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1 Introduction

Let (X,d) be a metric space argle R, then we say a map : X — Y is ane-
embedding if it is continuous and the diameter of the fibrdsss tharg, i.e. Vy €
Y, Diamf ~1(y) < €. We will use the notatiori : X £+ Y. This type of maps, which can
be traced at least to the work of Pontryagin ($e¢ [13[Jor [8])elated to the notion of
Urysohn width (sometimes referred to as Alexandrov widthjX), see [Bl. 1tis the
smallest real number such that there exists-ambedding fronX to an-dimensional
polyhedron. Surprisingly few estimations of these numisarsbe found, and one of
the aims of this paper is to present some. However, foIIo@gNe shall introduce:
Definition 1.1: wdimgX is the smallest integérsuch that there exists arembedding
f : X — K whereK is a k-dimensional polyhedron.

wdimg(X,d) = Xi@rldeimK.

Thus, it is equivalent to be given all the Urysohn’s widthstloe whole data of
wdimX as a function o€.

Definition 1.2: The wdim spectrum of a metric spac€,d), denoted wspet C Z>oU
{+}, is the set of values taken by the map> wdimgX.

The an(X) obviously form an non-increasing sequence, and the pofnispec
are precisely the integers for which it decreases. We skafiterested in the widths of
the following metric spaces: Iﬁjlp(”) be the set given by the unit ball R" for thelP
metric (| (%)l = (%) /Py but look atB} " with thel® metric (.e. the sup metric
of the product). Then

Proposition 1.3: Wspec(B'lp(n),I“) ={0,1,...,n}, and,Ve € R,

) 0 if 2< ¢
wdimg(B} W 1%y ={ k if 2(k+1)"YP< & <2 VP
n if g <2ntp

The important outcome of this theorem is that for fixedhe Wdin}(Bllpm),I“)
is bounded from below by min,m(p,€)) and from above by mim,M(p,¢)), where
m,M are independent af. As an upshot high values can only be reached for small



independantly of. It can be used to show that the mean dimension of the unibball
IP(I), for T a countable group, with the natural actiomrofnd the weak-topology is
zero wherp < o (see [TH]). Itis one of the possible ways of proving the nzistence
of action preserving homeomorphisms betwé&fi') andIP(I"); a simpler argument
would be to notice that with the weaktopology,I” sends all points df’(I") to 0 while
[*(I") has many periodic orbits.

The behaviour is quite different when balls are looked updah their natural met-
ric.
Theorem 1.4: Let p € [1,0), n > 1, then3h, € Z satisfyingh, = n/2 for n even,
hs = 2 andh, = 252 or 251 otherwise, such that

{0,h(n),n}U c wspec¢B, ™,IP) c {0} U (g —1,nNZ.

Whenp = 2 or whenp = 1 and there is a Hadamard matrix of ramk 1, thenn — 1
also belongs twspe¢B'lp(”), IP).

More precisely, lek,n € N with 5 —1 < k < n. Then there exists,, € [1,2] and
Cknp € [1,2) such that

if € >2  then wdime(B, ™, IP)=0
if ¢ <2 then wdime(B, ™,IP)> 21
if € >cep then wdime(B; ™ IP) <k
if &€ <bg, then wdime(B, ™ IP)>k

and, for fixedn and p, the sequencexn, is non-increasing. Furthermorg,, >
2UP (14 %)l/p whenl < p < 2, wherea$y., > 2%/P (1+ %)1/p if2<p<oo.
Additionally, in the Euclidean case & 2), we have that,> = Ch_1n2=1/2(1+ %),

while in the2-dimensional casi:, > max(2/P, 21/?) for anyp € [1,]. Also, if p=
1, and there is a Hadamard matrix in dimension 1, thenby1 = Cn-1p1 = (1+ 1).

Finally, whenn = 3, Ve > 0, WdimsBllp(n) #1 andcyzp < 2(%)1/ P which means in
particular that; 3,p = bs;, whenp € [1,2].

Various techniques are involved to achieve this resull thid be exposed in sec-
tion E While upper bounds on wdiX are obtained by writing down explicit maps to
a space of the proper dimension (these constructions usankéad matrices), lower
bounds are found as consequences of the Borsuk-Ulam theterfilling radius of
spheres, and lower bounds for the diameter of setsjol points not contained in an
open hemisphere (obtained by methods very close to tho@)oﬂ[le are also able to
give a complete description in dimension 3 fox1p < 2.

2 Properties ofwdimg

Here are a few well established results; they can be fourflliff], [fL], and [12].

