Alexandra Goultiaeva

Yves Lespérance
email: lesperan@cse.yorku.ca

Incremental Plan Recognition in an Agent Programming Framework

Keywords: Reconnaissance de plans, raisonnement sur l'action, langages de programmation d Plan recognition, reasoning about action, agent programming languages

Dans cet article, nous proposons un modèle formel de la reconnaissance de plans en vue de l'inclure dans un formalisme de programmation d'agent. Le modèle est basé sur le calcul des situations et le langage de programmation d'agent ConGolog. Ceci fournit un langage très riche pour la spécification des plans à reconnaitre. Notre modèle supporte aussi la reconnaissance incrémentale, où l'ensemble des hypothèses de plans exécutés est filtré à mesure que les actions sont observées. Le modèle est spécifié en termes d'un système de transitions pour le langage de plans. Le modèle supporte aussi les plans structurés hiérarchiquement et reconnait les relations entre un plan et les sous-plan qu'il contient.

Introduction

The ability to recognize plans of others can be useful in a wide variety of applications, from office assistance (where a program might provide useful reminders, or give hints on how to correct a faulty plan), to monitoring and aiding astronauts, providing assistance to people with cognitive or memory problems to allow them to live independently, etc.

There has been a lot of work in the area of plan recognition; see [START_REF] Carberry | Techniques for plan recognition. User Modeling and User-Adapted Interaction[END_REF] for a recent survey. Some of this work develops symbolic techniques for identifying plans that match the observations. For instance, [START_REF] Avrahami | Fast and complete symbolic plan recognition[END_REF] uses a decision tree to match observations to plan steps and graph traversal to identify branches that represent consistent hypotheses. To deal with uncertainty and identify most likely hypotheses, some work uses probabilistic techniques; for instance [START_REF] Bui | A general model for online probabilistic plan recognition[END_REF], uses an extension of Hidden Markov Models for this. Other work combines symbolic and probabilistic approaches, e.g. [START_REF] Avrahami | Hybrid symbolicprobabilistic plan recognition: Initial stepsd[END_REF]. Many approaches (including the ones just cited) support hierarchical task network-type plans, allowing methods to have several alternative decompositions, as well as looping tasks. However, these approaches do not support concurrently executing plans.

Our approach is based on the ConGolog agent programming language [START_REF] De | ConGolog, a concurrent programming language based on the situation calculus[END_REF], which supports very rich plans, including concurrent processes. We think that developing a unified agent programming framework that supports plan recognition as well as plan synthesis and behavior specification would have a number of benefits, including ease of use, and reuse of domain specifications and reasoning methods. Our work is closely related to the plan recognition framework of [START_REF] Demolombe | What does it mean that an agent is performing a typical procedure? A formal definition in the Situation Calculus[END_REF], where plans are rep-resented as Golog 1 programs, with two additional constructs: σ, which matches any sequence of actions, and α 1 -α 2 , which matches an execution of plan α 1 as long as it does not also match an execution of α 2 . α 1 -α 2 is quite a useful and powerful construct, which allows one to specify plans in terms of what must not happen in addition to what can happen. This cannot be done in most other plan recognition frameworks.

In this paper, we provide an alternative formalization and implementation of the plan recognition framework of [START_REF] Demolombe | What does it mean that an agent is performing a typical procedure? A formal definition in the Situation Calculus[END_REF]. Plans are represented as procedures, which may include calls to other procedures. Because of this, the plan recognition framework provides additional information, such as the call hierarchy, which details the procedures that are in progress or have completed, which procedure called which, and what remains to execute.

Another major difference between our approach and that of [START_REF] Demolombe | What does it mean that an agent is performing a typical procedure? A formal definition in the Situation Calculus[END_REF] is that we support incremental plan recognition. Given a set of hypotheses about what plans may be executing and a new observed action, our formalization defines what the revised set of hypotheses should be. Plan recognition is specified in terms of a structural operational semantics (single-step transitions) in the style of [START_REF] Plotkin | A structural approach to operational semantics[END_REF] for the plan specification language. [START_REF] Demolombe | What does it mean that an agent is performing a typical procedure? A formal definition in the Situation Calculus[END_REF] used a different semantics where programs were mapped into complete executions.

