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ASYMPTOTIC COHOMOLOGY OF CIRCULAR UNITS

by

Jean-Robert Belliard

Abstract. — Let F be a number field, abelian over Q, and fix a prime p 6= 2.
Consider the cyclotomic Zp-extension F∞/F and denote Fn the nth finite subfield
and Cn its group of circular units. Then the Galois groups Gm,n = Gal(Fm/Fn) act
naturally on the Cm’s (for any m ≥ n >> 0). We compute the Tate cohomology

groups Ĥi(Gm,n, Cm) for i = −1, 0 without assuming anything else neither on F nor
on p.
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Introduction

Let F be a number field, abelian over Q, and fix a prime p 6= 2. Consider the

cyclotomic Zp-extension F∞/F and denote Fn its nth finite layer, i.e. Fn/F is the

unique sub-extension of degree pn of F∞/F . Following Sinnott ([S]) we define, for

every Fn, its group of circular units Cn. Then the cyclic Galois groups Gm,n =

Gal(Fm/Fn) act naturally on the Cm’s (for any m ≥ n ≥ 0). The present note

aims to compute the Tate cohomology groups Ĥ i(Gm,n, Cm) for i = −1, 0 without

assuming anything else on F . To complete our computations in this general case,

we need to take into account differences between Sinnott and Washington versions

of circular units, even at the infinite level. In the process, as it does not involve

any other difficulties, we compute the cohomology of this second version, and also

the Γn = Gal(F∞/Fn)-cohomology of both inductive limits. Unfortunately we only
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succeed in describing these cohomology groups by assuming that n is not less than

some natural number N (see lemma 2.8, lemma 3.1 and theorem 3.5), hence the word

”asymptotic” in the title. On the other hand if we do assume ad hoc hypotheses on F ,

then the natural number N may be chosen to be equal to 0, and our general approach

recovers all previously known special cases (see e.g. articles [K1, K2, K3, KO],

and §III.4 of [B1], and §4 of [N]).

1. Two versions of cyclotomic units

We start by recalling the definitions of Sinnott’s and Washington’s circular units.

Fix an embedding of Q in C and denote ζm = exp(2iπ/m).

Definition 1.1. — Let F be an abelian number field and f be its conductor, that

is the smallest integer such that F ⊂ Q(ζf ). The group of units of F will be denoted

U(F ).

1. We call group of circular numbers of F and denote Cyc(F ) the Galois submod-

ule of F× generated by −1 and the numbers NQ(ζd)/Q(ζd)∩F (1 − ζd), where d

runs through all divisors of f greater than 1.

2. We call Sinnott’s group of circular units of F (see [S]) and denote C(F ) the

intersection

C(F ) = Cyc(F )
⋂

U(F ).

3. We call Washington’s group of circular units of F (see p.143 of [W]) and denote

W (F ) the intersection

W (F ) = Cyc(Q(ζf))
⋂

U(F ).

Fix now a prime number p 6= 2 and consider the cyclotomic Zp-extension F∞/F

of any abelian number field F . Then all finite layers Fn are still abelian over Q

and the notations Cn = C(Fn) and Wn = W (Fn) make sense. We also abbreviate

U(Fn) to Un. When necessary we will rather consider the pro-p-completions C(F ) =

C(F ) ⊗ Zp, W n = Wn ⊗ Zp, Cn = Cn ⊗ Zp and Un = Un ⊗ Zp. We put as usual

Γ = Gal(F∞/F ) and denote Λ = Zp[[Γ]] for the Iwasawa algebra. For all n we

have obvious inclusions Cn ⊂ Wn. Counterexamples to the equality are known.

Moreover there exist also abelian number fields F such that even the projective

limits C∞ = lim
←

Cn and W∞ = lim
←

W n with respect to norm maps along F∞/F

disagree (see e.g. [B2]; other examples were built simultaneously and independently

by Kučera in [Kuč]).

Definition 1.2. — Let us denote KN∞ the quotient module KN∞ = W∞/C∞.

This module has been defined as a capitulation kernel for unit classes and called

”Kučera–Nekovář kernel” in [BN] and [NL].

