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Résumé :
Dans cet article, nous proposons un modèle formel
de la reconnaissance de plans en vue de l’inclure
dans un formalisme de programmation d’agent.
Le modèle est basé sur le calcul des situations et
le langage de programmation d’agent ConGolog.
Ceci fournit un langage très riche pour la spéci-
fication des plans à reconnaitre. Notre modèle
supporte aussi la reconnaissance incrémentale, où
l’ensemble des hypothèses de plans exécutés est
filtré à mesure que les actions sont observées. Le
modèle est spécifié en termes d’un système de tran-
sitions pour le langage de plans. Le modèle sup-
porte aussi les plans structurés hiérarchiquement et
reconnait les relations entre un plan et les sous-plan
qu’il contient.
Mots-clés : Reconnaissance de plans, raison-
nement sur l’action, langages de programmation
d’agent

Abstract:
In this paper, we propose a formal model of plan
recognition for inclusion in a cognitive agent pro-
gramming framework. The model is based on the
Situation Calculus and the ConGolog agent pro-
gramming language. This provides a very rich plan
specification language. Our account also supports
incremental recognition, where the set of matching
plans is progressively filtered as more actions are
observed. This is specified using a transition sys-
tem account. The model also supports hierarchi-
cally structured plans and recognizes subplan rela-
tionships.
Keywords: Plan recognition, reasoning about ac-
tion, agent programming languages

1 Introduction

The ability to recognize plans of others
can be useful in a wide variety of applica-
tions, from office assistance (where a pro-
gram might provide useful reminders, or
give hints on how to correct a faulty plan),

to monitoring and aiding astronauts, pro-
viding assistance to people with cognitive
or memory problems to allow them to live
independently, etc.

There has been a lot of work in the area
of plan recognition; see [4] for a recent
survey. Some of this work develops sym-
bolic techniques for identifying plans that
match the observations. For instance,
[1] uses a decision tree to match obser-
vations to plan steps and graph traversal
to identify branches that represent con-
sistent hypotheses. To deal with uncer-
tainty and identify most likely hypotheses,
some work uses probabilistic techniques;
for instance [3], uses an extension of Hid-
den Markov Models for this. Other work
combines symbolic and probabilistic ap-
proaches, e.g. [2]. Many approaches (in-
cluding the ones just cited) support hier-
archical task network-type plans, allowing
methods to have several alternative decom-
positions, as well as looping tasks. How-
ever, these approaches do not support con-
currently executing plans.

Our approach is based on the ConGolog
agent programming language [5], which
supports very rich plans, including con-
current processes. We think that develop-
ing a unified agent programming frame-
work that supports plan recognition as well
as plan synthesis and behavior specifica-
tion would have a number of benefits, in-
cluding ease of use, and reuse of domain
specifications and reasoning methods. Our
work is closely related to the plan recogni-
tion framework of [8], where plans are rep-
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resented as Golog1 programs, with two ad-
ditional constructs: σ, which matches any
sequence of actions, and α1 − α2, which
matches an execution of plan α1 as long as
it does not also match an execution of α2.
α1−α2 is quite a useful and powerful con-
struct, which allows one to specify plans
in terms of what must not happen in ad-
dition to what can happen. This cannot be
done in most other plan recognition frame-
works.

In this paper, we provide an alternative for-
malization and implementation of the plan
recognition framework of [8]. Plans are
represented as procedures, which may in-
clude calls to other procedures. Because
of this, the plan recognition framework
provides additional information, such as
the call hierarchy, which details the pro-
cedures that are in progress or have com-
pleted, which procedure called which, and
what remains to execute.

Another major difference between our ap-
proach and that of [8] is that we support
incremental plan recognition. Given a set
of hypotheses about what plans may be
executing and a new observed action, our
formalization defines what the revised set
of hypotheses should be. Plan recognition
is specified in terms of a structural opera-
tional semantics (single-step transitions) in
the style of [12] for the plan specification
language. [8] used a different semantics
where programs were mapped into com-
plete executions.