We have implemented a plan recognition system based on this formalization. It can be executed "on-line" and constantly keeps track of what plans may be executing, without having to recalculate them for each new observed action. Focusing on procedures rather than complete plans allows plans to be hierarchical and modular, and the result of the recognition is more informative and meaningful.

In the rest of the paper, we first give an overview of the Situation Calculus and ConGolog, and then present our formal model of plan recognition. Then, we give some examples to illustrate how the framework is used. Following this, we briefly describe our implementation of the model. We conclude the paper with a discussion of the novel features and limitations of our account, and provide suggestions for future work.

The Situation Calculus and ConGolog

The technical machinery that we use to define high-level program execution is based on that of [START_REF] De | ConGolog, a concurrent programming language based on the situation calculus[END_REF]. The starting point in the definition is the situation calculus [START_REF] Mccarthy | Some philosophical problems from the standpoint of artificial intellig ence[END_REF]. We will not go over the language here except to note the following components: there is a special constant S 0 used to denote the initial situation; there is a distinguished binary function symbol do where do(a, s) denotes the successor situation to s resulting from performing the action a; relations whose truth values vary from situation to situation, are called (relational) fluents, and are denoted by predicate symbols taking a situation term as their last argument. There is a special predicate P oss(a, s) used to state that action a is executable in situation s.

Within this language, we can formulate domain theories which describe how the world changes as a result of the available actions. Here, we use action theories of the following form:

• Axioms describing the initial situation, S 0 .

• Action precondition axioms, one for each primitive action a, characterizing P oss(a, s).

• Successor state axioms, one for each fluent F , which characterize the conditions under which F (x, do(a, s))

holds in terms of what holds in situation s; these axioms may be compiled from effects axioms, but provide a solution to the frame problem [START_REF] Reiter | The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for goal regression[END_REF].

• Unique names axioms for the primitive actions.

• A set of foundational, domain independent axioms for situations Σ as in [START_REF] Reiter | Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems[END_REF].

Next we turn to programs. The programs we consider here are based on the Con-Golog language defined in [START_REF] De | ConGolog, a concurrent programming language based on the situation calculus[END_REF] In [START_REF] De | ConGolog, a concurrent programming language based on the situation calculus[END_REF], a single step transition semantics in the style of [START_REF] Plotkin | A structural approach to operational semantics[END_REF]

Formalizing plan recognition

Recognizing a plan means that given a sequence of observed actions, the system must be able to determine which plan(s) the user may be following. The framework described here relies on a plan library, which details the possible plans as procedures in ConGolog. Given the sequence of actions performed, the system should be able to provide the following information: the plan that the user is currently following; the stage in the plan that the user is following -what has already been done and what remains to be done; and which procedures that plan is part ofis the user doing it as part of a larger plan?

The framework is specified in terms of ConGolog, to which a few extensions are made. Note that what is described below could have alternatively been done by modifying the semantics of the language.

The following formalization is designed to build on top of the existing framework as much as possible.

First, we introduce two special primitive actions: startP roc(name(args)) and endP roc(name(args)). These are annotation actions, present only in the plan library, but never actually observed.

The two actions are used to represent procedure invocation and completion. It is assumed that every procedure that we want to distinguish in the plan library starts with the action startP roc(name(args)) and ends with the action endP roc(name(args)), where name is the name of the procedure in which the actions occur, and args are its arguments. This markup can be generated automatically given a plan library.

Our transition system semantics for plans fully supports concurrency. Environments involving multiple agents can also be dealt with if we assume that the agent of each action is specified (say as a distinguished parameter of the action). However, if there is concurrency over different procedures run by the same agent, the annotated situation as currently defined is not generally sufficient to determine which thread/procedure an observed action belongs to. Additional annotations will need to be introduced to specify this. We leave this for future work.