Let U∞ be the projective limit of the Un. Let µn be the pth-power roots of unity

in Fn and µ∞ be their projective limit. Let F+ be the maximal real subfield of F ,

and for any p-adic Gal(F/F+)-module M let us abbreviate MGal(F/F+) to M+. We

have µ∞ ⊂ C∞ ⊂ W∞ ⊂ U∞ and with M standing for any of these four modules
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of units we have a direct sum decomposition M = M+ ⊕ µ∞. For later use, we

summarize some other known properties of these modules in a proposition.

Proposition 1.3. — Let r = [F+ : Q].

1. The module KN∞ is finite.

2. The module W
+

∞ is Λ-free of rank r.

3. The Λ-module C
+

∞ is of rank r.

4. The module C
+

∞ is Λ-free if and only if KN∞ = 0.

5. The module KN∞ is the maximal finite submodule of U∞/C∞ = U
+

∞/C
+

∞.

Proof. — The indices (Wn : Cn) are bounded uniformly in n, this is the main result

of [KN]. Assertion 1 follows. Assertion 2 is a theorem of Kuz′min (see [Kuz2] or

discussion before proposition 3.6 of [B2]). Assertion 3 is a consequence of 1 and

2. Assertion 4 is proposition 3.6 of [B2] (see also [BN], proposition 2.3 (ii)). Let

us denote MF∞ for the maximal finite submodule of U∞/C∞. By assertion 1 we

already have an inclusion KN∞ ⊂ MF∞. But since both U
+

∞ and W
+

∞ are Λ-free the

quotient U∞/W∞ has no non-trivial finite submodule. This shows assertion 5. �

In [BN] (proposition 2.3 (ii)) the module denoted KNF was shown to be equal to

MF∞, so that notations are coherent. For our present purpose we will make no use

of the interpretation in terms of capitulation kernels. In the sequel we will consider

this finite module KN∞ as a parameter depending on the base field F . As written

above, two different infinite families of couples (F, p) giving non-trivial KN∞ are

described in [Kuč] and [B2]. On the other hand the definition 6.4, together with

theorem 6.6 in the appendix to [NL] gives a criterion for the triviality of KN∞. Up

to now all known examples of trivial KN∞ satisfy this criterion.

2. Universal norms of circular units

To compute the cohomology of Cm and Wm we first use the simpler structure

of W
+

∞ and of C
+

∞ to recover the cohomology of the ”universal norms” modules

C̃+
n ⊂ Cn and W̃+

n ⊂ W n, which are defined as the images of the usual projection

maps. Then in section 3 we will control the deviation between the initial modules

and their universal norms.

Definition 2.1. — Let n ∈ N.

1. Let C̃n = Im(C∞ −→ Cn) be the module consisting of the universal norms of

Sinnott’s units.

2. Let W̃n = Im(W∞ −→ W n) be the module consisting of the universal norms

of Washington’s units.

By a usual compactness argument we have e.g. C̃n =
⋂

m≥n NFm/Fn
(Cm) hence

the terminology ”universal norms”.

In the sequel we will obtain asymptotic results but will try to collect as much

information as possible about the first layer Fn from which our results apply. For
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the cohomology of W̃n, this is easier. It is well known that there exists some integer

n such that F∞/Fn is totally ramified at every place above p.

Definition 2.2. — We will denote nd the smallest integer such that no place above

p do splits anymore in F∞/Fnd
.

If p is (at most) tamely ramified in F/Q, then nd = 0. For all m ≥ n ≥ 0 we

will denote Gal(F∞/Fn) by Γn and Gal(Fm/Fn) ∼= Γn/Γm by Gm,n. By the mere

definition of Galois action on places, the group Γnd
acts trivially on the set S∞ of

places of F∞ dividing p.

For later use we will isolate in a lemma here a precise statement for our context

of the well known snake lemma :

Lemma 2.3. — For all m ∈ N and all Λ-module M let us denote by MΓm the

Γm-invariant submodule of M and by MΓm
the Γm-coinvariant quotient module of

M . Let 0 → A → B
ϕ
→ C → 0 be an exact sequence of Λ-module. Pick for all m

a topological generator γm of Γm. Then for all m ∈ N the map δ : CΓm −→ AΓm
is

well defined by the formula δ(ϕ(b)) = (γm − 1)b + (γm − 1)A and fits into the exact

sequence

0 −→ AΓm −→ BΓm −→ CΓm
δ

−→ AΓm
−→ BΓm

−→ CΓm
−→ 0.

