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1 Introduction

Let (X,d) be a metric space andε ∈ R>0, then we say a mapf : X → Y is an ε-
embedding if it is continuous and the diameter of the fibres isless thanε, i.e. ∀y ∈
Y,Diamf−1(y) ≤ ε. We will use the notationf : X ε֒→Y. This type of maps, which can
be traced at least to the work of Pontryagin (see [13] or [8]),is related to the notion of
Urysohn width (sometimes referred to as Alexandrov width),an(X), see [3]. It is the
smallest real number such that there exists anε-embedding fromX to an-dimensional
polyhedron. Surprisingly few estimations of these numberscan be found, and one of
the aims of this paper is to present some. However, following[7], we shall introduce:

Definition 1.1: wdimεX is the smallest integerk such that there exists anε-embedding
f : X → K whereK is a k-dimensional polyhedron.

wdimε(X,d) = inf
X ε֒→K

dimK.

Thus, it is equivalent to be given all the Urysohn’s widths orthe whole data of
wdimεX as a function ofε.

Definition 1.2: The wdim spectrum of a metric space(X,d), denoted wspecX ⊂Z≥0∪
{+∞}, is the set of values taken by the mapε 7→ wdimεX.

Thean(X) obviously form an non-increasing sequence, and the points of wspecX
are precisely the integers for which it decreases. We shall be interested in the widths of

the following metric spaces: letBl p(n)
1 be the set given by the unit ball inRn for the l p

metric (‖(xi)‖l p =
(

∑xp
i

)1/p
), but look atBl p(n)

1 with the l∞ metric (i.e. the sup metric
of the product). Then

Proposition 1.3: wspec(Bl p(n)
1 , l∞) = {0,1, . . . ,n}, and,∀ε ∈ R>0,

wdimε(B
l p(n)
1 , l∞) =







0 if 2≤ ε
k if 2(k+1)−1/p ≤ ε < 2k−1/p

n if ε < 2n−1/p
.

The important outcome of this theorem is that for fixedε, the wdimε(B
l p(n)
1 , l∞)

is bounded from below by min(n,m(p,ε)) and from above by min(n,M(p,ε)), where
m,M are independent ofn. As an upshot high values can only be reached for smallε
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independantly ofn. It can be used to show that the mean dimension of the unit ballof
l p(Γ), for Γ a countable group, with the natural action ofΓ and the weak-∗ topology is
zero whenp < ∞ (see [14]). It is one of the possible ways of proving the non-existence
of action preserving homeomorphisms betweenl∞(Γ) and l p(Γ); a simpler argument
would be to notice that with the weak-∗ topology,Γ sends all points ofl p(Γ) to 0 while
l∞(Γ) has many periodic orbits.

The behaviour is quite different when balls are looked upon with their natural met-
ric.

Theorem 1.4: Let p ∈ [1,∞), n > 1, then∃hn ∈ Z satisfyinghn = n/2 for n even,
h3 = 2 andhn = n+1

2 or n−1
2 otherwise, such that

{0,h(n),n}∪⊂ wspec(Bl p(n)
1 , l p) ⊂ {0}∪ (

n
2
−1,n]∩Z.

Whenp = 2 or whenp = 1 and there is a Hadamard matrix of rankn+ 1, thenn−1

also belongs towspec(Bl p(n)
1 , l p).

More precisely, letk,n∈ N with n
2 −1 < k < n. Then there existsbn;p ∈ [1,2] and

ck,n;p ∈ [1,2) such that

if ε ≥ 2 then wdimε(B
l p(n)
1 , l p) = 0

if ε < 2 then wdimε(B
l p(n)
1 , l p) > n

2 −1

if ε ≥ ck,n;p then wdimε(B
l p(n)
1 , l p) ≤ k

if ε < bk;p then wdimε(B
l p(n)
1 , l p) ≥ k

and, for fixedn and p, the sequenceck,n;p is non-increasing. Furthermore,bk;p ≥

21/p′
(

1+ 1
k

)1/p
when1≤ p≤ 2, whereasbk;p ≥ 21/p

(

1+ 1
k

)1/p′
if 2≤ p < ∞.

Additionally, in the Euclidean case (p= 2), we have thatbn;2 = cn−1,n;2 =
√

2(1+ 1
n),

while in the2-dimensional caseb2;p ≥ max(21/p,21/p′) for anyp∈ [1,∞]. Also, if p=
1, and there is a Hadamard matrix in dimensionn+ 1, thenbn;1 = cn−1,n;1 =

(

1+ 1
n

)

.

Finally, whenn = 3, ∀ε > 0,wdimεB
l p(n)
1 6= 1 andc2,3;p ≤ 2(2

3)1/p, which means in
particular thatc2,3;p = b3;p whenp∈ [1,2].

Various techniques are involved to achieve this result; they will be exposed in sec-
tion 3. While upper bounds on wdimεX are obtained by writing down explicit maps to
a space of the proper dimension (these constructions use Hadamard matrices), lower
bounds are found as consequences of the Borsuk-Ulam theorem, the filling radius of
spheres, and lower bounds for the diameter of sets ofn+1 points not contained in an
open hemisphere (obtained by methods very close to those of [9]). We are also able to
give a complete description in dimension 3 for 1≤ p≤ 2.

2 Properties ofwdimε

Here are a few well established results; they can be found in [1], [2], [11], and [12].

Proposition 2.1: Let (X,d) and(X′,d′) be two metric spaces.wdimε has the following
properties:
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a. If X admits a triangulation,wdimε(X,d) ≤ dimX.

b. The functionε 7→ wdimεX is non-increasing.

c. LetXi be the connected components ofX, thenwdimε(X,d)= 0⇔ ε≥max
i

DiamXi .

d. If f : (X,d)→ (X′,d′) is a continuous function such thatd(x1,x2)≤Cd′( f (x1), f (x2))
whereC∈]0,∞[, thenwdimε(X,d) ≤ wdimε/C(X′,d′).

e. Dilations behave as expected,i.e. let f : (X,d)→ (X′,d′) be an homeomorphism
such thatd(x1,x2) =Cd′( f (x1), f (x2)); this equality passes through to thewdim:
wdimε(X,d) = wdimε/C(X′,d′).

f. If X is compact, then∀ε > 0,wdimε(X,d) < ∞.