After the inclusion of the annotation actions, for each sequence of actions there are two situations: the real (observed) situation, and the annotated situation, which includes the actions startP roc and endP roc. Given the annotated situation, it is straightforward to obtain the state of the execution stack (which procedures are currently executing), determine what actions were executed by which procedures, and determine the remaining plan. An action startP roc(proc) means that the procedure proc was called, and should be added to the stack. The action endP roc(proc) signals that the last procedure has terminated, and should be removed from the stack. Note that for a given real situation, there may be multiple annotated situations that would match it. Each of those situations would show a different possible execution path in the plan library. For example, if the plan library contained the following procedures:

proc p1 startP roc(p1); a; b; endP roc(p1) endProc proc p2 startP roc(p2); a; c; endP roc(p2) endProc then the real situation do(a, S 0) would have two possible annotated situations that would match it:

do(a, do(startP roc(p1), S 0)) and do(a, do(startP roc(p2), S 0)).

In this context, the plan recognition problem reduces to the following: given the observed situation and a plan library, find the possible annotated situations.

The first two predicates defined for the new formalism are aT rans and rT rans. The predicate aT rans is a form of T rans that allows only a transition step that cannot be observed: either an annotation action or a test/wait action. The predicate rT rans is a form of T rans which only allows observable actions. The helper predicate Annt is true if and only if the action passed to it is an annotation action:

Annt(a) def = ∃n . a = startP roc(n) ∨ ∃n . a = endP roc(n) aT rans(δ, s, δ , s) def = T rans(δ, s, δ , s) ∧ (∃a . (s = do(a, s) ∧ Annt(a)) ∨ s = s) rT rans(δ, s, δ , s) def = T rans(δ, s, δ , s) ∧ ∃a . s = do(a, s) ∧ ¬Annt(a)
We also define aT rans * as the reflexive transitive closure of aT rans.

The transition predicate nT rans(δ, s r , s a , δ , s r , s a) is the main predicate in our plan recognition framework. It holds when δ is the program remaining from δ after performing any number of annotation actions or tests, followed by an observable action. Situation s r is the real situation before performing those steps, and s r is the real situation after. Situation s a is the annotated situation (which reflects the annotations as well as the real actions) before the program steps, and s a is the annotated situation after. Effectively, our definition below amounts to nT rans being equivalent to aT rans * composed with rT rans: nT rans(δ, s r , s a , δ , s r , s a) def = ∃δ , s a , a.aT rans * (δ, s a , δ , s a) ∧ rT rans(δ , s r , δ , do(a, s r))

∧ s r = do(a, s r) ∧ s a = do(a, s a).
Just as nT rans is the counterpart to T rans which deals with annotation actions, nF inal is the counterpart to F inal, which allows any number of annotation actions or tests to be performed:

nF inal(δ, s) def = ∃δ , s . aT rans * (δ, s, δ , s) ∧ F inal(δ , s)
As mentioned in [START_REF] Demolombe | What does it mean that an agent is performing a typical procedure? A formal definition in the Situation Calculus[END_REF], in many cases it would be useful for the procedures to leave some actions unspecified, or to place additional constraints on the plans. So they introduced two new constructs. The first is anyBut(actionList), which allows one to execute an arbitrary primitive action which is not in its argument list. For example, anyBut ([b, d]) would match actions a or c, but not b or d. It is a useful shorthand for writing general plans which might involve unspecified steps. For example, a plan might specify that a certain condition needs to hold for its continuation, but leave unspecified what action(s) was performed to achieve the condition. It is simply an abbreviation, included for convenience. Another shorthand construct, any, can be defined to match any action without exceptions. We can define these as follows:

2 anyBut([a 1 , ..., a n]) def = πa.(if(a = a 1 ∧ ... ∧ a = a n) then a else F alse?endIf) any def = anyBut([])
The second construct is minus(δ, δ). This matches any execution that would match δ, as long as it does not match δ. This construct allows the plan to place additional constraints on the sequences of actions that would be recognized within a certain procedure. For example, the procedure that corresponds to a task of cleaning the house could include unspecified parts, and would match many different sequences of actions, but not if they involve brushing teeth. Assuming cleanUp and brushT eeth are procedures in the plan library, then it is possible to specify the above as minus(cleanUp, brushT eeth).