Proposition 2.1: Let(X,d) and(X’,d’) be two metric spacesvdim; has the following
properties:



a. If X admits a triangulationydimg(X,d) < dimX.
b. The functiore — wdimgX is non-increasing.

c. LetX; be the connected componentsgfthernwdimg(X,d) =0<¢€> miaXDiamXi.

d. If f: (X,d) — (X',d") is a continuous function such thiH{ix;,xo) < Cd'(f(x1), f(x2))
whereC €]0, o[, thenwdime (X, d) < wdimg,c(X',d’).

e. Dilations behave as expectéd. let f : (X,d) — (X’,d") be an homeomorphism
such thatl(xq,x2) = Cd'(f (x1), f(x2)), this equality passes through to theim:
wdimg (X, d) = wdimg c(X’,d").

f. If X is compact, theNe > 0,wdimg(X,d) < 0.
Proof. They are brought forth by the following remarks:

a. IfdimX = o, the statement is trivial. Fof a finite-dimensional space, it suffices
to look at the identity map frorX to its triangulationT (X), which is continuous
and injective, thus as-embeddingre.

b. If e <€, ane-embedding is also ati-embedding.

c. If wdimgX = 0 thendg: X & K whereK is a totally discontinuous spacek
K,@ (k) is both open and closed, which implies that it contains atleae
connected component, consequently Diard €. On the other hand, i€ >
DiamX; the map that sends eveXyto a point is are-embedding.

d. If wdimg,cX’ = n, there exists arg-embeddingp: X’ — K with dimK = n.
Noticing that the majpo f is ane-embedding fronX to K allows us to sustain
the claimed inequality.

e. This statement is a simple application of the preceding fnd f 1.

f. To show that wdirp is finite, we will use the nerve of a covering; s& [8, 8V.9]
for example. Given a covering of by balls of radius less thagy 2, there exists,
by compactness, a finite subcovering. Thus, sendibgthe nerve of this finite
covering is are-immersion in a finite dimensional polyhedron. O

Another property worth noticing is théﬂ})wdims(x,d) = dimX for compactX;
we refer the reader t¢][1, prop 4.5.1]. Readiflg [6, app.iddeaa believe that there is
a strong relation between wdim and the quantities definegithéRag and Diam);
the existence of a relation between wdim and the filling radiecomes a natural idea,
implicit in [ﬂ, 1.1B]. We shall make a small parenthesis tmied the reader of the
definition of this concept, it is advised to look ﬂ [6, 81] mdetailed discussion.

Let (X,d) be a compact metric space of dimenaipand letL” (X) be the (Banach)
space of real-valued bounded functionsXorwith the norm|| f ||~ = feuxp|f(x)|. The

metric onX yields an isometric embedding &fin L (X), known as the Kuratowski
embedding:
Ix: X — LW(X)
x —  fx(X)=d(xX).



The triangle inequality ensures that this is an isometry:

I x= fele = SUP[d(x.X") = (X, x")| = d(x,X).
X'e

Denote byUg(X) the neighborhood oX C L*(X) given by all points at distance less
thane from X,

e W(X)={feL(X)[Inf||f - fy|= <e}.
Definition 2.2: The filling radius of an-dimensional compact metric spaXewritten

FilRadX, is defined as the smallessuch thaiX bounds inUg(X), i.e. Ix(X) C Ug(X)
induces a trivial homomorphism in simplicial homology(X) — Hn(Ug(X)).

Though FilRad can be defined for an arbitrary embedding, Weonly be con-
cerned with the Kuratowski embedding.

Lemma2.3: Let(X,d) be an-dimensional compact metric spake; n an integer, and
Y C X ak-dimensional closed set representing a trivial (simplidi@mology class in
Hk(X). Then

€ < 2FilRadY = wdimg(X,d) > k.

If we remove the assumption thit] € Hi(X) be trivial, the inequality is no longer
strict: wdimg (X, d) > k.

Proof. Let us show that wdig{X,d) < k= € > 2FilRadr. Given ans-embedding
¢: XE& K, theng(Y) C K bounds, since.[Y] =0 as[Y] = 0 in Hi(X). Since dinK <
k= dimY, the chain representingY) is trivial. Compactness of allows us to suppose
that @ is onto a compadK. Otherwise, we restrict the target @X). We will now
produce a mayy — L*(Y) whose image is contained bt »(Y), so thaty will bound
in its %-neighborhood. This will mean that> 2FilRady. Let

Q:K — LX) . oy LX) — L2(Y)
k = ax)=g/2+ It dex) oand fom fly.

First, notice thapy c Qo @(Y) C Us¢/2(Y),¥8>0:

L R%) —owcy)] _e/2

_ — Su
HpYOQO(p(y) IY(y)||L°° p yle(p—l((p(y))

y'eY

since @ is ane-embedding. Secondpy o Qo @).[Y] =0 and(pycQo @) ~ ly in
Us.e/2(Y), asL™(Y) is a vector space. Consequently,(Y)] = 0 ande > 2FilRadY,
by lettingd — 0.

If [Y] # 0 C Hk(X), the proof still follows by takindk of dimensionk — 1: the
homology clas#.[Y] is then inevitably trivial, sinc& has no rankk homology. O

Thus, calculating FilRad is a good starting point. The felleg lemma consists of
a lower bound for FilRad:



Lemma 2.4: Let X be a closed convex set innadimensional normed vector space.
Suppose it contains a poirg such that the convex hull @f+ 1 points ondX whose
diameter is< a excludes. Then FilRadX > a/2, and, using lemmp 2.3, < a =
wdimgX = n.

