡ q for some regular path expressions p

and q is PSPACE complete, in the sum of |C| and the size of the constraint
p ≡ q.

– it is decidable to know whether some regular path expression p has the strong
boundedness property w.r.t. C in PTIME in the sum |C| + |p|.

In the case when a regular query q has the strong boundedness property with
respect to a finite set of word equality constraints C, it is possible to produce
a regular expression f , denoting a finite language, such that C |= q ≡ f . More
precisely, we can state :

Proposition 17. Let C be a non empty finite set of word equalities over an
alphabet A.One can compute, in quasi linear time in the size of C, a transducer
τC such that, for any regular query p over A:

1. C |= p ≡ τC(L(p))
2. τC(L(p)) is finite iff p has the strong boundedness property w.r.t. C

Proof. Let C be a non empty set of word equalities over an alphabet A. Let us
consider the graph D

f
C =< N, r, TG >. The nodes of D

f
C are equivalence classes

of words for the equivalence relation ≡C. For any class [u], we will use find(u),
presented in subsection 4.2, as a representative of the class [u]. From this graph,
we can define a transducer τC =< A, N ∪ {$}, r, N ∪ {$}, T, e > where A is the
input and the output alphabet, N ∪ {$} with $ 6∈ N is the set of states, r is the
initial state and all the states are finals. The set of transitions T is defined by
T = {([u], x, ε, [ux]) | [ux] ∈ N} ∪ {([u], x, find(u)x, $) | [ux] 6∈ N} ∪ {($, x, x, $) |
x ∈ A} and e is an output function from the final states N ∪ {$} to A∗ defined
by: e([u]) = find(u) and e($) = ε.

It is easy to see that for all word u, fc(u) = ([u1], u2) if and only if τc(u) =
find(u1)u2. If q is a path expression then

τC(q) =
⋃

u∈L(q)

τC(u) =
⋃

u∈L(q)

fC(u)=([u1],u2)

find(u1)u2

As fC(τC(q)) = fC(q), it follows from corollary 6 that for all q such that L(q) =
τC(L(p)), C |= p ≡ q. Finaly, from corollary 7 we obtain: τC(L(p)) is finite if and
only if p has the strong boundedness property w.r.t. C.

The complexity of the construction of τC is quasi linear, since it is based on the
construction of D

f
C .



Example 7. (example 5 continued) The transducer τC is the following where tran-
sitions from a node [u] to the node $ are labeled in the form xs | uxs with s ⊆ A.
Such a label xs | uxs correspond to the set of transitions {([u], x, find([u])x, $) |
x 6∈ s}. The set of transitions {($, x, x, $) | x ∈ A} is represented by a single
transition labeled x | x on node $.

[ε]

[bba] [c][cb]

$

a
b, c

ba

d

d, e, f
a

x{a}/bbax{a}
x{b}/cx{b}

x{a,d}/cbx{a,d}

ε

bba c

cb

ε
x/x

– τC(a
+b) = bbab because fC(a

+b) = {([bba], b)}. As L(bbab) is finite, a+b has
the strong boundedness property w.r.t C and C |= a+b ≡ bbab.

– τC(f
+) = cbf∗ since fC(f

+) = {([cb], fn) | n ∈ N}. As L(cbf∗) is not
finite, f+ has not the strong boundedness property w.r.t. C. Nevertheless,
C |= f+ ≡ cbf∗ is true.

5 Conclusion

In this paper, we have investigated path constraints on semistructured data
modeled as multi rooted edge-labeled directed graphs and we have studied some
associated problems such as existence of a finite exact model, implication prob-
lem and strong boundedness property.

In the case when path expressions involved in the constraints are full regular
expressions, most results we get are straightforward extensions of previous ones
for single rooted graphs [3].
When constraints are bounded path inclusions, the problems we consider can be
transformed into problems of prefix rewriting systems. So “ad hoc” algorithms



have been developed and we get new results; e.g. we have established that, in this
case, the implication problem is PSPACE-complete and that strong boundedness
can be decided.

In the special case of word equality constraints, we have proved that it is decid-
able in quasi-linear time whether a finite set of word equalities has a finite exact
model. The word implication problem has been proved to be quasi-linear and
strong boundedness property has been proved to be decidable in PTIME. These
results use a finite representation of an exact model of a set of word equality
constraints.

In further works, some topics deserve investigation. E.g., relations between keys
and foreign keys in XML data are a kind of inclusion constraints. So a natu-
ral question is to know whether the techniques developed in this paper can be
applied in the context of keys.

We are also interested in considering XML query languages, like XPATH or
XQuery. We have studied graph queries, a generalization of Tree Pattern Queries.
Unfortunately, the evaluation of such queries is NP-complete. It would be inter-
esting to use constraints on the data in order to rewrite a graph query to obtain
an equivalent Tree Pattern Query when it is possible.
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17. J. Richard Büchi and W.H. Hosken. Canonical systems which produce periodic
sets. Mathematical Systems Theory, 4(1), 1970.

18. Diego Calvanese and Giuseppe De Giacomo. Expressive description logics. In Franz
Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors, Description Logic Handbook, pages 178–218. Cambridge
University Press, 2003.