To define this construct, we need to define what a step of execution for this construct is, and the remaining program. Also, note that δ must match all observable actions performed by δ, but might do different annotation and test actions; those differences should be ignored.

An additional axiom is added to specify T rans for the minus construct:

T rans(minus(δ, δ), s, δ , s) ≡ ∃δ .aT rans(δ, s, δ , s) ∧ δ = minus(δ , δ) ∨ ∃δ , a.rT rans(δ, s, δ , do(a, s)) ∧ s = do(a, s) ∧ (¬∃ δ s s i .nT rans (δ, s, s, δ , do(a, s), Note that whether T rans holds for minus(δ, δ) depends on whether nT rans holds for δ and the latter depends on aT rans * and ultimately T rans, so the definition might not appear to be well founded. We ensure that it is well founded by imposing the restriction that no minus can appear in the second argument δ of a minus. So in the axiom, we use nT rans which is defined just like nT rans, except that it is based on a version of T rans, T rans , that does not support the minus construct and does not include the T rans axiom for the minus construct. So T rans is just the existing T rans from [START_REF] De | ConGolog, a concurrent programming language based on the situation calculus[END_REF], which is well defined, and nT rans is defined in terms of it. Then we can define the new T rans that supports minus in terms of nT rans and we have a well founded definition. The same approach is used to define F inal for minus. The construct minus is considered finished when δ is finished, but δ is not:

s i) ∧ δ = δ ∨ ∃ δ s s i .nT rans (δ, s, s, δ , do(a, s), s i) ∧ ¬nF inal (δ , do(a, s)) ∧ δ = minus(δ , δ)).
F inal(minus(δ, δ), s) ≡ F inal(δ, s) ∧ ¬nF inal (δ, s).
We use C to denote the extended Con-Golog axioms: C together with the above two. Note that recursive procedures can be as in [START_REF] De | ConGolog, a concurrent programming language based on the situation calculus[END_REF].

The above definition relies on a condition imposed on the δ that may appear as second argument in a minus: for any sequence of transitions involving the same actions, δ should have only one possible remaining program. More formally:

T rans * (δ, s, δ1 , s 1) ∧ T rans(δ1 , s 1 , δ , do(a 1 , s 1)) ∧ T rans * (δ, s, δ2 , s 2) ∧ T rans(δ2 , s 2 , δ , do(a 2 , s 2)) ∧ do(a 1 , s 1) = do(a 2 , s 2) ⊃ δ = δ
This restriction seems quite natural because δ is a model of what is not allowed. Based on the above definition, to get the annotated situation from an observable one, we only need to apply nT rans a number of times, until the observable situation is reached. We define nT rans * as the reflexive transitive closure of nT rans. The predicate allT rans(s r , s a , δ rem) means that s a denotes a possible annotated situation that matches the observed situation s r , and δ rem is the remaining plan: allT rans(s r , s a , δ rem) def = nT rans * (planLibrary, S 0 , S 0 , δ rem , s r , s a)

where S 0 is the initial situation and planLibrary is a procedure that represents the plan library.

The set of all the remaining programs δ and their corresponding annotated situations S a for a given real situation S can be defined as follows:

allP lans(S) def = {(δ, S a)| D ∪ C | = allT rans(S, S a , δ)}
where D is the action theory for the domain.

As mentioned earlier, our account also allows incremental calculation of the set of plans that the agent may be executing. If (δ , S a) ∈ allP lans(S) and D ∪ C | = nT rans(δ , S, S a , δ, do(A, S), S a), then (δ, S a) ∈ allP lans(do(A, S)). The converse is also true under some conditions that typically hold.