We have implemented a plan recognition
system based on this formalization. It
can be executed “on-line” and constantly
keeps track of what plans may be execut-
ing, without having to recalculate them for
each new observed action. Focusing on
procedures rather than complete plans al-
lows plans to be hierarchical and modular,
and the result of the recognition is more
informative and meaningful.

1Golog [9] is a precursor of ConGolog that does not support
concurrency.

In the rest of the paper, we first give an
overview of the Situation Calculus and
ConGolog, and then present our formal
model of plan recognition. Then, we give
some examples to illustrate how the frame-
work is used. Following this, we briefly
describe our implementation of the model.
We conclude the paper with a discussion
of the novel features and limitations of our
account, and provide suggestions for fu-
ture work.

2 The Situation Calculus and
ConGolog

The technical machinery that we use to de-
fine high-level program execution is based
on that of [5]. The starting point in the def-
inition is the situation calculus [11]. We
will not go over the language here except
to note the following components: there is
a special constant S0 used to denote the
initial situation; there is a distinguished
binary function symbol do where do(a, s)
denotes the successor situation to s result-
ing from performing the action a; rela-
tions whose truth values vary from situa-
tion to situation, are called (relational) flu-
ents, and are denoted by predicate sym-
bols taking a situation term as their last
argument. There is a special predicate
Poss(a, s) used to state that action a is ex-
ecutable in situation s.

Within this language, we can formulate
domain theories which describe how the
world changes as a result of the available
actions. Here, we use action theories of
the following form:

• Axioms describing the initial situa-
tion, S0.

• Action precondition axioms, one for
each primitive action a, characterizing
Poss(a, s).

• Successor state axioms, one for each
fluent F , which characterize the con-
ditions under which F (~x, do(a, s))
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holds in terms of what holds in situa-
tion s; these axioms may be compiled
from effects axioms, but provide a so-
lution to the frame problem [13].

• Unique names axioms for the primi-
tive actions.

• A set of foundational, domain inde-
pendent axioms for situations Σ as in
[14].

Next we turn to programs. The programs
we consider here are based on the Con-
Golog language defined in [5], providing
a rich set of programming constructs, in-
cluding the following:

α, primitive action
φ?, wait for a condition
δ1; δ2, sequence
δ1 | δ2, nondeterministic branch
π x. δ, nondeterministic choice of

argument
δ∗, nondeterministic iteration
if φ then δ1 else δ2 endIf, conditional
while φ do δ endWhile, while loop
δ1 ‖ δ2, concurrency with equal priority
δ1 〉〉 δ2, concurrency with δ1 at a higher

priority
δ||, concurrent iteration
〈 φ → δ 〉, interrupt
p(~θ), procedure call

Among these constructs, we notice the
presence of nondeterministic constructs.
These include (δ1 | δ2), which nondeter-
ministically chooses between programs δ1
and δ2, π x. δ, which nondeterministically
picks a binding for the variable x and per-
forms the program δ for this binding of
x, and δ∗, which performs δ zero or more
times. Also notice that ConGolog includes
constructs for dealing with concurrency. In
particular (δ1 ‖ δ2) denotes the concurrent
execution (interpreted as interleaving) of
the programs δ1 and δ2.

In [5], a single step transition seman-
tics in the style of [12] is defined for

ConGolog programs. Two special pred-
icates Trans and Final are introduced.
Trans(δ, s, δ′, s′) means that by executing
program δ starting in situation s, one can
get to situation s′ in one elementary step
with the program δ′ remaining to be exe-
cuted. Final(δ, s) means that program δ
may successfully terminate in situation s.