Proof. — Just apply snake lemma to the sequence 0 → A → B
ϕ
→ C → 0 connected

with itself by multiplication by γm − 1. �

Proposition 2.4. — Let s+ = #S+
∞ be the number of places of F+

∞ dividing p. Let

nd be as in definition 2.2. Then for all m ≥ n ≥ nd, we have Ĥ0(Gm,n, W̃m) = 0

and H1(Gm,n, W̃m) is free of rank s+ over Z/pm−nZ.

Proof. — Fix m ≥ n ≥ nd. The canonical surjection W∞ −→ W̃m factors through

wm : (W∞)Γm
։ W̃m. Set Tm = Ker wm. By proposition 1.3 we know that (W∞)Γm

is isomorphic to µm ⊕ (W
+

∞)Γm
with both summands Gm,0-cohomologically trivial.

Therefore the cohomology of W̃m is the cohomology of Tm shifted once. To conclude

the proof of proposition 2.4 it suffices to show that Tm is a free Zp-module of rank

s+ with trivial action of Gm,n. For all n let U
′

n denote the pro-p-completion of

(p)-units of Fn, and U
′

∞ be their projective limit. By two theorem of Kuz′min (see

theorems 7.2 and 7.3 in [Kuz1]) the module U
′

∞ is Λ-free and for all m the map

(U
′

∞)Γm
−→ U

′

m is injective.

The sequence 0 // W∞
// U
′

∞
// U
′

∞/W∞
// 0 gives by lemma 2.3

0 // (U
′

∞/W∞)Γm // (W∞)Γm
// (U

′

∞)Γm
hence an isomorphism

Tm
∼= (U

′

∞/W∞)Γm .

This, together with the following lemma 2.5, completes the proof of the proposition

2.4. �
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Lemma 2.5. — Let s+
m be the cardinality of the set S+

m of places dividing p in the

maximal real subfield F+
m of Fm. Note that for all m ≥ nd the set S+

m is in bijection

with S+
∞.

1. The module U
′

∞/U∞ is Zp-free and pseudo-isomorphic to Zp[S
+
∞].

2. For all m the module (U
′

∞/W∞)Γm is Zp-free of rank s+
m with trivial action by

Γnd
.

Proof. — We first prove that 1 implies 2, then we will prove 1. Apply lemma 2.3 to

the sequence

0 // U∞/W∞
// U
′

∞/W∞
// U
′

∞/U∞
// 0.

We get

0 // (U∞/W∞)Γm // (U
′

∞/W∞)Γm // (U
′

∞/U∞)Γm // (U∞/W∞)Γm

By lemma 1.3 the module U∞/W∞ is pseudo-isomorphic to U∞/C∞, and as a

consequence of Coleman’s theory and Leopoldt’s conjecture (see theorem 1.1 of [B3])

these two modules have finite Γm-invariants and co-invariants. But since U
+

∞ and

W
+

∞ are Λ-free the quotient U∞/W∞ has no non-trivial finite submodule so that

(U∞/W∞)Γm = 0 and our previous sequence becomes

0 // (U
′

∞/W∞)Γm // (U
′

∞/U∞)Γm // finite.

Therefore assertion 2 follows from assertion 1. To prove 1 we use (normalized)

valuations at places above p and consider the exact sequence :

0 // U
′

∞/U∞
val // Zp[S∞] // D∞ // 0,

where D∞ stands for (the projective limit) of the p-part of the subgroup of ideal

class groups generated by places above p. This shows already that (U
′

∞/U∞) is

Zp-free with trivial action of Γnd
. Proving that (U

′

∞/U∞) is pseudo-isomorphic to

Zp[S
+
∞] is then equivalent to prove that D∞ is pseudo-isomorphic to Zp[S∞]− =

Zp[S∞]/Zp[S
+
∞]. This last statement is a consequence of Leopoldt conjecture (which

holds true for our abelian field F ) and is part of the folklore. For instance Greenberg

in [G] §1 proves that D+
∞ is finite and constructs in loc. cit. §2 a sequence of

subgroups (denoted Cm in loc. cit. p.120) of uniformly bounded finite index in Dm,

whose projective limit is pseudo-isomorphic to Zp[S∞]−. �

Corollary 2.6. — Let W̃
→∞

= lim
→ m

W̃m be the inductive limit of the W̃m’s. For all

n ≥ nd we have a (group)-isomorphism H1(Γn, W̃
→∞

) ≃ (Qp/Zp)
s+

and H2(Γn, W̃
→∞

)

is trivial.