Examples

The main example described here is a simulation of activities in a home. There are four rooms: the bedroom, kitchen, living room, and bathroom. There are also four objects: the toothbrush, book, spoon, and cup. Each object has its own place, where it should be located. The toothbrush should be in the bathroom, the book in the living room, and the spoon and cup in the kitchen.

Initially, all objects are where they are supposed to be, except for two: the book is in the kitchen, and the toothbrush is in the living room. The location of the monitored agent is originally in the bedroom.

There are four possible primitive actions:

• goT o(room): changes the location of the agent to be room;

• pickUp(object): only possible if the agent is in the same room as the object; this causes the object to be held;

• putDown(object): only possible if the agent holds the object; puts the object down;

• use(object): only possible if the agent holds the object.

We use the following fluents:

• loc: the room in which the agent is;

• loc(thing): the room in which the thing is;

• Hold(thing): true if the agent holds the thing, false otherwise.

We also use the following non-fluent predicates:

• Room(r): r is a room;

• Object(t): t is an object;

• InP lace(thing, room): holds if thing is in its place when it is in room.

There are five procedures in the plan library:

• get(thing): go to the room where thing is, and pick it up;

• putAway(thing): go to the room where the thing should be, and put it down;

• cleanUp: while there are objects that are not in their places, get such an object, or put it away;

• brushT eeth: get the toothbrush, use the toothbrush, and either put away the toothbrush, or put it down (where the agent is);

• readBook: get the book, use the book, and either put away the book, or put it down.

The procedures are defined below. We also use the following procedure: Procedures brushT eeth and readBook have options: either the agent might put the thing away in its place, or it might put the thing down wherever it happens to be. In practice, a person might do either, and both executions should be recognized as part of the procedure.

proc getT o(
Perhaps the most complex procedure in this example is cleanUp. The main idea is that when executing this procedure, the agent will, at each iteration, get a thing that is not in its proper place, or put away something it already holds. The main plan library chooses some procedure to execute nondeterministically and repeats this zero or more times: proc planLibrary (cleanUp|brushT eeth| readBook|(πt.get(t))) * . endProc Let's look at an execution trace for the above example. Suppose that the first action was goT o(kitchen). The following possible scenarios are then output by the system: proc get(book) -> goTo(kitchen) proc get(cup) -> goTo(kitchen) proc get(spoon) -> goTo(kitchen) proc readBook -> proc get(book) -> goTo(kitchen) proc cleanUp -> proc get(book) -> goTo(kitchen)

The system is trying to guess what the user is doing by going to the kitchen. It lists the five plans from the library that might have this first action. Note that the possibilities of doing cleanUp by getting a cup or a spoon are not listed. This is because both the spoon and cup are already in their places, so if the agent picked them up, it would not be cleaning up. Now suppose that the next action is pickUp(book). Then, the system can discard some of the above possibilities, namely those which involve taking something else. The new possible scenarios are: The above examples are kept simple to illustrate how the various constructs work. The system was tested on both of the above examples, and more complicated ones. All of the above traces were generated by the implementation.

Implementation and Experimentation

Our plan recognition system was implemented using a Prolog-based version of In-diGolog, an extension of ConGolog introduced in [START_REF] De | An incremental interpreter for high-level programs with sensing[END_REF]. The implementation closely follows the definitions, without any optimization for performance. The implementation assumes that the axioms specifying the initial situation are represented as Prolog clauses and makes the closed world assumption.

The system uses a user-defined domain specification and plan library. All procedures in the library need to satisfy some restrictions. Each procedure P that is to be reflected in the scenario has to start and end with actions startP roc(P) and endP roc(P), respectively. The procedures can also use constructs anyBut and minus.

The implementation can be used in interactive mode. Then the user is expected to enter the observed actions one by one. Also, at any point the user can issue one of the following commands: prompt -list all current hypotheses, reset -forget the previous actions and start fresh, and exitfinish execution.