Proof. Suppose that = dX has a filling radius less thay2. Then,3¢ > 0 and3P a
polyhedron such that bounds inP, P C Uz _(Y) and that the simplices d? have a
diameter less than To any vertexp € Pit is possible to associatg p) € Iy (Y) so that
1P, f(P)llLe(yv) < § — € Letpo,..., pn be an-simplex ofP,

Diam{ f (po),..., f(pn)} < 2(gfs)+s< a—-eg<a

Sincely is an isometryf (p;) can be seen as points¥¥fwithout changing the diameter
of the set they form. The convex hull of the§ép;) in B will not containxg: their
distance tof (pg) is < a which excludesg. Let tbe the projection away fromy, that
is associate tx € X, the pointm(x) € dX on the half-line joiningx, to x. Using T,
the n-simplex generated by thi(p;) yields a simplex if¥. Thus we extended to a
retractionr from P to Y. Letc be an-chain of P which boundsy, i.e. [Y] =dc. A
contradiction becomes appareft] = r.[Y] =r.dc = or..c. Indeed, if that was to be
true,Y, which isn— 1 dimensional would be bounding andimensional chain iry.
Hence FilRad > a/2. O

This yields, for example:

Lemma 2.5: (cf. [ﬂ 1.1B]) LetB be the unit ball of ar-dimensional Banach space,
thenve < 1,wdim:B =n.

Proof. Any set ofn+ 1 points orY = 0B whose diameter is less than 1 does not contain
the origin in its convex hull. So according to leming 2.4, EitR > 1/2, and sincey
is a closed set of dimensian- 1 whose homology class is trivial B, we conclude by

applying lemmd 2]3. O

Let us emphasise this important factldnballs in finite dimensional space.

Lemma 2.6: LetB'lw(n) = [—1,1]" be the unit cube dk" with the product (supremum)
metric, then
om0 if £>2
wdimeB, { n if e<2"

This lemma will be used in the proof of propositi1.3. Ite@;, which uses the
Brouwer fixed point theorem and the Lebesgue lemma, can tmifmu, lem 3.2],

[B, prop 2.7] or [IL, prop 4.5.4].

Proof of propositior] 1]3: We first show the lower bound on wdjmin ak-dimensional
. .. . © p

space, the® ball of radiusk— Y/ P is included in theP balll: B'kfgj)p C B'l ), as||X[[jpgy <

KY/P X 1 - sinceB, ® ¢ B'™ byR].d, we are assured thatBlf " is considered

with thel® metric,e < 2k-1/P implies that Wdir@(B'lpm),I”) > k.



To get the upper bound, we give explieiembeddings to finite dimensional poly-
hedra. This will be done by projecting onto the union(ief- j)-dimensional coordi-
nates hyperplanes (whose points have at lpaebrdinates equal to 0). Project a point
X € B|1P(n) by the mapr; as follows: letm be its j'!" smallest coordinate (in absolute
value), set it and all the smaller coordinates to 0, otheraioates are substracteuif
they are positive or added if they are negative.

Denote bye an element of —1,1}" andg, o the same vector in whicti € A, € is
replaced by 0. The largest fibre of the ngpis

— . - p
e 1(0) = U {Mg+ z )\|8\{i1 7777 i|}|)\i €Rso}N Bll ™,
-1 1 1

€1, 00 <I5- '

Its diameter is achieved sy = ((n—j+1)~¥P,..., (n—j+1)~Y/P,0,...,0) and—so;

thus Diantg, *(0) = 2(n— j+1)~*P. ; allows us to assert that> 2(n— j+ 1)~ */P =

wdims(B'lpm), I*) <n-j, by realising a continuous map i{@— j)-dimensional poly-

hedron whose fibres are of diameter less than-2j 4 1)~%/P. O

3 Evaluation of wdimB; "

We now focus on the computation of wdik for unit ball in finite dimensional®.
Except for a few cases, the complete description is hardva §ife start with a simple
example.

Example3.1: Let B2 be the unit ball ofR? for thel® metric, then

. 112 _ o0 if £€>2,
wdimeB { 2 if e<2

If B2 is endowed with théP metric, there < 21/P = wdimB'"(® = 2.

Proof. Given any three points whose convex hull contains the ortgia of them have
to be on opposite sides, which means their distancé/#& i@ the |P metric. Hence
a radial projection is possible for simplices whose vesdiftem sets of diameter less
than 2/P. Invoking lemma 24, FilRa#B' ' > 2-1+1/P, Lemma[2]3 concludes. This
is specific to dimension 2 and is coherent with lenfmé 2.6 esincdimension 2|
andl?! are isometric. O

An interesting lower bound can be obtained thanks to theBetdam theorem;
as a reminder, this theorem states that a map from-tlienensional sphere f&" has
a fibre containing two opposite points.