Proof. They are brought forth by the following remarks:

a. If dimX = ∞, the statement is trivial. ForX a finite-dimensional space, it suffices
to look at the identity map fromX to its triangulationT(X), which is continuous
and injective, thus anε-embedding∀ε.

b. If ε ≤ ε′, anε-embedding is also anε′-embedding.

c. If wdimεX = 0 then∃φ : X ε֒→K whereK is a totally discontinuous space.∀k ∈
K,φ−1(k) is both open and closed, which implies that it contains at least one
connected component, consequently DiamXi ≤ ε. On the other hand, ifε ≥
DiamXi the map that sends everyXi to a point is anε-embedding.

d. If wdimε/CX′ = n, there exists anε
C-embeddingφ : X′ → K with dimK = n.

Noticing that the mapφ◦ f is anε-embedding fromX to K allows us to sustain
the claimed inequality.

e. This statement is a simple application of the preceding for f and f−1.

f. To show that wdimε is finite, we will use the nerve of a covering; see [8, §V.9]
for example. Given a covering ofX by balls of radius less thanε/2, there exists,
by compactness, a finite subcovering. Thus, sendingX to the nerve of this finite
covering is anε-immersion in a finite dimensional polyhedron.

Another property worth noticing is thatlimε→0
wdimε(X,d) = dimX for compactX;

we refer the reader to [1, prop 4.5.1]. Reading [6, app.1] leads to believe that there is
a strong relation between wdim and the quantities defined therein (Radk and Diamk);
the existence of a relation between wdim and the filling radius becomes a natural idea,
implicit in [7, 1.1B]. We shall make a small parenthesis to remind the reader of the
definition of this concept, it is advised to look in [6, §1] fora detailed discussion.

Let (X,d) be a compact metric space of dimensionn, and letL∞(X) be the (Banach)
space of real-valued bounded functions onX, with the norm‖ f‖L∞ = sup

x∈X
| f (x)|. The

metric onX yields an isometric embedding ofX in L∞(X), known as the Kuratowski
embedding:

IX : X → L∞(X)
x 7→ fx(x′) = d(x,x′).
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The triangle inequality ensures that this is an isometry:

‖ fx− fx′‖L∞ = sup
x′′∈X

∣

∣d(x,x′′)−d(x′,x′′)
∣

∣ = d(x,x′).

Denote byUε(X) the neighborhood ofX ⊂ L∞(X) given by all points at distance less
thanε from X,

i.e. Uε(X) =
{

f ∈ L∞(X)
∣

∣ inf
x∈X

‖ f − fx‖L∞ < ε
}

.

Definition 2.2: The filling radius of an-dimensional compact metric spaceX, written
FilRadX, is defined as the smallestε such thatX bounds inUε(X), i.e. IX(X) ⊂Uε(X)
induces a trivial homomorphism in simplicial homologyHn(X) → Hn(Uε(X)).

Though FilRad can be defined for an arbitrary embedding, we will only be con-
cerned with the Kuratowski embedding.

Lemma 2.3: Let (X,d) be an-dimensional compact metric space,k< n an integer, and
Y ⊂ X a k-dimensional closed set representing a trivial (simplicial) homology class in
Hk(X). Then

ε < 2FilRadY ⇒ wdimε(X,d) > k.

If we remove the assumption that[Y] ∈ Hk(X) be trivial, the inequality is no longer
strict: wdimε(X,d) ≥ k.

Proof. Let us show that wdimε(X,d) ≤ k ⇒ ε ≥ 2FilRadY. Given anε-embedding
φ : X ε֒→K, thenφ(Y) ⊂ K bounds, sinceφ∗[Y] = 0 as[Y] = 0 in Hk(X). Since dimK ≤
k= dimY, the chain representingφ(Y) is trivial. Compactness ofX allows us to suppose
that φ is onto a compactK. Otherwise, we restrict the target toφ(X). We will now
produce a mapY → L∞(Y) whose image is contained inUε/2(Y), so thatY will bound
in its ε

2-neighborhood. This will mean thatε ≥ 2FilRadY. Let

Q : K → L∞(X)

k 7→ gk(x′′) = ε/2+ inf
x′∈φ−1(k)

d(x′′,x′) , and
ρY : L∞(X) → L∞(Y)

f 7→ f |Y .

First, notice thatρY ◦Q◦φ(Y) ⊂Uδ+ε/2(Y),∀δ > 0 :

‖ρY ◦Q◦φ(y)− IY(y)‖L∞ = sup
y′′∈Y

∣

∣

∣

∣

ε
2

+

[

inf
y′∈φ−1(φ(y))

d(y′′,y′)

]

−d(y′′,y)

∣

∣

∣

∣

= ε/2,

sinceφ is an ε-embedding. Second,(ρY ◦ Q◦ φ)∗[Y] = 0 and(ρY ◦Q◦ φ) ∼ IY in
Uδ+ε/2(Y), asL∞(Y) is a vector space. Consequently,[IY(Y)] = 0 andε ≥ 2FilRadY,
by lettingδ → 0.

If [Y] 6= 0 ⊂ Hk(X), the proof still follows by takingK of dimensionk− 1: the
homology classφ∗[Y] is then inevitably trivial, sinceK has no rankk homology.