3 Formalizing plan recognition

Recognizing a plan means that given a
sequence of observed actions, the system
must be able to determine which plan(s)
the user may be following. The frame-
work described here relies on a plan li-
brary, which details the possible plans as
procedures in ConGolog. Given the se-
quence of actions performed, the system
should be able to provide the following in-
formation: the plan that the user is cur-
rently following; the stage in the plan that
the user is following – what has already
been done and what remains to be done;
and which procedures that plan is part of –
is the user doing it as part of a larger plan?

The framework is specified in terms of
ConGolog, to which a few extensions are
made. Note that what is described be-
low could have alternatively been done by
modifying the semantics of the language.
The following formalization is designed to
build on top of the existing framework as
much as possible.

First, we introduce two special prim-
itive actions: startProc(name(args))
and endProc(name(args)). These are
annotation actions, present only in the
plan library, but never actually observed.
The two actions are used to repre-
sent procedure invocation and comple-
tion. It is assumed that every pro-
cedure that we want to distinguish in
the plan library starts with the action
startProc(name(args)) and ends with
the action endProc(name(args)), where
name is the name of the procedure in
which the actions occur, and args are its
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arguments. This markup can be generated
automatically given a plan library.

Our transition system semantics for plans
fully supports concurrency. Environments
involving multiple agents can also be dealt
with if we assume that the agent of each
action is specified (say as a distinguished
parameter of the action). However, if
there is concurrency over different pro-
cedures run by the same agent, the an-
notated situation as currently defined is
not generally sufficient to determine which
thread/procedure an observed action be-
longs to. Additional annotations will need
to be introduced to specify this. We leave
this for future work.

After the inclusion of the annotation ac-
tions, for each sequence of actions there
are two situations: the real (observed)
situation, and the annotated situation,
which includes the actions startProc and
endProc. Given the annotated situation, it
is straightforward to obtain the state of the
execution stack (which procedures are cur-
rently executing), determine what actions
were executed by which procedures, and
determine the remaining plan. An action
startProc(proc) means that the procedure
proc was called, and should be added to
the stack. The action endProc(proc) sig-
nals that the last procedure has terminated,
and should be removed from the stack.
Note that for a given real situation, there
may be multiple annotated situations that
would match it. Each of those situations
would show a different possible execution
path in the plan library. For example, if the
plan library contained the following proce-
dures:

proc p1
startProc(p1); a; b; endProc(p1)

endProc
proc p2

startProc(p2); a; c; endProc(p2)
endProc

then the real situation do(a, S0)

would have two possible anno-
tated situations that would match
it: do(a, do(startProc(p1), S0)) and
do(a, do(startProc(p2), S0)). In this
context, the plan recognition problem
reduces to the following: given the ob-
served situation and a plan library, find the
possible annotated situations.

The first two predicates defined for the
new formalism are aTrans and rTrans.
The predicate aTrans is a form of Trans
that allows only a transition step that can-
not be observed: either an annotation ac-
tion or a test/wait action. The predicate
rTrans is a form of Trans which only al-
lows observable actions. The helper pred-
icate Annt is true if and only if the action
passed to it is an annotation action:

Annt(a)
def
= ∃n . a = startProc(n) ∨

∃n . a = endProc(n)
aTrans(δ, s, δ′, s′) def

=
Trans(δ, s, δ′, s′) ∧
(∃a . (s′ = do(a, s) ∧ Annt(a)) ∨ s′ = s)

rTrans(δ, s, δ′, s′) def
= Trans(δ, s, δ′, s′) ∧

∃a . s′ = do(a, s) ∧ ¬Annt(a)

We also define aTrans∗ as the reflexive
transitive closure of aTrans.