19. D. Caucal. On the regular structure of prefix rewritings. In Springer, editor,
Selected papers of the conference on Fifteenth colloquium on trees in algebra and
programming, pages 87 – 102, Copenhagen, Denmark, May 1990.

20. D. Caucal. Monadic theory of term rewritings. In Proceedings, Seventh Annual
IEEE Symposium on Logic in Computer Science, volume 1232, pages 266 – 273.
IEEE Computer Society Press, 1992.

21. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997.

22. T. Cormen, C. Leiserson, and R.Rivest. Introduction to Algorithms. MIT Press,
1990.

23. M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In
Proc 5th IEEE Symp Logic in Computer Science, pages 242–256, 1990.



24. D. Debarbieux, Y. Roos, and S. Tison. Models of path constraints. In Proceedings
of the 10th Mons Theoretical Computer Science Days, 2004.

25. D. Debarbieux, Y. Roos, S. Tison, Y. André, and A.C. Caron. Path rewriting in
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A Proof of proposition 1

The proof of proposition 1 is close to the proof presented in [3].

Proposition 1. A set C of path inclusions implies a path inclusion p � q, de-
noted C |= p � q, if and only if for each finite data graph D such that D |= C,
D |= p � q.

Proof. Clearly, we have only to prove that the condition is suffcient. Let p0 and
q0 be two queries s.t. C 6|= p0 � q0. We are going to construct a finite data graph
Df s.t. Df |= C and Df 6|= p0 � q0. Since C 6|= p0 � q0, there exists a (maybe
infinite) data graph D =< ND, RD, TD > s.t. D |= C and D 6|= p0 � q0.
Let ≡ be the right semi-congruence relation defined on A∗ × A∗ by u ≡ v if for
any word w, for any path inclusion p � q ∈ C, uw belongs to L(q) if and only if
vw belongs to L(q). Let 1 be the equivalence relation defined on ND × ND by
n 1 n′ if

– ∀u ∈ A∗, (n ∈ resultD(u) =⇒ ∃v ∈ A∗(u ≡ v ∧ n′ ∈ resultD(v)))



– ∀v ∈ A∗, (n′ ∈ resultD(v) =⇒ ∃u ∈ A∗(u ≡ v ∧ n ∈ resultD(u)))

Denoting [n] the equivalence class of a node n for 1, we can now define the data
graph Df =< Nf , Df , Tf > as

– Nf = {[n] | n ∈ ND}
– Rf = {[n] | ∃r ∈ RD r 1 n}
– Tf = {([n′], x, [n]) | ∃n′

1, n1 (n 1 n1) ∧ (n′
1 n′

1) ∧ (n′
1, x, n1) ∈ TD}

Clearly, the data graph Df is finite. It remains to prove that Df |= C and
Df 6|= p0 � q0. We shall use the following property:

∀u ∈ A∗, ∀n ∈ ND, ([n] ∈ resultDf
(u) ⇒ ∃v ≡ u | n ∈ resultD(v)) (1)

Let us prove this property by induction on the length of u.

– If u is the empty word then [n] is a root of Df . So there exists a node r s.t.
r is a root of D and n 1 r. It follows that there is a word v equivalent to ε

s.t. n belongs to resultD(v).
– If u = vx where x is a letter, then there exists a node [n′] of Df s.t. [n′]

is reached by v and ([n′], x, [n]) is a transition of Tf . From the definition
of Tf , there exist two nodes n′

1 1 n′ and n1 1 n s.t. (n′
1, x, n1) belongs to

T . Moreover, from the induction hypothesis, we know that n′ is reached by
a word w ≡ v. Now, since n′

1 n′
1, there exists a word w′ ≡ w ≡ v s.t.

n′
1 belongs to resultD(w′) i.e. n1 belongs to resultD(w′x) and since n 1 n1,

there exists a word w′′ ≡ w′x ≡ vx = u s.t. n belongs to resultD(w′′).

Df

D

[n′]

n′
1

[n]

n1

n′ n

v

w w′′

x

w′ x n′
1 1 n′

w ≡ w′ ≡ v and w′x ≡ w′′ ≡ vx

n1 1 n

Wa shall also use the following second property:

∀u ∈ A∗, ∀n ∈ ND, (n ∈ resultD(u) ⇒ [n] ∈ resultDf
(u)) (2)

We prove this property by induction on the length of u. If u is the empty word
then n is a root of D then, by definition of Df , [n] is a root of Df which is in
resultDf

(u = ε). If u = vx where x is a letter, then there exists a node n′ s.t.
n′ belongs to resultD(v) and (n′, x, n) is in TD. By induction hypothesis, [n′]
belongs to resultDf

(v) and by definition of Tf , ([n′], x, [n]) is a transition of Tf

then [n] is reached by u.



Now, from properties 1 and 2 it is easy to obtain that for any regular expression
q and for any node n in D:

[n] ∈ resultDf
(q) if and only if n ∈ resultD(q) (3)

And it follows that for any path inclusion p � q, D |= p � q if and only if
Df |= p � q.