Thus, calculating FilRad is a good starting point. The following lemma consists of
a lower bound for FilRad:
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Lemma 2.4: Let X be a closed convex set in an-dimensional normed vector space.
Suppose it contains a pointx0 such that the convex hull ofn+ 1 points on∂X whose
diameter is< a excludesx0. Then FilRad∂X ≥ a/2, and, using lemma 2.3,ε < a ⇒
wdimεX = n.

Proof. Suppose thatY = ∂X has a filling radius less thana/2. Then,∃ε > 0 and∃P a
polyhedron such thatY bounds inP, P⊂ Ua

2−ε(Y) and that the simplices ofP have a
diameter less thanε. To any vertexp∈ P it is possible to associatef (p) ∈ IY(Y) so that
‖p, f (p)‖L∞(Y) < a

2 − ε. Let p0, . . . , pn be an-simplex ofP,

Diam{ f (p0), . . . , f (pn)} < 2(
a
2
− ε)+ ε < a− ε < a.

SinceIY is an isometry,f (pi) can be seen as points ofY without changing the diameter
of the set they form. The convex hull of thesef (pi) in B will not containx0: their
distance tof (p0) is < a which excludesx0. Let π be the projection away fromx0, that
is associate tox ∈ X, the pointπ(x) ∈ ∂X on the half-line joiningx0 to x. Using π,
then-simplex generated by thef (pi) yields a simplex inY. Thus we extendedf to a
retractionr from P to Y. Let c be an-chain ofP which boundsY, i.e. [Y] = δc. A
contradiction becomes apparent:[Y] = r∗[Y] = r∗δc = δr∗c. Indeed, if that was to be
true,Y, which isn−1 dimensional would be bounding ann-dimensional chain inY.
Hence FilRadY > a/2.

This yields, for example:

Lemma 2.5: (cf. [7, 1.1B]) LetB be the unit ball of an-dimensional Banach space,
then∀ε < 1,wdimεB = n.

Proof. Any set ofn+1 points onY = ∂B whose diameter is less than 1 does not contain
the origin in its convex hull. So according to lemma 2.4, FilRadY > 1/2, and sinceY
is a closed set of dimensionn−1 whose homology class is trivial inB, we conclude by
applying lemma 2.3.

Let us emphasise this important fact onl∞ balls in finite dimensional space.

Lemma 2.6: Let Bl∞(n)
1 = [−1,1]n be the unit cube ofRn with the product (supremum)

metric, then

wdimεB
l∞(n)
1 =

{

0 if ε ≥ 2
n if ε < 2

.

This lemma will be used in the proof of proposition 1.3. Its proof, which uses the
Brouwer fixed point theorem and the Lebesgue lemma, can be found in [12, lem 3.2],
[2, prop 2.7] or [1, prop 4.5.4].

Proof of proposition 1.3: We first show the lower bound on wdimε. In ak-dimensional

space, thel∞ ball of radiusk−1/p is included in thel p ball: Bl∞(k)

k−1/p ⊂Bl p(k)
1 , as‖x‖l p(k) ≤

k1/p‖x‖l∞(k). SinceBl p(k)
1 ⊂ Bl p(n)

1 , by 2.1.d, we are assured that, ifBl p(n)
1 is considered

with the l∞ metric,ε < 2k−1/p implies that wdimε(B
l p(n)
1 , l∞) ≥ k.

5



To get the upper bound, we give explicitε-embeddings to finite dimensional poly-
hedra. This will be done by projecting onto the union of(n− j)-dimensional coordi-
nates hyperplanes (whose points have at leastj coordinates equal to 0). Project a point

x ∈ Bl p(n)
1 by the mapπ j as follows: letm be its jth smallest coordinate (in absolute

value), set it and all the smaller coordinates to 0, other coordinates are substractedm if
they are positive or addedm if they are negative.

Denote by~ε an element of{−1,1}n and~ε\A the same vector in which∀i ∈ A, εi is
replaced by 0. The largest fibre of the mapπ j is

π−1
j (0) = ∪

~ε,i1,...,i j−1

{λ0~ε+ ∑
1≤l≤ j−1

λl~ε\{i1,...,i l}|λi ∈ R≥0}∩Bl p(n)
1 .

Its diameter is achieved bys0 =
(

(n− j +1)−1/p, . . . ,(n− j +1)−1/p,0, . . . ,0
)

and−s0;
thus Diamπ−1

j (0) = 2(n− j +1)−1/p. π j allows us to assert thatε > 2(n− j +1)−1/p⇒

wdimε(B
l p(n)
1 , l∞)≤ n− j, by realising a continuous map in a(n− j)-dimensional poly-

hedron whose fibres are of diameter less than 2(n− j +1)−1/p.

3 Evaluation of wdimεB
l p(n)
1

We now focus on the computation of wdimεX for unit ball in finite dimensionall p.
Except for a few cases, the complete description is hard to give. We start with a simple
example.

Example3.1: Let Bl1(2) be the unit ball ofR2 for the l1 metric, then

wdimεB
l1(2) =

{

0 if ε ≥ 2,
2 if ε < 2.

If Bl1(2) is endowed with thel p metric, thenε < 21/p ⇒ wdimεBl1(2) = 2.

Proof. Given any three points whose convex hull contains the origin, two of them have
to be on opposite sides, which means their distance is 21/p in the l p metric. Hence
a radial projection is possible for simplices whose vertices form sets of diameter less
than 21/p. Invoking lemma 2.4, FilRad∂Bl1(2) ≥ 2−1+1/p. Lemma 2.3 concludes. This
is specific to dimension 2 and is coherent with lemma 2.6, since, in dimension 2,l∞

andl1 are isometric.

An interesting lower bound can be obtained thanks to the Borsuk-Ulam theorem;
as a reminder, this theorem states that a map from then-dimensional sphere toRn has
a fibre containing two opposite points.

Proposition 3.2: Let S= ∂Bl p(n+1)
1 be the unit sphere of a(n+1)-dimensional Banach

space, then
ε < 2⇒ wdimεS> (n−1)/2.