We ran some experiments on the home activities domain discussed above, with a slight modification: the last option in the plan library is now (πt.[get(t), putDown(t)]) instead of (πt.get(t)). This was done ensure that there are arbirarily long executions of the plan library. For each n, where n is the length of an observed action sequence, we randomly selected 200 sequences of n actions that could be generated by the plan library. We then ran the plan recognition system on all of those and averaged the running time. The results appear in Figure 1. We can see that our system can identify matching plans for a sequence of 80 observed actions in less than one second on average in this test domain. As well, for this domain the running time seems to grow linearly with the length of the observed action sequence. In this paper, we have described a framework for plan recognition in the Situation Calculus. The ConGolog programming language is used to specify plans. The system matches the actions of the monitored agent against the plan library and returns some scenarios, representing the execution paths that the agent may have followed.

The main differences between our account of plan recognition and the one described by [START_REF] Demolombe | What does it mean that an agent is performing a typical procedure? A formal definition in the Situation Calculus[END_REF] are that ours is able to model procedure calls within plans and that it is incremental. Because our approach to plan recognition concentrates on procedures, it is able to distinguish sub-procedures from each other as well as from top-level plans. This allows the scenarios to be fairly detailed both as to how and why a certain plan was being executed.

Because our formalism is incremental, it does not need to know the whole sequence of actions to interpret the next step; nor does it need to re-compute matching scenarios from scratch whenever a new action is made. It would be well-suited for real-time applications or continuous monitoring.

The framework described here is easily extended with new annotations to specify, for example, the goals and preconditions of each plan and/or possible reactions to it by the monitoring system. As mentioned earlier, to fully support the recognition of concurrent executions of plans, additional annotations to track which process performed each action should be introduced.

Another possible extension would be to assign probabilities to actions and plans, similarly to what was done in [START_REF] Demolombe | Intention recognition in the Situation Calculus and Probability Theory frameworks[END_REF]. This would make it possible to rank the possible execution hypotheses, select the most probable ones and use this to predict which actions the agent is more likely to execute next. One could also look at qualitative mechanisms for doing this. More experimental evaluation of our system is also needed.

There has already been work on home care applications for a plan recognition system. For example, [START_REF] Lin | IPARS: Intelligent portable activity recognition system via everyday objects, human movements, and activity duration[END_REF] describes a plan recognition system that includes strategies for monitoring and obtaining actions, as well as using learning to modify the plan libraries. Both of those techniques can potentially work with our system.

Figure 1 :

 1 Figure 1: Average runtime (seconds) versus the length of the action sequence

 This says the following: if the next step of the plan δ is not an observable action, then the remaining program is what remains of δ minus δ; if δ performs an observable action, and δ cannot match that action, then the remaining program is what remains of δ; if δ can match the observable action performed by δ but it is not final, then the remaining program is what remains of δ minus what remains of δ.

 checks if the current location is already the destination room r. If not, the action goT o is executed. It is a helper procedure, which was only introduced for convenience, and was not deemed important enough to appear in the annotations. Hence, it does not have startP roc and endP roc actions. So, when the program is executed, the procedure getT o will not appear in the stack.

	r) Room(r)?; if loc = r then goT o(r) endIf endProc getT o The definition of most of the other proce-dures is straightforward: proc get(t) startP roc(get(t)); ¬Hold(t)?; getT o(loc(t)); pickUp(t); endP roc(get(t)) endProc; proc putAway(t) startP roc(putAway(t)); Hold(t)?; π r.InP lace(t, r)?; getT o(r); putDown(t); endP roc(putAway(t)) endProc; proc brushT eeth startP roc(brushT eeth); get(toothbrush); use(toothbrush); (putAway(toothbrush)| putDown(toothbrush)); endP roc(brushT eeth) endProc; proc readBook startP roc(readBook); get(book); use(book); (putAway(book)|putDown(book)); endP roc(readBook) endProc;