The transition predicate
nTrans(δ, sr, sa, δ

′, s′r, s
′
a) is the main

predicate in our plan recognition frame-
work. It holds when δ′ is the program
remaining from δ after performing any
number of annotation actions or tests, fol-
lowed by an observable action. Situation
sr is the real situation before performing
those steps, and s′r is the real situation af-
ter. Situation sa is the annotated situation
(which reflects the annotations as well as
the real actions) before the program steps,
and s′a is the annotated situation after.
Effectively, our definition below amounts
to nTrans being equivalent to aTrans∗
composed with rTrans:
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nTrans(δ, sr, sa, δ
′, s′r, s

′
a)

def
=

∃δ′′, s′′a, a.aTrans∗(δ, sa, δ
′′, s′′a)∧ rTrans(δ′′, sr, δ

′, do(a, sr))
∧ s′r = do(a, sr) ∧ s′a = do(a, s′′a).

Just as nTrans is the counterpart to
Trans which deals with annotation ac-
tions, nFinal is the counterpart to Final,
which allows any number of annotation ac-
tions or tests to be performed:

nFinal(δ, s)
def
= ∃δ′, s′.

aTrans∗(δ, s, δ′, s′) ∧ Final(δ′, s′)

As mentioned in [8], in many cases it
would be useful for the procedures to leave
some actions unspecified, or to place ad-
ditional constraints on the plans. So they
introduced two new constructs. The first is
anyBut(actionList), which allows one to
execute an arbitrary primitive action which
is not in its argument list. For example,
anyBut([b, d]) would match actions a or
c, but not b or d. It is a useful shorthand
for writing general plans which might in-
volve unspecified steps. For example, a
plan might specify that a certain condition
needs to hold for its continuation, but leave
unspecified what action(s) was performed
to achieve the condition. It is simply an ab-
breviation, included for convenience. An-
other shorthand construct, any, can be de-
fined to match any action without excep-
tions. We can define these as follows:2

anyBut([a1, ..., an])
def
=

πa.(if(a 6= a1 ∧ ... ∧ a 6= an) then a
else False?endIf)

any
def
= anyBut([])

The second construct is minus(δ, δ̂). This
matches any execution that would match

2When n = 0, by convention the condition is equivalent to
True.

δ, as long as it does not match δ̂. This
construct allows the plan to place addi-
tional constraints on the sequences of ac-
tions that would be recognized within a
certain procedure. For example, the pro-
cedure that corresponds to a task of clean-
ing the house could include unspecified
parts, and would match many different se-
quences of actions, but not if they involve
brushing teeth. Assuming cleanUp and
brushTeeth are procedures in the plan li-
brary, then it is possible to specify the
above as minus(cleanUp, brushTeeth).

To define this construct, we need to define
what a step of execution for this construct
is, and the remaining program. Also, note
that δ̂ must match all observable actions
performed by δ, but might do different an-
notation and test actions; those differences
should be ignored.

An additional axiom is added to specify
Trans for the minus construct:

Trans(minus(δ, δ̂), s, δ′, s′) ≡
∃δ′′.aTrans(δ, s, δ′′, s′) ∧

δ′ = minus(δ′′, δ̂) ∨
∃δ′′, a.rTrans(δ, s, δ′′, do(a, s)) ∧

s′ = do(a, s) ∧
(¬∃δ̂′s′′si.nTrans′(δ̂, s, s, δ̂′, do(a, s′′), si)

∧ δ′ = δ′′ ∨
∃δ̂′s′′si.nTrans′(δ̂, s, s, δ̂′, do(a, s′′), si)

∧ ¬nFinal′(δ̂′, do(a, s′′))
∧ δ′ = minus(δ′′, δ̂′)).

This says the following: if the next step of
the plan δ is not an observable action, then
the remaining program is what remains of
δ minus δ̂; if δ performs an observable ac-
tion, and δ̂ cannot match that action, then
the remaining program is what remains of
δ; if δ̂ can match the observable action per-
formed by δ but it is not final, then the re-
maining program is what remains of δ mi-
nus what remains of δ̂.