In particular, the same statement holds forBl p(n+1)
1 : ε < 2 ⇒ wdimεB

l p(n+1)
1 > (n−

1)/2.

6



Proof. We will show that a map fromS to ak-dimensional polyhedron, fork ≤ n−1
2 ,

sends two antipodal points to the same value. Since radial projection is a homeomor-

phism betweenS and the Euclidean sphereSn = ∂Bl2(n+1)
1 that sends antipodal points

to antipodal points, it will be sufficient to show this forSn. Let f : Sn → K be anε-
embedding, whereK is a polyhedron, dimK = k ≤ (n− 1)/2 andε < 2. Since any
polyhedron of dimensionk can be embedded inR2k+1, f extends to a map fromSn

to R
n that does not associate the same value to opposite points, becauseε < 2. This

contradicts Borsuk-Ulam theorem. The statement on the ballis a consequence of the
inclusion of the sphere.

Hence, wdimεB
l p(n)
1 always jumps from 0 to at least⌊n

2⌋ if they are equipped with
their proper metric.

A first upper bound. Though this first step is very encouraging, a precise evaluation
of wdim can be convoluted, even for simple spaces. It seems that describing an explicit
continuous map with small fibers remains the best way to get upper bounds. Denote by
n = {0, . . . ,n}.

Lemma 3.3: Let B be a unit ball in a normedn-dimensional real vector space. Let
{pi}0≤i≤n be points on the sphereS= ∂B that are not contained in a closed hemisphere.
Suppose that∀A⊂ n with |A| ≤ n−2, and∀λ j ∈ R>0, wherej ∈ n, if ‖∑i∈A λi pi‖ ≤ 1,
k /∈ A and‖∑i∈A λi pi −λkpk‖ ≤ 1, then‖λkpk‖≤ 1. A setpi satisfying this assumption
gives

ε ≥ Diam{pi} := max
i 6= j

∥

∥pi − p j
∥

∥ ⇒ wdimεB≤ n−1.

Proof. This will be done by projecting the ball on the cone with vertex at the origin
over then−2 skeleton of the simplex spanned by the pointspi . Note thatn+1 points
satisfying the assumption of this lemma cannot all lie in thesame open hemisphere,
however we need the stronger hyptothesis that they do not belong to a closed hemi-
sphere. Now let∆n be then-simplex given by the convex hull ofp0, . . . , pn. We will
project the ball on the various convex hulls of 0 andn−1 of thepi . Call E the radial
projection of elements of the ball (save the origin) to the sphere, and let, forA ⊂ n,
PA = {p0, . . . , pn} \ {pi|i ∈ A}. In particular,P∅ is the set of all thepi . Furthermore,
denote byC X the convex hull ofX. Given these notations,E C P{i} is the radial pro-
jection of the(n−1)-simplexC P{i} (C P{i} does not contain 0 else the points would
lie in a closed hemisphere), andE C P{i, j} are parts of the boundary of this projection.
Finally, consider, again forA⊂ n, ∆′

A = C [E C PA∪0].
Let si : ∆′

{i} → ∪
j 6=i

∆′
{i, j} be the projection alongpi . More precisely, we claim that

si(p) is the unique point of∆′
{i, j} that also belongs toΛpi (p) = {p+ λpi|λ ∈ R≥0}.

Existence is a consequence of the fact that the points are notcontained in an closed
hemisphere,i.e. ∃µi ∈ R>0 such that∑k∈n

µkpk = 0. Indeed,p ∈ ∆′
{i}, if p ∈ ∆′

{i, j}

for some j, then there is nothing to show. Suppose that∀ j 6= i, p /∈ ∆′
{i, j}. Thenp =

∑k6=i λkpk, whereλk > 0. Write pi = − 1
µi

∑k6=i µkpk. It follows that for someλ, p+

λpi can be written as∑k∈n\{i, j} λ′
kpk with 0 ≤ λ′

k ≤ λk. Uniqueness comes from a
transversality observation.∆′

{i, j} is contained in the plane generated by the setP{i, j}

7



and 0 which is of codimension 1. If the lineΛpi (p) was to lie in that plane then the set
P{ j} would lie in the same plane, andP∅ would be contained in a closed hemisphere.
ThusΛpi (p) is transversal to∆′

{i, j}. The figure below illustrates this projection in∆′
{0}

for n = 3.

1
p

2
p

3
p

∆
{0,1}

∆
{0,3}

0

p

Our (candidate to be an)ε-embeddings is defined bys|∆′
{i}

= si . Since onE C P{i}∩

E C P{ j} ⊂ E C P{i, j}, we see thats|∆′
{i, j}

= Id and that ∪
i∈n

∆′
{i} = B, this map is well-

defined. It remains to check that the diameter of the fibres is bounded byε. We claim
that the biggest fibre iss−1(0) = ∪iC {−pi,0}, whose diameter is that of the set of
vertices of the simplex, Diam{pi}. To see this, note that forx∈ ∆′

{i, j}, the diameter of

s−1(x) attained on its extremal points (by convexity of the norm), that isx and points of
the formx−λkpk (for k∈ A, whereA⊃ {i, j} andx∈ ∆′

A ⊂ ∆′
{i, j}) whose norm is one.

However, sincex = ∑λi pi for i /∈ A andλi > 0,‖x−λkpk‖ = 1 implies‖λkpk‖ ≤ 1, so
a simple translation ofs−1(x) is actually included ins−1(0).

This allows us to have a first look at the Euclidean case.

Theorem 3.4: Let Bl2(n)
1 be the unit ball ofRn, endowed with the Euclidean metric,

and letbn;2 :=
√

2(1+ 1
n). Then, for0 < k < n,

wdimεB
l2(n)
1 = 0 if 2≤ ε,

k≤ wdimεB
l2(n)
1 < n if bk+1;2 ≤ ε < bk;2,

wdimεB
l2(n)
1 = n if ε < bn;2.