Proposition 3.2: LetS= OB'lp(n“) be the unit sphere of(@+ 1)-dimensional Banach
space, then
€< 2=wdimsS> (n—1)/2.
. p,(n+1) .
In particular, the same statement holds Bé ;
1)/2.

e < 2= wdimB, ™Y > (n—



Proof. We will show that a map fronsto ak-dimensional polyhedron, fd¢ < ”%1
sends two antipodal points to the same value. Since radi@giion is a homeomor-

phism betweers and the Euclidean sphef = OB'lz(n“) that sends antipodal points
to antipodal points, it will be sufficient to show this f&f. Let f : S* — K be ane-
embedding, wher& is a polyhedron, diid = k < (n—1)/2 ande < 2. Since any
polyhedron of dimensiok can be embedded iR%*!, f extends to a map fror§"
to R" that does not associate the same value to opposite pointsyde < 2. This
contradicts Borsuk-Ulam theorem. The statement on theidallconsequence of the
inclusion of the sphere. O

Hence, wdirgB'lpm) always jumps from 0 to at lea$ | if they are equipped with
their proper metric.

Afirst upper bound. Though this first step is very encouraging, a precise evialuat
of wdim can be convoluted, even for simple spaces. It seeatsi#scribing an explicit
continuous map with small fibers remains the best way to ge¢uipounds. Denote by
n=4{0,...,n}.
Lemma 3.3: Let B be a unit ball in a normed-dimensional real vector space. Let
{pi}o<i<n be points on the sphefe= 0B that are not contained in a closed hemisphere.
Suppose thatA C n with |A| <n—2, andvA; € R, wherej € n, if ||SicaAipi]| <1,
k¢ Aand||Ticalipi — APkl < 1, then||Akpk|| < 1. A setp; satisfying this assumption
gives

€ > Diam{pi} := fiTEXHpi - pj|| = wdimeB<n—1.

Proof. This will be done by projecting the ball on the cone with veré the origin
over then — 2 skeleton of the simplex spanned by the pomtaNote thain + 1 points
satisfying the assumption of this lemma cannot all lie in $hene open hemisphere,
however we need the stronger hyptothesis that they do nohgdb a closed hemi-
sphere. Now lef\, be then-simplex given by the convex hull qfo, ..., pn. We will
project the ball on the various convex hulls of 0 and 1 of thep;. Call £ the radial
projection of elements of the ball (save the origin) to theesp, and let, foA C n,
Pa={po,...,pn} \ {pili € A}. In particular,P5 is the set of all thep;. Furthermore,
denote byc X the convex hull ofX. Given these notationg; c Py, is the radial pro-
jection of the(n— 1)-simplex cPy;; (cPy;y does not contain 0 else the points would
lie in a closed hemisphere), amtC Py; j, are parts of the boundary of this projection.
Finally, consider, again foh C n, A = c[£ cPaUO.

Lets: A’{i} — J_L;iA’{i’j} be the projection along;. More precisely, we claim that
s(p) is the unique point oﬁ’i‘j} that also belongs td, (p) = {p+Api|]A € R>o}.
Existence is a consequence of the fact that the points areamdined in an closed
hemisphereij.e. 3y; € R-o such thaty ., lpk = 0. Indeed,p € A’{i}, if pe A’{i‘j}
for somej, then there is nothing to show. Suppose tfptti,p ¢ A’{i’j}. Thenp=
> ki AkPk, whereAg > 0. Write p; = f& > ki Pk It follows that for some\, p+

Ap; can be written aiken\{i’j}}\f(pk with 0 < A, < Ax. Uniqueness comes from a
transversality observatiom’{i i} is contained in the plane generated by theRgf,



and 0 which is of codimension 1. If the lifg, (p) was to lie in that plane then the set
P(j; would lie in the same plane, ariR}; would be contained in a closed hemisphere.
ThusAg (p) is transversal taﬁ’{i‘j}. The figure below illustrates this projectionzh?o}
forn=3. '

Ao,z p

0

Our (candidate to be as)embeddings is defined bys|N{i}: §. Since onz cPg;; N
£ CP(j)y C ECPyjy, we see thais|A/{i - Id and thatU A’{i} = B, this map is well-

len
defined. It remains to check that the diameter of the fibresisted by. We claim

that the biggest fibre is~1(0) = Uic {—pi,0}, whose diameter is that of the set of
vertices of the simplex, Diafipi}. To see this, note that fare A’{i‘j}, the diameter of

s~1(x) attained on its extremal points (by convexity of the normdtisx and points of
the formx— Aypyk (fork € A, whereA D {i, j} andx € A, C Al{i.j}) whose norm is one.