Note that whether Trans holds for
minus(δ, δ̂) depends on whether nTrans
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holds for δ̂ and the latter depends on
aTrans∗ and ultimately Trans, so the
definition might not appear to be well
founded. We ensure that it is well founded
by imposing the restriction that no minus

can appear in the second argument δ̂ of a
minus. So in the axiom, we use nTrans′
which is defined just like nTrans, except
that it is based on a version of Trans,
Trans′, that does not support the minus
construct and does not include the Trans
axiom for the minus construct. So Trans′
is just the existing Trans from [5], which
is well defined, and nTrans′ is defined
in terms of it. Then we can define the
new Trans that supports minus in terms
of nTrans′ and we have a well founded
definition. The same approach is used to
define Final for minus. The construct
minus is considered finished when δ is
finished, but δ̂ is not:

Final(minus(δ, δ̂), s) ≡
Final(δ, s) ∧ ¬nFinal′(δ̂, s).

We use C ′ to denote the extended Con-
Golog axioms: C together with the above
two. Note that recursive procedures can be
handled as in [5].

The above definition relies on a condition
imposed on the δ̂ that may appear as sec-
ond argument in a minus: for any se-
quence of transitions involving the same
actions, δ̂ should have only one possible
remaining program. More formally:

Trans∗(δ̂, s, δ̂1, s1) ∧
Trans(δ̂1, s1, δ̂

′, do(a1, s1)) ∧
Trans∗(δ̂, s, δ̂2, s2) ∧
Trans(δ̂2, s2, δ̂

′′, do(a2, s2)) ∧
do(a1, s1) = do(a2, s2)

⊃ δ̂′ = δ̂′′

This restriction seems quite natural be-
cause δ̂ is a model of what is not allowed.

If there are many possibilities about what
is not allowed after a given sequence
of transitions, then the model seems ill
formed or at least hard to work with.
An example of what is not allowed as
δ̂ would be the program (a; b)|(a; c),
because after observing the action a,
there could be two possible remain-
ing programs: b or c. Then we have
Trans(minus((a; c), (a; b)|(a; c)), s,
minus(c, b), do(a, s)) which is wrong
because a; c is also ruled out. If rewritten
as a; (b|c), this program is allowed. 3

Based on the above definition, to get
the annotated situation from an observ-
able one, we only need to apply nTrans
a number of times, until the observ-
able situation is reached. We de-
fine nTrans∗ as the reflexive transi-
tive closure of nTrans. The predicate
allT rans(sr, sa, δrem) means that sa de-
notes a possible annotated situation that
matches the observed situation sr, and
δrem is the remaining plan:

allT rans(sr, sa, δrem)
def
=

nTrans∗(planLibrary, S0, S0, δrem, sr, sa)

where S0 is the initial situation and
planLibrary is a procedure that represents
the plan library.

The set of all the remaining programs δ
and their corresponding annotated situa-
tions Sa for a given real situation S can be
defined as follows:

allP lans(S)
def
=

{(δ, Sa)| D ∪ C ′ |= allT rans(S, Sa, δ)}

where D is the action theory for the do-
main.

3We could try to drop this restriction and collect all the re-
maining δ̂, but it is not clear that these can always be finitely
represented, e.g. πn.(PositiveInteger(n)?; a; b(n)).
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As mentioned earlier, our account also
allows incremental calculation of the set
of plans that the agent may be execut-
ing. If (δ′, S ′a) ∈ allP lans(S) and D ∪
C ′ |= nTrans(δ′, S, S ′a, δ, do(A, S), Sa),
then (δ, Sa) ∈ allP lans(do(A, S)). The
converse is also true under some condi-
tions that typically hold.

4 Examples

The main example described here is a sim-
ulation of activities in a home. There are
four rooms: the bedroom, kitchen, liv-
ing room, and bathroom. There are also
four objects: the toothbrush, book, spoon,
and cup. Each object has its own place,
where it should be located. The toothbrush
should be in the bathroom, the book in the
living room, and the spoon and cup in the
kitchen.

Initially, all objects are where they are sup-
posed to be, except for two: the book is
in the kitchen, and the toothbrush is in the
living room. The location of the monitored
agent is originally in the bedroom.