Proof. First, whenε ≥ DiamBl2(n)
1 = 2 this result is a simple consequence of proposi-

tion 2.1.c; whenn = 1 it is sufficient, so suppose from now on thatn≥ 2. Applying

lemma 2.3 to∂Bl2(n)
1 ⊂ Bl2(n)

1 yields that wdimεB
l2(n)
1 = n if ε < 2FilRad∂Bl2(n)

1 , but

FilRadBl2(n)
1 ≥ bn;2 by Jung’s theorem (see [4, §2.10.41]), as any set whose diameter

is less than< bn;2 is contained in an open hemisphere ([10] shows that FilRadBl2(n)
1 =

bn;2). On the other hand, balls of dimensionk < n are all included inBl2(n)
1 , which

means that wdimεB
l2(k)
1 ≤wdimεB

l2(n)
1 , thanks to 2.1.d. Hence we have that wdimεB

l2(n)
1 ≥

k wheneverbk+1;2 ≤ ε < bk;2. This proves the lower bounds.
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The vertices of the standard simplex satisfy the assumptionof lemma 3.3: thanks to
the invariance of the norm under rotation we can assumep0 = (1,0, . . . ,0). The other
pi will all have a negative first coordinate, and so will any positive linear combination.
Substractingλp0 will be norm increasing. As the diameter of this set isbn;2, lemma
3.3 gives the desired upper bound.

Let us now give an additional upper bound for the 3-dimensional case:

Proposition 3.5: If 1≤ p < ∞, thenε ≥ 2(2
3)1/p ⇒ wdimεB

l p(3)
1 ≤ 2.

Proof. In R
3 there is a particularly good set of points to define our projections. These

arep0 = 3- 1
p (1,1,1), p1 = 3- 1

p (1, -1, -1), p2 = 3- 1
p (-1,1, -1) andp3 = 3- 1

p (-1, -1,1). Let
x= λ1p1, whereλ ∈ [0,1], and suppose‖λ1p1−λ2p2‖l p ≤ 1 for λ2 ∈ R≥0. We have to
check thatλ2 ≤ 1. Supposeλ2 > 1, then 1≥ ‖λ1p1−λ2p2‖l p = 2

3(λ1+λ2)
p+ 1

3(λ2−

λ1)
p = λp

2[2
3(1+t)p+ 1

3(1−t)p], wheret = λ1/λ2. The function oft has minimal value
1, which givesλ2 ≤ 1 as desired.

Suppose now thatx = λ1p1 + λ2p2 is of norm less than 1, where without loss of
generality we assumeλ2 ≥ λ1, and‖λ1p1 + λ2p2−λ3p3‖l p ≤ 1. ‖x‖l p ≤ 1 implies that
1≥ 1

3(λ1+λ2)
p+ 2

3(λ2−λ1)
p so(λ2−λ1)

p ≤ 1− 1
3(λ2 +λ1)

p + 1
3(λ2−λ1)

p ≤ 1. If
λ3 > 1, then

1 ≥ ‖λ1p1 + λ2p2−λ3p3‖l p

= 1
3(λ3 + λ2+ λ1)

p + 1
3(λ3− (λ2−λ1))

p + 1
3(λ3 +(λ2−λ1))

p.

However,

λp
3 ≤ 1

3(λ3 + λ2+ λ1)
p + 2

3λp
3

≤ 1
3(λ3 + λ2+ λ1)

p + 1
3(λ3− (λ2−λ1))

p + 1
3(λ3 +(λ2−λ1))

p

≤ 1.

Using that f (t) = (1+ t)p + (1− t)p has minimum 2 fort ∈ [0,1]. These arguments
can be repeated for any indices to show that the pointspi , wherei = 0,1,2 or 3, satisfy
the assumption of lemma 3.3. The conclusion follows by showing that Diam(pi) =
2(2

3)1/p

For certain dimensions, a set of points that allows to build projections with small
fibers can be found. Their descriptions require the concept of Hadamard matrices of
rankN; these areN×N matrices, that will be denotedHN, whose entries are±1 and
such thatHN ·Ht

N = NId. It has been shown that they can only exist whenN = 2 or
4|N, and it is conjectured that this is precisely when they exist. Up to a permutation, it
is possible to write a matrixHN so that its first column and its first row consist only of
1s. It is quite easy to see that two rows or columns of such a matrix have exactlyN/2
identical elements.

Definition 3.6: Let HN be a Hadamard matrix of rankN, and let, for 0≤ i ≤ N, hi

be theith row of the matrix without its first entry (which is a 1). Then the hi form a
Hadamard set in dimensionN−1.

9



TheseN elements, normalised so that‖hi‖l p(N−1) = 1. When so normalised, their

diameter (for thel p metric) is 21−1/p(1+ 1
N−1)p. Since∑hi = 0, by orthogonality of

the columns with the column of 1 that was removed, we see that they are not contained
in an open hemisphere. The set of points in the preceding proposition was given by a
Hadamard matrix of rank 4, and whenp = 2 the convex hull of these points is just the
standard simplex.

Proposition 3.7: Suppose there exists a Hadamard matrix of rankn+1, then

ε ≥ 1+
1
n
⇒ wdimεB

l1(n)
1 ≤ n−1.

Proof. Let thehi be as above, andN = n+ 1. Note that fori 6= j, hi andh j have N
2

opposed coordinates, andN2 − 1 identical ones. Thusλihi − λ jh j has always a big-
ger l1 norm than any of its two summands. Indeed, the coefficientsc j of the vector

∑
i∈A

λihi where the contribution ofhk reduces
∣

∣c j
∣

∣ are in lesser number than those that

get increased. Since thel1 norm is linear, the magnitude of thec j getting smaller is not
relevant, only their number.