Proof. — The groups H i(Γn, W̃
→∞

) are isomorphic to the inductive limit with respect

to the maps H i(Gm,n, W̃m) −→ H i(Gm+1,n, W̃m+1) induced by the couples of maps

Gm+1,n → Gm,n and W̃m → W̃m+1 (see proposition 1.5.1 of [NSW]). By proposition

2.4 the W̃m satisfies Galois descent, therefore the inflation maps H1(Gm,n, W̃m) −→
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H1(Gm+1,n, W̃m+1) are injectives. As H1(Gm,n, W̃m) ≃ (Z/pm−n)s+

the first limit is

(Qp/Zp)
s+

. Triviality of all H2 follows from that of all the Ĥ0’s. �

We want to describe Gm,n-cohomology of the C̃m and we will use a variation on

the above method used for the W̃m. As at the beginning of the proof of proposition

2.4 we have an isomorphism Ker((C∞)Γm
−→ C̃m) ∼= (U

′

∞/C∞)Γm . But U
′

∞/C∞
may have a non trivial finite submodule. Indeed we have sequence

0 // KNΓm
∞

// (U
′

∞/C∞)Γm // (U
′

∞/W∞)Γm // finite,(1)

extracted from the lemma 2.3 applied to the sequence 0 → KN∞ → U
′

∞/C∞ →

U
′

∞/W∞ → 0.

Definition 2.7. — We define Vm := (U
′

∞/C∞)Γm/KNΓm
∞ .

From the sequence (1) and lemma 2.5 we see that Vm is Zp-free of rank s+ and

the natural action by Γnd
on Vm is trivial. Hence for n ≥ nd the Gm,n-cohomology

of Vm is just s+ copies of the cohomology of Z. We will get the cohomology of C̃m

by going through the cohomology of the sequence :

0 // Vm
// (C∞)Γm

/KNΓm
∞

// C̃m
// 0(2)

Before this computation we will prove the existence of a first layer n from which our

result will apply and try to make it as precise as possible.

Lemma 2.8. —

1. There exists an n such that for all integers m ≥ n we have
(
U
′

∞/C∞

)Γm

=
(
U
′

∞/C∞

)Γn

.

2. For any integer n satisfying 1, the group Γn acts trivially on KN∞.

3. If n satisfies 1, then n ≥ nd.

4. If KN∞ = 0 then the integer nd of definition 2.2 satisfies 1.

Proof. — The Λ-module U
′

∞/C∞ is finitely generated. The sequence of submodules(
(U
′

∞/C∞)Γm

)
m∈N

is increasing. Part 1 of the lemma follows by noetherianity. Part

2 comes from the inclusion KN∞ ⊂ U
′

∞/C∞. Suppose that some x ∈ KN∞ is such

that σx 6= x for some σ ∈ Γn. But x, as an element of the finite module KN∞,

must be fixed by some Γm for m > n. Hence x ∈
(
U
′

∞/C∞

)Γm

\
(
U
′

∞/C∞

)Γn

and

n does not satisfy 1. This shows assertion 2. For assertion 3, and 4 we have seen in

the proof of lemma 2.5 that (U
′

∞/W∞)Γm embeds with finite cokernel into Zp[S∞]

for all m ≥ nd. Now Γnd
acts trivially on Zp[S∞] and if nd > 0 then Zp[S∞]Γnd−1 is

not of finite index in Zp[S∞]. This proves 3 and 4. �

Definition 2.9. — We will denote nU ′C the smallest integer n such that for all

integers m ≥ n the equality
(
U
′

∞/C∞

)Γm

=
(
U
′

∞/C∞

)Γn

holds.
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This number nU ′C is the first nonexplicit part of our ”asymptotic” approach.

Other approaches found in the literature simply assume hypotheses that imply

KN∞ = 0 and in such case we simply have nU ′C = nd.

Theorem 2.10. — Let s+ be as in proposition 2.4. Let n be greater than or equal

to nU ′C. Let Vm be the Zp-free module of rank s+ and trivial Γnd
-action of definition

2.7. For every integer i let KN∞[pi] be the kernel of multiplication by pi in KN∞.

For every m ≥ n we have

Ĥ0(Gm,n, C̃m) ∼= KN∞[pm−n]

and a (group split) exact sequence

0 // KN∞/pm−n // H1(Gm,n, C̃m) // Vm/pm−n // 0 .