There are four possible primitive actions:

• goTo(room): changes the location of
the agent to be room;

• pickUp(object): only possible if the
agent is in the same room as the ob-
ject; this causes the object to be held;

• putDown(object): only possible if
the agent holds the object; puts the ob-
ject down;

• use(object): only possible if the agent
holds the object.

We use the following fluents:

• loc: the room in which the agent is;

• loc(thing): the room in which the
thing is;

• Hold(thing): true if the agent holds
the thing, false otherwise.

We also use the following non-fluent pred-
icates:

• Room(r): r is a room;

• Object(t): t is an object;

• InP lace(thing, room): holds if
thing is in its place when it is in
room.

There are five procedures in the plan li-
brary:

• get(thing): go to the room where
thing is, and pick it up;

• putAway(thing): go to the room
where the thing should be, and put it
down;

• cleanUp: while there are objects that
are not in their places, get such an ob-
ject, or put it away;

• brushTeeth: get the toothbrush, use
the toothbrush, and either put away the
toothbrush, or put it down (where the
agent is);

• readBook: get the book, use the book,
and either put away the book, or put it
down.

The procedures are defined below. We also
use the following procedure:

proc getTo(r)
Room(r)?;
if loc 6= r then goTo(r) endIf

endProc

getTo checks if the current location is al-
ready the destination room r. If not, the
action goTo is executed. It is a helper
procedure, which was only introduced for
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convenience, and was not deemed impor-
tant enough to appear in the annotations.
Hence, it does not have startProc and
endProc actions. So, when the program
is executed, the procedure getTo will not
appear in the stack.

The definition of most of the other proce-
dures is straightforward:

proc get(t)
startProc(get(t));¬Hold(t)?;
getTo(loc(t)); pickUp(t);
endProc(get(t))

endProc;
proc putAway(t)

startProc(putAway(t)); Hold(t)?;
π r.InP lace(t, r)?;
getTo(r); putDown(t);
endProc(putAway(t))

endProc;
proc brushTeeth

startProc(brushTeeth);
get(toothbrush); use(toothbrush);
(putAway(toothbrush)|

putDown(toothbrush));
endProc(brushTeeth)

endProc;
proc readBook

startProc(readBook);
get(book); use(book);
(putAway(book)|putDown(book));
endProc(readBook)

endProc;

Procedures brushTeeth and readBook
have options: either the agent might put
the thing away in its place, or it might put
the thing down wherever it happens to be.
In practice, a person might do either, and
both executions should be recognized as
part of the procedure.

Perhaps the most complex procedure in
this example is cleanUp. The main idea
is that when executing this procedure, the
agent will, at each iteration, get a thing
that is not in its proper place, or put away
something it already holds.

proc cleanUp
startProc(cleanUp);
while ∃t.Object(t) ∧ ¬InP lace(t, loc(t))

do π t.Object(t) ∧
¬InP lace(t, loc(t))?;

(get(t)|putAway(t))
endWhile;
endProc(cleanUp)

endProc

The main plan library chooses some pro-
cedure to execute nondeterministically and
repeats this zero or more times:

proc planLibrary
(cleanUp|brushTeeth|

readBook|(πt.get(t)))∗.
endProc

Let’s look at an execution trace for the
above example. Suppose that the first ac-
tion was goTo(kitchen). The following
possible scenarios are then output by the
system:

proc get(book) -> goTo(kitchen)
proc get(cup) -> goTo(kitchen)
proc get(spoon) -> goTo(kitchen)
proc readBook -> proc get(book)

-> goTo(kitchen)
proc cleanUp -> proc get(book)

-> goTo(kitchen)

The system is trying to guess what the user
is doing by going to the kitchen. It lists
the five plans from the library that might
have this first action. Note that the possi-
bilities of doing cleanUp by getting a cup
or a spoon are not listed. This is because
both the spoon and cup are already in their
places, so if the agent picked them up, it
would not be cleaning up.