However, sincex= Y Ap; fori ¢ Aand\; > 0, ||x— Axpx|| = 1 implies|Axpk/| < 1, so
a simple translation o§~(x) is actually included irs~(0). O
This allows us to have a first look at the Euclidean case.
2
Theorem 3.4: Let B'l " e the unit ball oR", endowed with the Euclidean metric,

and letono == 1/2(1+ ). Then, ford < k <n,

. 2(n) .
wdimgB; =0 |f 2< g,
2
k < wdimeB, "
2
wdimB, ™ =n i £ <bp.

<n if bgipo< g <bygo,

Proof. First, whene > DiamB'lz(”) = 2 this result is a simple consequence of proposi-
tion[2.].c; whem = 1 it is sufficient, so suppose from now on tiet 2. Applying
lemma[2 tooB, ™ ¢ B, ™ yields that wdirgB, ™ = n if & < 2FilRacB, ™, but
FiIRa(B'lz(”) > bp;2 by Jung’s theorem (seE [4, 82.10.41]), as any set whose thame
is less than< bp:2 is contained in an open hemispherEk[lO] shows that FIH%ZSH =

bn:2). On the other hand, balls of dimensi&n< n are all included irB'lz(n), which

means thatwdi@B'12<k) gwdimsBllz(n), thanks t¢ 2]1.d. Hence we have thatwgB%(”) >
k wheneveiby, 1.2 < € < by2. This proves the lower bounds.



The vertices of the standard simplex satisfy the assumpfitﬂmm: thanksto
the invariance of the norm under rotation we can asspgne (1,0,...,0). The other
pi will all have a negative first coordinate, and so will any pgsilinear combination.
Substracting\po will be norm increasing. As the diameter of this sebjg, lemma
@ gives the desired upper bound. O

Let us now give an additional upper bound for the 3-dimeraioase:

Proposition 3.5: If 1< p < w, thene > 2(2)Y/P = wdimeB® < 2.

Proof. In R3 there is a particularly good set of points to define our pttiges. These
arepg = 30 (1,1,1),p1= 3 (1,-1,-1), p2 = 30 (-1,1,-1) andps = 3P (-1,-1,1). Let
X=A1p1, whereh € [0,1], and supposgh1 p1 — A2p2||jp < 1 forAz € Rxo. We have to
check that, < 1. Suppos@; > 1, then 1> [A1p1 — A2pz|jp = §(A1+A2)P+ 2 (A2 —
A1)P=A5[Z(1+1)P+1(1—1t)P], wheret = A1/A,. The function ot has minimal value
1, which gives\, < 1 as desired.

Suppose now that = A1p; + A2p2 is of norm less than 1, where without loss of
generality we assunie > A1, and|[A1p1 +A2p2 — Azpz|ljp < 1. |[X||;p < 1 implies that
1> %(}\1+)\2)p+ %(Az—)\l)p SO()\z—)\l)p <1l- %(}\2+}\1)p+ %(Az—)\l)p <1.If
A3 > 1, then

1 > ||A1p1+A2p2 —Azps||jp
=13+ A+ A)P+E(As— (A2 —A1)P+ F(Ag+ (A2 — Ap))P.

However,

A% (As+A2+A1)P+ 225

A3+A2+A1)P+5(A3— (A2 —A1))P+ 3(Az+ (A2 —A1))P

[AVA VAN
= wiFkwI-

Using thatf(t) = (1+t)P+ (1 —t)P has minimum 2 fot € [0,1]. These arguments
can be repeated for any indices to show that the pgintsherei = 0,1,2 or 3, satisfy
the assumption of lemnfa 3.3. The conclusion follows by shgwhat Dianfp;) =
2(3)V/p O

For certain dimensions, a set of points that allows to buitgjgztions with small
fibers can be found. Their descriptions require the conceptadamard matrices of
rankN; these ardN x N matrices, that will be denotddy, whose entries aré1 and
such thatHy - HY, = NId. It has been shown that they can only exist wi\es: 2 or
4|N, and it is conjectured that this is precisely when they exdgtto a permutation, it
is possible to write a matriky so that its first column and its first row consist only of
1s. It is quite easy to see that two rows or columns of such axrave exactlyN/2
identical elements.

Definition 3.6: Let Hy be a Hadamard matrix of rar¥, and let, for 0<i < N, h;

be thei™ row of the matrix without its first entry (which is a 1). Thereth, form a
Hadamard set in dimensidh— 1.



TheseN elements, normalised so thidti[|py_1) = 1. When so normalised, their
diameter (for thdP metric) is 2-1/P(1+ 1;)P. Sincey hj = 0, by orthogonality of
the columns with the column of 1 that was removed, we seehlegtare not contained
in an open hemisphere. The set of points in the precedinggitign was given by a
Hadamard matrix of rank 4, and when= 2 the convex hull of these points is just the
standard simplex.

Proposition 3.7: Suppose there exists a Hadamard matrix of ra#kl, then
1 . 1
€ > 1+ﬁ :>Wd|msB'1 ™ <n_1.