Proof. — Fix m ≥ n ≥ nU ′C . To describe the cohomology of the sequence (2), we

first compute the cohomology of (C∞)Γm
/KN∞. From the sequence 0 → C∞ →

W∞ → KN∞ → 0 we obtain by lemma 2.3 a sequence

0 // (C∞)Γm
/KN∞ // (W∞)Γm

// KN∞ // 0.

As (W∞)Γm
is Gm,n-cohomologicaly trivial we see that (C∞)Γm

/KN∞ has the Gm,n-

cohomology of KN∞ shifted once. The exact hexagone of cyclic Tate cohomology

associated to the sequence (2) is now :

Vm/pm−n α // KN∞[pm−n] // Ĥ0(Gm,n, C̃m)

��
Ĥ−1(Gm,n, C̃m)

OO

KN∞/pm−noo 0oo

To conclude the proof of the theorem it remains now to prove that the map α of

this diagram is the 0 map. This map α is induced by the map δ : (U
′

∞/C∞)Γm −→

(C∞)Γm
of the lemma 2.3 applied to the sequence 0 → C∞ → U

′

∞ → U
′

∞/C∞ → 0.

To define this map δ let us pick a choice of a generator γm of Γm, and for later

use let us denote γn the generator of Γn such that γpm−n

n = γm. Then the map δ

sends any coset u ∈ U
′

∞/C∞ such that (γm − 1)u ∈ C∞ to the coset of (γm − 1)u

in (C∞)Γm
. Note that γm − 1 = νm,n(γn − 1), where νm,n =

∑pm−n−1
i=0 γi

n ∈ Λ acts

like the algebraic norm of the extension Fm/Fn on any Γm-trivial module. But the

integers m ≥ n have been chosen in such a way that (U
′

∞/C∞)Γm = (U
′

∞/C∞)Γn

and therefore we have (γm − 1)u = νm,n(γn − 1)u, where (γn − 1)u ∈ C∞. As by

definition we have

Ĥ0(Gm,n, (C∞)Γm
/KN∞) =

((C∞)Γm
/KN∞)Gm,n

νm,n((C∞)Γm
/KN∞)

,

this shows that α is indeed the 0 map and concludes the proof of theorem 2.10. �

Corollary 2.11. — Let C̃
→∞

= lim
→ m

C̃m be the inductive limit of the C̃m’s. For all

n ≥ nU ′C we have (group)-isomorphism H1(Γn, C̃
→∞

) ≃ (Qp/Zp)
s+

and H2(Γn, C̃
→∞

)

is trivial.
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Proof. — As Γn is pro-p-free H2(Γn, C̃
→∞

) is divisible and its order is bounded by the

finite order of KN∞, hence H2(Γn, C̃
→∞

) is trivial. Let us compute the H1(Γn, C̃
→∞

).

Extracted mutatis-mutandis from the proof of the theorem 2.10 we have the exact

sequence for all m >> 0 :

0 −→ H1(Gm,n, (C∞)Γm
/KN∞) −→ H1(Gm,n, C̃m) −→ H2(Gm,n, Vm) −→ 0.

Of course we have for m >> 0 the isomorphisms H1(Gm,n, (C∞)Γm
/KN∞) ≃ KN∞

and H2(Gm,n, Vm) ≃ Vm/pm−n and we recover the exact sequence :

0 −→ KN∞ −→ H1(Gm,n, C̃m) −→ Vm/pm−n −→ 0.

We want to take inductive limit on this sequence, and for that we need to clarify

what are the extension maps going up from the mth to the (m + 1)th step for the

modules KN∞ and the modules Vm/pm−n. The finite module of universal norms

KN∞ stabilizes with respect to natural (going down) norm maps and composition

of the two maps give multiplication by p. Therefore the inductive limit with respect

to extension maps of KN∞ is trivial. On the contrary the modules (Vm)m stabilize

with respect to extension maps already from the first step to Vn for m ≥ n ≥ nU ′C .

So for fixed n ≥ nU ′C the inductive limit lim
→

Vm/pm−n is Vn ⊗ Qp/Zp ≃ (Qp/Zp)
s+

.

�

3. Cohomology of circular units

We will try and recover the cohomology of Cm and Wm from that of their universal

norms C̃m and W̃m. For Cm the method is not new and has already been used in

[N] or [NL] and originally in [B1]. Here we only encounter another slight difficulty

coming from the non triviality of Ĥ0(Gm,n, C̃m). For W m our result is original.