Now suppose that the next action is
pickUp(book). Then, the system can
discard some of the above possibilities,
namely those which involve taking some-
thing else. The new possible scenarios are:
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proc get(book)
-> goTo(kitchen); pickUp(book)

proc readBook -> get(book)
-> goTo(kitchen); pickUp(book)

proc cleanUp -> proc get(book)
-> goTo(kitchen); pickUp(book)

The next action is use(book). The plan
get(book) is finished, but there is no plan
in the library that could start with the ac-
tion use(book). So, this possibility can
be discarded. The next action of cleanUp
cannot match the observed actions as well.
Thus the only remaining possible plan is
readBook:

proc readBook -> proc get(book)
-> goTo(kitchen); pickUp(book);
use(book)

Now, let us consider a different scenario.
In order to demonstrate the use of the
minus and anyBut constructs, we can de-
fine two variants of cleanUp. In the first
one, cleanUpu, an arbitrary action is al-
lowed at the end of every iteration of the
loop. The second one, cleanUpm, together
with the optional arbitrary action, intro-
duces a constraint: a sequence of actions
will not be matched if it involves the exe-
cution of procedure brushTeeth. This is
achieved by using the minus construct.

proc cleanUpu

startProc(cleanUpu);
while ∃t.Object(t) ∧ ¬InP lace(t, loc(t))

do π t.Object(t) ∧
¬InP lace(t, loc(t))?;

(get(t)|putAway(t)); (any|nil)
endWhile;
endProc(cleanUpu)])

endProc

proc cleanUpm

startProc(cleanUpm);
minus(

while ∃t.Object(t) ∧
¬InP lace(t, loc(t)) do
π t.Object(t) ∧

¬InP lace(t, loc(t))?;
(get(t)|putAway(t)); (any|nil);

endWhile,
[brushTeeth]);

endProc(cleanUpm)
endProc

Suppose that the sequence of ob-
served actions starts with the two
actions goTo(livingRoom) and
take(toothbrush). All three variants
of cleanUp would match those actions,
and produce the same scenario:

proc cleanUp_k ->
proc get(toothbrush) ->

goTo(livingRoom);
pickUp(toothbrush)

where k is either nothing, or u or m, de-
pending on the version of the procedure
used.

Now suppose that the next action is
use(toothbrush). The original version of
cleanUp does not match the observed ac-
tion. The other two variants, cleanUpu
and cleanUpm, would still match the situ-
ation, because the new action matches the
unspecified action at the end of the loop.

If the next action is goTo(bathroom), then
both remaining procedures match this as
well:

proc cleanUp_k ->
proc get(toothbrush) ->

goTo(livingRoom);
pickUp(toothbrush);

use(toothbrush);
proc putAway(toothbrush) ->

goTo(bathroom)

where k can only be u or m.
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Now, if the next step is
putDown(toothbrush), then cleanUpu
matches it. However, cleanUpm does
not. That is because cleanUpm has the
minus construct, and the observed actions
matched the exception part of it. The
action putDown(toothbrush) can be
considered the last action of brushTeeth,
which was ruled out by the minus in
cleanUpm. So, cleanUpm cannot match
this sequence of actions. cleanUpu, which
is identical to cleanUpm except for the
minus construct, does match the action,
and produces the following scenario:

proc cleanUp_u ->
proc get(toothbrush) ->

goTo(livingRoom);
pickUp(toothbrush);

use(toothbrush);
proc putAway(toothbrush) ->

goTo(bathroom);
putDown(toothbrush)

Another example that the system was
tested on is that from [8] involving aircraft
flying procedures. There is a single pro-
cedure called fireOnBoard. It involves
three actions, performed sequentially, with
possibly other actions interleaved. The
three actions are fuelOff , fullThrottle,
and mixtureOff . The only restriction is
that while executing this procedure, the ac-
tion fuelOn must not occur. In our frame-
work, this example can be represented as
follows:

proc fireOnBoard
startProc(fireOnBoard),
minus([fuelOff ; any∗; fullThrottle;

any∗; mixtureOff ],
[(anyBut([fuelOn]))∗; fuelOn]);

endProc(fireOnBoard)
endProc

The above examples are kept simple to il-
lustrate how the various constructs work.
The system was tested on both of the above
examples, and more complicated ones. All
of the above traces were generated by the
implementation.