Proof. Let theh; be as above, and = n+ 1. Note that fori # j, hj andh; have%
opposed coordinates, ar%jf 1 identical ones. Thuaihj —A;jh; has always a big-
gerl! norm than any of its two summands. Indeed, the coefficientsf the vector

3 Aihi where the contribution off, reduces(cj| are in lesser number than those that
ieA

getincreased. Since tihenorm is linear, the magnitude of tisg getting smaller is not
relevant, only their number.

We conclude by applying lemnja 3.3, as Djathi) = 1+ 5. O

Note that in dimension higher than 3 and for 2, Hadamard sets no longer satisfy
the assumption of lemnfa B.3.

Further upper bounds for WdimsB'lp(”). The projection argument still works for
non-Euclidean spheres. It can also be repeated, thougfidierty, to construct maps
to lower dimensional polyhedra.

Proposition 3.8: Forl < p < o, consider the spherB'lp(n) with its natural metric.
Then, for”;z1 <k <n,3cnp € [1,2) such thatn,p > Cey1np, @and

wdimeB, ™ < K if € > Gpp.

Furthermoren_1 n2 = bn;2

Proof. This proposition is also obtained by constructing exgiiaihaps that reduce
dimension (up ton— j for j < &21) and whose fibres are small. Unfortunately, nothing
indicates this is optimal, and the size of the preimagesiid teadetermine. We will
abbreviated := B, .

We proceed by induction, and keep the notations introducetie proof of the
preceding theorem. Note that the sAfsare not the same for differept since they
are constructed by radial projection to different sphefié® keys to this construction

are the maps;. (i, A’{il ‘‘‘‘‘ im) given by projection along the

obtained by composing, on appropriate domamg,l’_._’ij} with gj_1. Sincesj;il’_,_’ij

are equal to the identity when their domain intersect, aei tmion covers the image
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of oj_1, the map is again well-defined. It remains only to calculagediameter of the
fibres. At O the fibre is

0'-71(0) = U {f(}\lﬁL...+}\j)pilf()\1+...+}\j,l)pi27...f)\1pij |Ai € R>0}.

Whereas for a giver € A, in the image (that i€\ contains at least elements)x can
also be written down as a combinati®m; p;, fori ¢ A andA; € R.o. We have

o tx)=_U A{x—(A1+...+>\,-)pil—(A1+...+Aj,1)pi2—...—Alpij|AieRzo}.

If we setcyn = SU(%) Diamo,;lk(O), then where > ¢ p, wdimsB'fm) <k. Itis possible
XEO'J'

to determine two simple facts about these numbers. Firey #re non-increasing
Ck,n = Ckt1,n, Which is obvious as the construction is done by inductibe size of the
fiber of maps to lower dimension is bigger than for maps to diglimension.
Second, they are meaningfuti, < 2. Indeed, wherp # 1,0, ¢y = 2 only if
on}k(x) contains opposite points, which is a linear condition. Wke0, by convexity
of the distance, the points on which the diameter can benatiadre at the boundary of
oj’l(x). SayyY is the set of those point exceyt The distance fronY to x is at most
one, while the diameter of is bounded. Indeed, there is a cap of diameter less than 2
that contains all they but one. The biggest diameter of such caps is also less than 2
and bounds Diam.
Any point of the fibre at 0 is a linear combination of the vestip;, and there is only
one linear relation between these, nanigly; = 0. As long asj < %1 (i.e. k> ”%1)
there are not enough in any two sets that formjl(O) to combine into the required
relations, but as soon gexceeds this bound, opposite points are easily found.]

For B'lp(n), where 1< p < o, we used the regular simplex to describe our projec-
tions, though nothing indicates that this choice is the rapgtropriate. In fact, many
sets ofn+ 1 points allow to build projections to a polyhedron, but iné&rd to tell which
are more effective: on one hand we need this set to have a draaikter (so that the
fibre at 0 is small), while on the other, we need it to be someWwell spread (so as
to avoid fibres ak to be too large, as in the assumption of Ie 3.3). Furthexmo
there is in general no reason foy_1 n;p to coincide with a lower bound, or even to be

. . p
different from othercy.p, thus we cannot always insure thmat 1 € WspecQB'1 N P).

The lowest non zero element ofvspec Before we return to the geneidlcase, no-
tice that together propositidn 3.2 and theorferh 3.4 give algncture of the function

2
WdimgBIl ™ ¢ equalsn for € < bp2 = Ch_1,n2, thenn— 1 for by < € < bp_1;0. After-
wards, | could not show a strict inequality for thgn.2, but even if they are all equal,

) 2
wdimB, "

to O.
For odd dimensional balls, there is a gap between the valtendiy proposition
@ and the lowest dimension obtained by the projectiomsditiced above. S&is of

takes at least one value {§ — 1,5 4+ 1)NZ. Then ,where > 2, it drops
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dimension 2+ 1 ande less than but sufficiently close to 2, then on one hand we know
that wdimB > |, while on the other wdigB < | + 1. It is thus worthy to ask whether
one of these two methods can be improved, perhaps by using lexmological in-
formation on the simplices in the proof of prop05|t|-3929( if its highest degree
cohomology is trivial then &-dimensional polyhedron is embeddablériff, see D).
Remark3.9: Such animprovementis actually available winea3: if the 2-dimensional
sphere maps to a 1-dimensional polyhediian & graph), the map lifts to the universal
cover, a tre&. HenceK is embeddable ifR?, and, for 1< p < oo.