We conclude by applying lemma 3.3, as Diaml1(hi) = 1+ 1
N−1.

Note that in dimension higher than 3 and forp> 2, Hadamard sets no longer satisfy
the assumption of lemma 3.3.

Further upper bounds for wdimεB
l p(n)
1 . The projection argument still works for

non-Euclidean spheres. It can also be repeated, though unefficiently, to construct maps
to lower dimensional polyhedra.

Proposition 3.8: For 1 < p < ∞, consider the sphereBl p(n)
1 with its natural metric.

Then, forn−1
2 < k < n, ∃ck,n;p ∈ [1,2) such thatck,n;p ≥ ck+1,n;p, and

wdimεB
l p(n)
1 ≤ k if ε ≥ ck,n;p.

Furthermorecn−1,n;2 = bn;2

Proof. This proposition is also obtained by constructing explicitly maps that reduce
dimension (up ton− j for j < n+1

2 ) and whose fibres are small. Unfortunately, nothing
indicates this is optimal, and the size of the preimages is hard to determine. We will

abbreviateB := Bl p(n)
1 .

We proceed by induction, and keep the notations introduced in the proof of the
preceding theorem. Note that the sets∆′

A are not the same for differentp, since they
are constructed by radial projection to different spheres.The keys to this construction
are the mapssj ;{i1,...,i j} : ∆′

{i1,...,i j}
→ ∪

m/∈{i1,...,i j}
∆′
{i1,...,i j ,m} given by projection along the

vectors
j

∑
l=1

pi l . Call σ1 the functions, then, for j > 1, σ j : B→ ∪
{i1,...,i j+1}⊂n

∆′
{i1,...,i j+1}

is

obtained by composing, on appropriate domains,sj ;{i1,...,i j} with σ j−1. Sincesj ;i1,...,i j

are equal to the identity when their domain intersect, and their union covers the image

10



of σ j−1, the map is again well-defined. It remains only to calculate the diameter of the
fibres. At 0 the fibre is

σ−1
j (0) = ∪

{i1,...,i j}⊂n

{−(λ1+ . . .+λ j)pi1 −(λ1+ . . .+λ j−1)pi2− . . .−λ1pi j |λi ∈R≥0}.

Whereas for a givenx∈ ∆′
A in the image (that isA contains at leastj elements),x can

also be written down as a combination∑λi pi , for i /∈ A andλi ∈ R>0. We have

σ−1
j (x)= ∪

{i1,...,i j}⊂A
{x−(λ1+ . . .+λ j)pi1−(λ1+ . . .+λ j−1)pi2− . . .−λ1pi j |λi ∈R≥0}.

If we setck,n = sup
x∈σ j (B)

Diamσ−1
n−k(0), then whenε≥ ck,n, wdimεB

l2(n)
1 ≤ k. It is possible

to determine two simple facts about these numbers. First, they are non-increasing
ck,n ≥ ck+1,n, which is obvious as the construction is done by induction, the size of the
fiber of maps to lower dimension is bigger than for maps to higher dimension.

Second, they are meaningful:ck,n < 2. Indeed, whenp 6= 1,∞, ck,n = 2 only if
σ−1

n−k(x) contains opposite points, which is a linear condition. Whenx 6= 0, by convexity
of the distance, the points on which the diameter can be attained are at the boundary of
σ−1

j (x). SayY is the set of those point exceptx. The distance fromY to x is at most
one, while the diameter ofY is bounded. Indeed, there is a cap of diameter less than 2
that contains all thepi but one. The biggest diameter of such caps is also less than 2
and bounds DiamY.

Any point of the fibre at 0 is a linear combination of the verticespi , and there is only
one linear relation between these, namely∑ pi = 0. As long asj < n+1

2 (i.e. k> n−1
2 )

there are not enoughpi in any two sets that formσ−1
j (0) to combine into the required

relations, but as soon asj exceeds this bound, opposite points are easily found.

For Bl p(n)
1 , where 1< p < ∞, we used the regular simplex to describe our projec-

tions, though nothing indicates that this choice is the mostappropriate. In fact, many
sets ofn+1 points allow to build projections to a polyhedron, but it ishard to tell which
are more effective: on one hand we need this set to have a smalldiameter (so that the
fibre at 0 is small), while on the other, we need it to be somehowwell spread (so as
to avoid fibres atx to be too large, as in the assumption of lemma 3.3). Furthermore,
there is in general no reason forcn−1,n;p to coincide with a lower bound, or even to be

different from otherck;p, thus we cannot always insure thatn−1∈ wspec(Bl p(n)
1 , l p).

The lowest non zero element ofwspec. Before we return to the generall p case, no-
tice that together proposition 3.2 and theorem 3.4 give a good picture of the function

wdimεB
l2(n)
1 . It equalsn for ε < bn;2 = cn−1,n;2, thenn−1 for bn;2 ≤ ε < bn−1;2. After-

wards, I could not show a strict inequality for theck,n;2, but even if they are all equal,

wdimεB
l2(n)
1 takes at least one value in(n

2 −1, n
2 + 1)∩Z. Then ,whenε ≥ 2, it drops

to 0.
For odd dimensional balls, there is a gap between the value given by proposition

3.2 and the lowest dimension obtained by the projections introduced above. SayB is of
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dimension 2l +1 andε less than but sufficiently close to 2, then on one hand we know
that wdimεB≥ l , while on the other wdimεB≤ l +1. It is thus worthy to ask whether
one of these two methods can be improved, perhaps by using extra homological in-
formation on the simplices in the proof of proposition 3.2 (e.g. if its highest degree
cohomology is trivial then ak-dimensional polyhedron is embeddable inR

2k, see [5]).

Remark3.9: Such an improvement is actually available whenn= 3: if the 2-dimensional
sphere maps to a 1-dimensional polyhedron (i.e. a graph), the map lifts to the universal
cover, a treeK. HenceK is embeddable inR2, and, for 1< p < ∞.