5 Implementation and Experi-
mentation

Our plan recognition system was imple-
mented using a Prolog-based version of In-
diGolog, an extension of ConGolog intro-
duced in [6]. The implementation closely
follows the definitions, without any opti-
mization for performance. The implemen-
tation assumes that the axioms specifying
the initial situation are represented as Pro-
log clauses and makes the closed world as-
sumption.

The system uses a user-defined domain
specification and plan library. All proce-
dures in the library need to satisfy some
restrictions. Each procedure P that is to
be reflected in the scenario has to start
and end with actions startProc(P ) and
endProc(P ), respectively. The proce-
dures can also use constructs anyBut and
minus.

The implementation can be used in inter-
active mode. Then the user is expected
to enter the observed actions one by one.
Also, at any point the user can issue one
of the following commands: prompt - list
all current hypotheses, reset - forget the
previous actions and start fresh, and exit -
finish execution.

We ran some experiments on the home
activities domain discussed above,
with a slight modification: the last
option in the plan library is now
(πt.[get(t), putDown(t)]) instead of
(πt.get(t)). This was done ensure that
there are arbirarily long executions of the
plan library. For each n, where n is the
length of an observed action sequence,
we randomly selected 200 sequences of n
actions that could be generated by the plan
library. We then ran the plan recognition
system on all of those and averaged the
running time. The results appear in Figure
1. We can see that our system can identify
matching plans for a sequence of 80
observed actions in less than one second
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on average in this test domain. As well,
for this domain the running time seems
to grow linearly with the length of the
observed action sequence.

Figure 1: Average runtime (seconds) ver-
sus the length of the action sequence

6 Discussion

In this paper, we have described a frame-
work for plan recognition in the Situation
Calculus. The ConGolog programming
language is used to specify plans. The sys-
tem matches the actions of the monitored
agent against the plan library and returns
some scenarios, representing the execution
paths that the agent may have followed.

The main differences between our account
of plan recognition and the one described
by [8] are that ours is able to model pro-
cedure calls within plans and that it is in-
cremental. Because our approach to plan
recognition concentrates on procedures, it
is able to distinguish sub-procedures from
each other as well as from top-level plans.
This allows the scenarios to be fairly de-
tailed both as to how and why a certain
plan was being executed.

Because our formalism is incremental, it
does not need to know the whole sequence
of actions to interpret the next step; nor
does it need to re-compute matching sce-
narios from scratch whenever a new ac-
tion is made. It would be well-suited for
real-time applications or continuous mon-
itoring.

The framework described here is easily ex-
tended with new annotations to specify, for
example, the goals and preconditions of

each plan and/or possible reactions to it
by the monitoring system. As mentioned
earlier, to fully support the recognition of
concurrent executions of plans, additional
annotations to track which process per-
formed each action should be introduced.
Another possible extension would be to
assign probabilities to actions and plans,
similarly to what was done in [7]. This
would make it possible to rank the possi-
ble execution hypotheses, select the most
probable ones and use this to predict which
actions the agent is more likely to execute
next. One could also look at qualitative
mechanisms for doing this. More exper-
imental evaluation of our system is also
needed.

There has already been work on home care
applications for a plan recognition system.
For example, [10] describes a plan recog-
nition system that includes strategies for
monitoring and obtaining actions, as well
as using learning to modify the plan li-
braries. Both of those techniques can po-
tentially work with our system.
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