£E<2=> wdimsBllp(?’) >2

for otherwise it would contradict Borsuk-Ulam theorem.

Note that estimates obtained Eh [6, app 1.E5] for Diaoan also yield lower bounds
for the diameter of fibres for maps to graphs.(1-dimensional polyhedra). Applied
to spheres, it becomes a special case of propon 3.2fahd above remark.

Lower bounds for wdimsBllp("). The remainder of this section is devoted to the im-

provement of lower bounds, using an evaluation of the filliadius as a product of
lemma[ 2.4, and a short discussion of their sharpness.

We shall try to find a lower bound on the diametemof 1 points on thdP unit
sphere that are not in an open hemisphere; recall that pirgee not in an open
hemisphere iBA; such thaty A; fi = 0. A direct use of Jung’s constant (defined as the
supremum over all conveM of the radius of the smallest ball that contaMdlivided
by M’s diameter) that is cleverly estimated idrspaces in|]9] does not yield the result
like it did in the Euclidean case. This is due to the fact thaté¢ are sets af+ 1 points
on the sphere that are not contained in an open hemispheigregbcontained in a ball
(not centered at the origin) of radius less than 1. The sebinitp given by

2 2 2 2
(3.10) (17...’1),<_m,...’_m,l>,...’ and (17_m,...’_m>

is such an example fo¥, and deforming it a little can make it work for the case,p
finite but close tao. However, a very minor adaptation of the methods giverﬂin's[g]
sufficient.

First, we introduce norms for the spaces of sequences (ammitew) taking val-

ues in a Banach spaée Leta; € R>q be such thatz aij = 1 and denote by this
sequence ofi+ 1 real numbers. LeEp 4 be the space of sequences madaefl ele-

ments ofE and consider thE’ norm weighted by: ||x|\Ep‘u = (Ziai % ||E) P where
X= (Xg,-..,%n). On the other hancEpyqz shall represent the space of matrices whose

entries are irE, with the norml| (x,j)||c = (i j@ia] %.]|2)*P. Now define, for
p.a

E,E’ Banach spaces based on the same vector space andfejt K o, the linear
operatofT : Esq — Et’(]2 by (xi) — (% —X;).

Theorem 3.11: Consider a vector space on which two norms are defined, aratalen
by E1, E, the Banach space they form. Ligte Ef, 0 <i <n, be such thalf; HE{ =1
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but that they are not included in an open hemisphieze there exista\i € R>q such
thaty \ifi = 0 andy \i = 1. LetDiamg;(f) = Sup | fi — i £ be the diameter of

0<i,j<n
this set with respect to the other norm. Then,dpe A;,

1\ W .
i . su = su -
D|amEz(f) =z zlSSIEOO (1+ n) ElpHTH(El)S“ﬁ(Ez)t‘az '
Proof. As thef; are notin an open hemisphere, real numbBersR o such thaty Aj =
1 andy A fi = 0 exist. Furthermore, sindi; ”EI =1, there also exist, € E; such that

fi(x) = 1 and||x||g, = 1. The remark on which the estimation relies is, agjin [9],

2= i‘Jz:OAiAj(fi =) —xj).

Choosinga; = A;, this equality can be rewritten in the form=2(T f)(Tx), where
Tx€ (E2)i gz andT f € ((E2); q2)" = (E3)y g2, and thus X ||T fH(E§>t/.a2 ||Tx|\(E2)m2.
Notice that
aiaj = ai(l—ai)gl——
1#] i=
because(di[|j1n.1) = 1= [|0i[j2ns1) = (N+ 1)~1/2. We can isolate the required di-
ameter:

1/t
IT )5, )Y

n t
vor = (20000 [[fi = illg,

< Diant;(f)( ZUin)
iZ]

gDiamEE(f)(F”l)l/t/.

04

On the other hand)x||g, = 1, consequentlyX|| g,)_, = 1, so we bound

[T (g2 = (T (Ev)sa—(E2) g2

The conclusion is found by substitution of the estimategternorms ofT f andT x.
O

We only quote the next result, as there is no alteration reb@déhat part of the
argument of Pichugov and lvanov.