Lemma 3.1. — For all n let In be the inertia subfield for p in Fn/Q. We have

In+1 = In as soon as Fn+1/Fn ramifies. Let I =
⋃

n In be the inertia subfield for p

in F∞/Q.

1. For all n we have equality

Cn = C̃nC(In),

hence for all n such that Fn+1/Fn ramifies we have equality

Cn = C̃nC(I).

2. There exist an integer n such that for all integers m ≥ n we have

C̃m

⋂
C(I) = C̃n

⋂
C(I).

Proof. — Assertion 1 is lemme 2.5 of [B2]. The Zp-module C(I) is finitely generated.

The sequence of submodules
(
C̃m

⋂
C(I)

)
m∈N

is increasing. Assertion 2 follows by

noetherianity. �

Definition 3.2. — We will denote nC the smallest non negative integer such that

FnC+1/Fn ramifies and such that property 2 of lemma 3.1 holds.
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This number nC is our second nonexplicit asymptotic constant. However if we

assume KN∞ = 0 then theorem 2.10 shows that the C̃m’s satisfy Galois descent and

that proves the equality nC = ni, where ni is the smallest non negative integer such

that Fni+1/Fni
ramifies.

After KN∞ there is another module that we have to consider as a parameter

depending on F . This module is essentially the one denoted Φ in [N] and that we

will define in our more general context now :

Definition 3.3. — We call universal co-norms of circular units and denote by Φm

the quotient module

Φm = Cm/C̃m.

We state and prove now the properties of Φm which are needed to compute the

cohomology of Cm. In particular we fix its asymptotic behavior, so that we may

consider it as a parameter (even if it is an non explicit and asymptotic one !). We

will give somewhat more explicit informations about this module and examine some

examples in section 4.

Lemma 3.4. — Recall that ni is the first nonnegative integer such that Fni+1/Fni

ramifies.

1. For all m the Zp-rank of Φm is s+
m − 1 where s+

m is the cardinal of the set S+
m

of places dividing p in the maximal real subfield F+
m of Fm.

2. For all m the group Γni
acts trivially on Φm.

3. For all m ≥ nC the extension map CnC
−→ Cm induces an isomorphism

ΦnC
∼= Φm.

Proof. — This lemma is an easy generalization of lemma-definition 2.2 in [NL], but

for the convenience of the reader we reprove it. To compute the rank of Φm just use

the exact sequence

0 // (U
′

∞/C∞)Γm // (C∞)Γm
// Cm

// Φm
// 0 .

Let r = [F+ : Q]. Then the Λ-module C∞ has trivial Γ-invariants and rank r. It

follows that (C∞)Γm
has Zp-rank equal to rpm. Also the Zp-module Cm is of finite

index in Um and has rank rpm −1 by Dirichlet’s theorem. The module (U
′

∞/C∞)Γm

has the same rank as (U
′

∞/W∞)Γm i.e. s+
m by assertion 2 of lemma 2.5. This proves

1. Assertions 2 and 3 follow from lemma 3.1. Indeed for all m we have

Φm = Cm/C̃m = C̃mC(Im)/C̃m
∼= C(Im)/C̃m

⋂
C(Im).

For all m the action of Γni
is trivial on Im, which proves 2 and for all m ≥ nC the

extension map ΦnC
−→ Φm commutes with the identity map in

C(I)/(C̃nC
∩ C(I)) = C(I)/(C̃m ∩ C(I)),

which proves 3. �
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In the sequel we will abbreviate ΦnC
to simply Φ. Recall that from theorem 2.10

we have for all m ≥ n ≥ nU ′C isomorphisms Ĥ0(Gm,n, C̃m) ∼= KN∞[pm−n] and exact

sequences :

0 // KN∞/pm−nKN∞ // Ĥ−1(Gm,n, C̃m) // (Z/pm−n)s+ // 0 .

Theorem 3.5. — Let n be any integer not less than both nU ′C and nC. Then for

all m ≥ n we have exact sequences

0 // KN∞[pm−n] // Ĥ0(Gm,n, Cm) // Φ/pm−nΦ // 0

and

0 // H1(Gm,n, C̃m) // H1(Gm,n, Cm) // Φ[pm−n] // 0 .