 then cleanUp u matches it. However, cleanUp m does not. That is because cleanUp m has the minus construct, and the observed actions matched the exception part of it. The action putDown(toothbrush) can be considered the last action of brushT eeth, which was ruled out by the minus in cleanUp m . So, cleanUp m cannot match this sequence of actions. cleanUp u , which is identical to cleanUp m except for the minus construct, does match the action, and produces the following scenario:

	proc get(book) -> goTo(kitchen); pickUp(book) proc readBook -> get(book) -> goTo(kitchen); pickUp(book) proc cleanUp -> proc get(book) -> goTo(kitchen); pickUp(book) The next action is use(book). The plan get(book) is finished, but there is no plan in the library that could start with the ac-tion use(book). So, this possibility can be discarded. The next action of cleanUp cannot match the observed actions as well. Thus the only remaining possible plan is readBook: proc readBook -> proc get(book) -> goTo(kitchen); pickUp(book); use(book) Now, let us consider a different scenario. In order to demonstrate the use of the minus and anyBut constructs, we can de-fine two variants of cleanUp. In the first one, cleanUp u , an arbitrary action is al-lowed at the end of every iteration of the loop. The second one, cleanUp m , together with the optional arbitrary action, intro-duces a constraint: a sequence of actions will not be matched if it involves the exe-cution of procedure brushT eeth. This is achieved by using the minus construct. proc cleanUp u startP roc(cleanUp u); while ∃t.Object(t) ∧ ¬InP lace(t, loc(t)) do π t.Object(t) ∧ ¬InP lace(t, loc(t))?; (get(t)|putAway(t)); (any|nil) endProc endP roc(cleanUp u)]) endWhile; Now, if the next step is putDown(toothbrush), proc cleanUp_u -> proc get(toothbrush) -> goTo(livingRoom); pickUp(toothbrush); use(toothbrush); proc putAway(toothbrush) -> goTo(bathroom); putDown(toothbrush) Another example that the system was tested on is that from [8] involving aircraft flying procedures. There is a single pro-cedure called fireOnBoard. It involves three actions, performed sequentially, with possibly other actions interleaved. The three actions are fuelOff, fullT hrottle, and mixtureOff. The only restriction is that while executing this procedure, the ac-tion fuelOn must not occur. In our frame-work, this example can be represented as follows: proc fireOnBoard startP roc(fireOnBoard), minus([fuelOff; any * ; fullT hrottle; any * ; mixtureOff], [(anyBut([fuelOn])) * ; fuelOn]); endP roc(fireOnBoard) endProc	proc cleanUp m startP roc(cleanUp m); minus(while ∃t.Object(t) ∧ ¬InP lace(t, loc(t)) do π t.Object(t) ∧ ¬InP lace(t, loc(t))?; (get(t)|putAway(t)); (any|nil); endWhile, [brushT eeth]); endP roc(cleanUp m) endProc Suppose that the sequence of ob-served actions starts with the two actions goT o(livingRoom) and take(toothbrush). All three variants of cleanUp would match those actions, and produce the same scenario: proc cleanUp_k -> proc get(toothbrush) -> goTo(livingRoom); pickUp(toothbrush) where k is either nothing, or u or m, de-pending on the version of the procedure used. Now suppose that the next action is use(toothbrush). The original version of cleanUp does not match the observed ac-tion. The other two variants, cleanUp u and cleanUp m , would still match the situ-ation, because the new action matches the unspecified action at the end of the loop. If the next action is goT o(bathroom), then both remaining procedures match this as well: proc cleanUp_k -> goTo(bathroom) proc putAway(toothbrush) -> use(toothbrush); pickUp(toothbrush); goTo(livingRoom); proc get(toothbrush) ->

where k can only be u or m.

Golog [9] is a precursor of ConGolog that does not support concurrency.

When n = 0, by convention the condition is equivalent to T rue.

We could try to drop this restriction and collect all the remaining δ, but it is not clear that these can always be finitely represented, e.g. πn.(P ositiveInteger(n)?; a; b(n)).