Theorem 3.12: (cf. [H, thm 2])

. 1/p-1/p
ifl<p<2 HTH(lp(n»m,ug'('p(n))p'az <2l/p (Fnl) /o=t ;
if2<p<oo, [ Tllipgmy)mapm), » <247

po2 —

A simple substitution in theorefn 3]11, withy = E; = IP(n), s= o andt = p,
yields the desired inequalities.
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Corollary 3.13: Let fj, 0 <i < n, be points on the unit sphere 18X n) that are not
included in an open hemisphere, then

f1<p<2, Diampy(f) 277 (14 )77 ()
if2<p<oo, Diamp(n)(f)zzl/p(1+jﬁ_)l/p' ()

Remark3.14 Before we turn to the consequences of this result on wdirate that
there are examples for which the first inequality is attainEldese are the Hadamard
sets defined i@ﬁ. When normalised to 1, they are not indlirdan open hemisphere
and of the proper diameter. Hence, when a Hadamard matriardfm+ 1 exists,
then(x) is optimal. Nothing so conclusive can be said for other disiams, see the
argumentin examp@.l. | ignore if there are cases for whighis optimal, though it

is very easy to construct a famiby, € (B'lp(”) nt+1 such that Diarf, — 21/P asn — .

In particular forp = o, the points given in|(3.10) but by substitutiﬁ*g% instead of the
entries with valueh}z, is a set that is not contained in an open hemisphere and whose
diameter is"'7, which is close to the bound given. Somehow, this case, éstatsone
where the use of lemnfa .4 results in a bound that is quitedan the right value of
wdim, cf. Iemm. This might not be so surprising as sets with snitheter ori P

balls seem, whep > 2, to differ from sets satisfying the assumption of Ie 3.3

Still, by lemmg 2.4 we obtain the following lower bounds onimvd
Corollary 3.15: Lethy., be defined by, = 21/7 (1+4%) YP whent < p<2,whereas
bi.p = 21/P (14 %)l/p if 2< p <. Then, for0 < k <n,

€ < bkp= WdimsB'lp(") > k.

Proof. LetY = aBllpm). Since the convex hull of a set of+ 1 points on the sphere
Y will not contain the origin if the diameter of the set is largeanbyp, lemma[2.4
ensures that FilRat> bn.,/2. We then use lemnfa $.3 f¥rto conclude. O

These inequations might not be optimal, proposi 3.2ebaample is always
stronger wherk < | 5.

In dimensionn, B'oi(l'})p C B'lpm) yields thate < 2n~/P = wdimsBllpm) = nwhich

improves corollary 3.15 as long as
2n?
In( n+1)

In(%)'

However, whermp = 1, andH, 1 is a Hadamard matrix, these estimates are as sharp as
we can hope since the lower bound meets the upper bounds.

Corollary 3.16: Suppose there is a Hadamard matrix of rarkl. Then, for0 <k <

n!

wdimB, ™ =0 if 2< &
1
max "5t k) <wdimeB;, W <n i 1+ < e < (1+1),
wdimB, ™ =n if e <(1+1).
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Furthermore, in dimension 3, lower bounds of corollary Bniéet upper bounds
of proposition[3J5 when X p < 2. In particular, thanks to remafk B.9, this gives a
complete description of the 3-dimensional case for guch

Corollary 3.17: Letp € [1,2], then

. o if 2< g,
wdimB, @ ={ 2 if 23)Vr< & <2
3 if e <23V,

Whenp > 2, all that can be said is that the valueedbr which Wdim,;Bllp(3) drops
from 3 to 2 is in the interval2($)~Y/P,2(3)/7).

This last corollary is special to the 3-dimensional caseictviihappens to be a
dimension where there exist a Hadamard set, and where ttmilBoHam argument
can be improved to rule out maps $gl-dimensional polyhedra. For example, in the
2-dimensional case, a precise description is not so eaggeth thanks to exam.l

and using the inclusion (B|11(2) C B'lp(z), we know that WdimB'1p<2) =2 whene > 2/P,
On the other hand, the inclusion iff/)p - B'lp<2) givese > 2L/ = WdimsBllp(Z) =2.
Putting these together yields:

/ . p
£ > max2Y/P 27 = Wd|mgBIl @ _ o

These simple estimates in dimension 2 are better than aoy@L15 as long ap <
3— I3 or p>1In(g)/In(%). | doubt that any of these estimations actually gives the

value ofe where WdingBllp(z) drops from 2 to 1.

All the results of this section can be summarised to give rbre¢l.4. Here are
two depictions of the situation. Gray areas correspond gsipte values, full lines to
known values and dotted line to bounds. The left-hand plfatrisuclidean case, or the

wdm wdm
A € A £
n n———

mY

NfF-----

mY

case wher@ = 1 and there is a Hadamard set, when the dimension is odd dacedif
from 3: this is when a map tora— 1-dimensional polyhedron with small fibers can be
constructed, but the bounds from the Borsuk-Ulam argumahipaojections to lower
dimensional polyhedron do not meet. The right-hand oneets the situation in
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cases where the dimension is even and there is no known pooiedth small fibers.
Cn/2] n:p IS abbreviated by. The case of dimension 3 is described in corolfary|3.17.
It is not expected thaﬁ'g—l be in wspec whem is odd, nor is it expected that the

lower boundd., be sharp foB'lpm) whenk < n.
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