ε < 2⇒ wdimεB
l p(3)
1 ≥ 2

for otherwise it would contradict Borsuk-Ulam theorem.

Note that estimates obtained in [6, app 1.E5] for Diam1, can also yield lower bounds
for the diameter of fibres for maps to graphs (i.e. 1-dimensional polyhedra). Applied
to spheres, it becomes a special case of proposition 3.2 and of the above remark.

Lower bounds for wdimεB
l p(n)
1 . The remainder of this section is devoted to the im-

provement of lower bounds, using an evaluation of the fillingradius as a product of
lemma 2.4, and a short discussion of their sharpness.

We shall try to find a lower bound on the diameter ofn+ 1 points on thel p unit
sphere that are not in an open hemisphere; recall that pointsfi are not in an open
hemisphere if∃λi such that∑λi fi = 0. A direct use of Jung’s constant (defined as the
supremum over all convexM of the radius of the smallest ball that containsM divided
by M’s diameter) that is cleverly estimated forl p spaces in [9] does not yield the result
like it did in the Euclidean case. This is due to the fact that there are sets ofn+1 points
on the sphere that are not contained in an open hemisphere, but are contained in a ball
(not centered at the origin) of radius less than 1. The set of points given by

(3.10) (1, . . . ,1),

(

−
2

n−1
, . . . ,−

2
n−1

,1

)

, . . . , and

(

1,−
2

n−1
, . . . ,−

2
n−1

)

is such an example forl∞, and deforming it a little can make it work for thel p case,p
finite but close to∞. However, a very minor adaptation of the methods given in [9]is
sufficient.

First, we introduce norms for the spaces of sequences (and matrices) taking val-

ues in a Banach spaceE. Let αi ∈ R≥0 be such that
n
∑

i=0
αi = 1 and denote byα this

sequence ofn+1 real numbers. LetEp,α be the space of sequences made ofn+1 ele-

ments ofE and consider thel p norm weighted byα: ‖x‖Ep,α
=

(

∑i αi ‖xi‖
p
E

)1/p where
x = (x0, . . . ,xn). On the other hand,Ep,α2 shall represent the space of matrices whose

entries are inE, with the norm
∥

∥(xi, j)
∥

∥

Ep,α2
=

(

∑i, j αiα j
∥

∥xi, j
∥

∥

p
E

)1/p. Now define, for

E,E′ Banach spaces based on the same vector space and for 1≤ s,t ≤ ∞, the linear
operatorT : Es,α → E′

t,α2 by (xi) 7→ (xi −x j).

Theorem 3.11: Consider a vector space on which two norms are defined, and denote
by E1, E2 the Banach space they form. Letfi ∈ E∗

1, 0≤ i ≤ n, be such that‖ fi‖E∗
1

= 1
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but that they are not included in an open hemisphere,i.e. there existsλi ∈ R≥0 such
that∑λi fi = 0 and∑λi = 1. Let DiamE∗

2
( f ) = sup

0≤i, j≤n

∥

∥ fi − f j
∥

∥

E∗
2

be the diameter of

this set with respect to the other norm. Then, forαi = λi ,

DiamE∗
2
( f ) ≥ 2 sup

1≤s,t≤∞

(

1+
1
n

)1/t′

sup
E1

‖T‖−1
(E1)s,α→(E2)t,α2

.

Proof. As the fi are not in an open hemisphere, real numbersλi ∈R≥0 such that∑λi =
1 and∑λi fi = 0 exist. Furthermore, since‖ fi‖E∗

1
= 1, there also existxi ∈ E1 such that

fi(xi) = 1 and‖xi‖E1
= 1. The remark on which the estimation relies is, as in [9],

2 =
n

∑
i, j=0

λiλ j( fi − f j)(xi −x j).

Choosingαi = λi , this equality can be rewritten in the form 2= (T f)(T x), where
Tx∈ (E2)t,α2 andT f ∈ ((E2)t,α2)∗ = (E∗

2)t′ ,α2, and thus 2≤ ‖T f‖(E∗
2)t′ ,α2

‖Tx‖(E2)t,α2
.

Notice that

∑
i 6= j

αiα j =
n

∑
i=0

αi(1−αi) ≤ 1−
1

n+1
=

n
n+1

,

because‖αi‖l1(n+1) = 1⇒ ‖αi‖l2(n+1) ≥ (n+ 1)−1/2. We can isolate the required di-
ameter:

‖T f‖(E∗
2)t′,α2

=
(

n
∑

i=0
αiα j

∥

∥ fi − f j
∥

∥

t′

E∗
2

)1/t′

≤ DiamE∗
2
( f )

(

∑
i 6= j

αiα j
)1/t′

≤ DiamE∗
2
( f )

(

n
n+1

)1/t′
.

On the other hand,‖xi‖E1
= 1, consequently‖x‖(E1)s,α

= 1, so we bound

‖Tx‖(E2)t,α2
≤ ‖T‖(E1)s,α→(E2)t,α2

.

The conclusion is found by substitution of the estimates forthe norms ofT f andTx.

We only quote the next result, as there is no alteration needed in that part of the
argument of Pichugov and Ivanov.

Theorem 3.12: (cf. [9, thm 2])

if 1 ≤ p≤ 2, ‖T‖(l p(n))∞,α→(l p(n))p,α2
≤ 21/p

(

n
n+1

)1/p−1/p′
,

if 2 ≤ p≤ ∞, ‖T‖(l p(n))∞,α→(l p(n))p,α2
≤ 21/p′ .