Proof. — Fix m ≥ n with n ≥ max(nC , nU ′C). As Gm,n is cyclic we may and

will compute Ĥ−1 during the proof. Then this proof consists in splitting into two

pieces the exact hexagone of cyclic Tate cohomology groups associated to the exact

sequence 0 −→ C̃m −→ Cm −→ Φ −→ 0. At first sight this exact hexagone is

KN∞[pm−n]
ϕ0 // Ĥ0(Gm,n, Cm) // Φ/pm−nΦ

δ0
��

Φ[pm−n]

δ−1

OO

Ĥ−1(Gm,n, Cm)oo Ĥ−1(Gm,n, C̃m).ϕ−1

oo

So we only have to prove that the two δ maps are both the 0 map or equivalently

that the ϕ maps are injective. The injectivity of ϕ−1 follows from the stabilization

with respect to extension maps of the quotients Φm. Indeed from this stabilization

property we can write Cm = CnC̃m and therefore for all generator σ of Gm,n we get

(σ − 1)(Cm) = (σ − 1)(C̃m) which proves that ϕ−1 is injective.

The kernel of ϕ0 is by definition the quotient Nm,n(Cm) ∩ C̃m/Nm,n(C̃m), where

Nm,n stands for the norm map of Fm/Fn. But by assertion 2 of lemma 3.1 we have

Nm,n(Cm) = Nm,n(C̃mC(I)) = Nm,n(C̃m)C(I)pm−n

.

Hence the equalities

Ker ϕ0 =

(
Nm,n(C̃m)C(I)pm−n

) ⋂
C̃m

Nm,n(C̃m)
=

Nm,n(C̃m)
(
C(I)pm−n ⋂

C̃m

)

Nm,n(C̃m)
.

But by the definition of nC for m ≥ n ≥ nC we have C(I) ∩ C̃m = C(I) ∩ C̃n and

by definition of C̃n we have C̃n ⊂ Nm,n(C̃m). This proves that Ker ϕ0 = 0. �

Corollary 3.6. — Let
→

C∞ be the inductive limit with respect to extension maps of

the Cm’s. Let Tor(Φ) be the Zp-torsion of Φ. For all n not less than both nC and

nU ′C we have (group) isomorphisms :

H1(Γn,
→

C∞) ≃ (Qp/Zp)
s+

⊕ Tor(Φ),

and

H2(Γn,
→

C∞) ≃ (Qp/Zp)
s+−1.
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Proof. — As before, when taking inductive limits, all contributions from the module

KN∞ vanish. The module Φ, contrary to KN∞, stabilizes with respect to extension

maps. Therefore extensions for Φ[pk] −→ Φ[pk+1] ultimately are isomorphisms and

give Tor(Φ) as inductive limit, while extensions for Φ/pk −→ Φ/pk+1 are right from

the start induced by multiplication by p and give Φ ⊗ (Qp/Zp) ≃ (Qp/Zp)
s+−1

as inductive limit. The sequence with H1 is group split because (Qp/Zp)
s+

is an

injective group. �

Finally we want to describe the cohomology of the Wm’s. We use the same strategy

as for the Cm’s and for that, we first have to prove the stabilization by extension

maps of the W m/W̃m’s. We will deduce this stabilization from the one of the Φm’s,

which unfortunately gives us a even worst lower bound nW from which our results

apply.

Lemma 3.7. — Exists an n such that for all m ≥ n the extension map W n −→

Wm induces an isomorphism W n/W̃n
∼= W m/W̃m.

Proof. — First take an n ≥ nC , and consider the (tautological) diagram with exact

rows :

0 // (W̃n ∩ Cn)/C̃n
// Cn/C̃n

//

(( ((PPPPPPP
W n/W̃n

// W n/(CnW̃n) // 0

(†) Cn/(W̃n ∩ Cn)

)

	

66mmmmmmm

As n ≥ nC the extension map Φn −→ Φm is surjective and so is the extension map

Cn/(W̃n ∩Cn) −→ Cm/(W̃n ∩Cm). Recall that we have n ≥ nC ≥ ni ≥ nd, so that

theorem 2.4 applies. In particular the W̃m’s satisfy Galois descent for m ≥ n and

the extension map W n/W̃n −→ Wm/W̃m is injective. Now use the snake lemma on

the right hand part of the diagram (†) with extension maps. This gives :

0

��

// Kn,m

��

0 // Cn/(W̃n ∩ Cn) //

��

W n/W̃n
//

��

W n/(CnW̃n) //

��

0

0 // Cm/(W̃m ∩ Cm) //

��

Wm/W̃m
//

��

Wm/(CmW̃m) //

��

0

0 // CoKn,m
// CoK ′n,m

// 0.