A simple substitution in theorem 3.11, withE1 = E2 = l p(n), s = ∞ and t = p,
yields the desired inequalities.
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Corollary 3.13: Let fi , 0 ≤ i ≤ n, be points on the unit sphere ofl p(n) that are not
included in an open hemisphere, then

if 1 ≤ p≤ 2, Diaml p(n)( f ) ≥ 21/p′
(

1+ 1
n

)1/p
, (∗)

if 2 ≤ p≤ ∞, Diaml p(n)( f ) ≥ 21/p
(

1+ 1
n

)1/p′
. (∗∗)

Remark3.14: Before we turn to the consequences of this result on wdimε, note that
there are examples for which the first inequality is attained. These are the Hadamard
sets defined in 3.6. When normalised to 1, they are not included in an open hemisphere
and of the proper diameter. Hence, when a Hadamard matrix of rank n+ 1 exists,
then(∗) is optimal. Nothing so conclusive can be said for other dimensions, see the
argument in example 3.1. I ignore if there are cases for which(∗∗) is optimal, though it

is very easy to construct a familyFn ∈ (Bl p(n)
1 )n+1 such that DiamFn → 21/p asn→ ∞.

In particular forp = ∞, the points given in (3.10) but by substituting−1
n−1 instead of the

entries with value−2
n−1, is a set that is not contained in an open hemisphere and whose

diameter is n
n−1, which is close to the bound given. Somehow, this case, is also the one

where the use of lemma 2.4 results in a bound that is quite far from the right value of
wdim, cf. lemma 2.6. This might not be so surprising as sets with small diameter onl p

balls seem, whenp > 2, to differ from sets satisfying the assumption of lemma 3.3.

Still, by lemma 2.4 we obtain the following lower bounds on wdim:

Corollary 3.15: Letbk;p be defined bybk;p = 21/p′
(

1+ 1
k

)1/p
when1≤ p≤ 2, whereas

bk;p = 21/p
(

1+ 1
k

)1/p′
if 2≤ p < ∞. Then, for0 < k≤ n,

ε < bk;p ⇒ wdimεB
l p(n)
1 ≥ k.

Proof. Let Y = ∂Bl p(n)
1 . Since the convex hull of a set ofn+ 1 points on the sphere

Y will not contain the origin if the diameter of the set is larger thanbn;p, lemma 2.4
ensures that FilRadY ≥ bn;p/2. We then use lemma 2.3 forY to conclude.

These inequations might not be optimal, proposition 3.2 forexample is always
stronger whenk < ⌊n

2⌋.

In dimensionn, Bl∞(n)

n−1/p ⊂ Bl p(n)
1 yields thatε < 2n−1/p ⇒ wdimεB

l p(n)
1 = n which

improves corollary 3.15 as long as

p≥
ln( 2n2

n+1)

ln( 2n
n+1)

.

However, whenp = 1, andHn+1 is a Hadamard matrix, these estimates are as sharp as
we can hope since the lower bound meets the upper bounds.

Corollary 3.16: Suppose there is a Hadamard matrix of rankn+1. Then, for0≤ k <
n,

wdimεB
l1(n)
1 = 0 if 2≤ ε,

max(n−1
2 ,k) ≤ wdimεB

l1(n)
1 < n if (1+ 1

k+1) ≤ ε < (1+ 1
k),

wdimεB
l1(n)
1 = n if ε < (1+ 1

n).
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Furthermore, in dimension 3, lower bounds of corollary 3.15meet upper bounds
of proposition 3.5 when 1≤ p ≤ 2. In particular, thanks to remark 3.9, this gives a
complete description of the 3-dimensional case for suchp.

Corollary 3.17: Let p∈ [1,2], then

wdimεB
l p(3)
1 =







0 if 2≤ ε,
2 if 2(2

3)1/p ≤ ε < 2,

3 if ε < 2(2
3)1/p.

Whenp > 2, all that can be said is that the value ofε for which wdimεB
l p(3)
1 drops

from 3 to 2 is in the interval[2(2
3)1−1/p,2(2

3)1/p].
This last corollary is special to the 3-dimensional case, which happens to be a

dimension where there exist a Hadamard set, and where the Borsuk-Ulam argument
can be improved to rule out maps ton−1

2 -dimensional polyhedra. For example, in the
2-dimensional case, a precise description is not so easy. Indeed, thanks to example 3.1

and using the inclusion ofBl1(2)
1 ⊂Bl p(2)

1 , we know that wdimεB
l p(2)
1 = 2 whenε≥ 21/p.

On the other hand, the inclusion ofBl∞(2)

2−1/p ⊂ Bl p(2)
1 givesε ≥ 21/p′ ⇒ wdimεB

l p(2)
1 = 2.

Putting these together yields:

ε ≥ max(21/p,21/p′) ⇒ wdimεB
l p(2)
1 = 2.

These simple estimates in dimension 2 are better than corollary 3.15 as long asp ≤
3− ln3

ln2 or p ≥ ln(8
3)/ ln(4

3). I doubt that any of these estimations actually gives the

value ofε where wdimεB
l p(2)
1 drops from 2 to 1.

All the results of this section can be summarised to give theorem 1.4. Here are
two depictions of the situation. Gray areas correspond to possible values, full lines to
known values and dotted line to bounds. The left-hand plot isfor euclidean case, or the
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{n;p}

n
2

wdmε

2 εc

n

b
{n;p}

n
2

wdmε

2 εc

n

case wherep = 1 and there is a Hadamard set, when the dimension is odd and different
from 3: this is when a map to an−1-dimensional polyhedron with small fibers can be
constructed, but the bounds from the Borsuk-Ulam argument and projections to lower
dimensional polyhedron do not meet. The right-hand one represents the situation in
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cases where the dimension is even and there is no known projection with small fibers.
c⌈n/2⌉,n;p is abbreviated byc. The case of dimension 3 is described in corollary 3.17.

It is not expected thatn−1
2 be in wspec whenn is odd, nor is it expected that the

lower boundsbk;p be sharp forBl p(n)
1 whenk < n.
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