It follows that the kernels Kn,m are trivial and that the co-kernels CoKn,m and

CoK ′n,m are isomorphic. By the triviality of the kernels we see that the orders of the

finite groups W n/CnW̃n are increasing with n, but must stabilize because they are

uniformly bounded by the maximal of the orders of Cn/W n (which exists according

to main result of [KN]). So for an n greater than nC and such that the order of

W n/CnW̃n is maximal, we get the triviality of the two cokernels CoKn,m. �
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Definition 3.8. — We will denote by nW the smallest integer not less than nd and

such that for all m ≥ n the extension map W n/W̃n −→ Wm/W̃m is an isomorphism.

We will abbreviate W m/W̃m to ΦWm and W nW
/W̃nW

to simply ΦW .

Using diagram (†) again we see that ΦWm and Φm have the same Zp-ranks, namely

s+
m − 1, and of course that the natural action of ΓnW

on all ΦWm’s is trivial.

Theorem 3.9. — For all m ≥ n ≥ nW we have isomorphisms :

Ĥ0(Gm,n, Wm) ∼= ΦW/pm−n

and (group split) exact sequences :

0 // (Z/pm−n)s+ // H1(Gm,n, Wm) // ΦW [pm−n] // 0

Proof. — Using lemma 3.7 the proof of this theorem is the same as the proof of

theorem 3.5. It is even actually easier because when splitting in two pieces the

exact hexagone associated to the sequence 0 −→ W̃m −→ W m −→ ΦW −→ 0, we

only have to prove the injectivity of the map corresponding to ϕ−1 by virtue of the

triviality of Ĥ0(Gm,n, W̃m). This injectivity in turn follows from the stabilization of

ΦWm with respect to extension maps. �

Corollary 3.10. — Let
→

W∞ be the inductive limit with respect to extension maps

of the W m. Let Tor(ΦW ) be the Zp-torsion of ΦW . For all n greater than or equal

to nW we have (group) isomorphisms :

H1(Γn,
→

W∞) ≃ (Qp/Zp)
s+

⊕ Tor(ΦW ),

and

H2(Γn,
→

W∞) ≃ (Qp/Zp)
s+−1.

Proof. — The proof is exactly the same as the one of corollary 3.6. �

4. Universal co-norms of circular units

In this section we want to investigate the module Φm = Cm/C̃m which, together

with KN∞, describes the cohomology of the Cm’s. By lemma 3.4 we already know

that its Zp-rank is s+
m − 1 where s+

m is the number of places of F+
m dividing p. As

we have Φm = Cm/C̃m = C
+

m/C̃+
m we may suppose without loss of generality that

F is totally real. Next, as the rank of Φm is known, we should concentrate on its

Zp-torsion, let’s say Tor(Φm). To give examples of non trivial Tor(Φm) we state and

prove a lemma which provides also criteria for triviality of Tor(Φm).

Lemma 4.1. — Recall that Im is the maximal subfield of Fm such that p does not

ramify in Im/Q and that Cyc(Im) is the p-completion of its module of cyclotomic

numbers. Let σp be the Fröbenius automorphism of Im.

1. We have an exact sequence of finite groups

0 −→ C̃m ∩ C(Im)/Cyc(Im)σp−1 −→ Ĥ−1(〈σp〉, Cyc(Im)) −→ Tor(Φm) −→ 0.
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2. Assume that KN∞ = 0 and that p does not ramify in F , then we have an

isomorphism Tor(Φm) ∼= Ĥ−1(〈σp〉, Cyc(Im))

Proof. — By lemma 3.1 we have isomorphism Φm
∼= C(Im)/C(Im) ∩ C̃m. Using

distribution relations it is easy to check that Cyc(Im)σp−1 ⊂ C(Im) ∩ C̃m. By mere

rank computation the quotient C(Im) ∩ C̃m/Cyc(Im)σp−1 is finite. Let Dm be the

maximal subfield of Fm such that p (totally) splits in Dm/Q, and let NIm/Dm
be

the norm map. Write Cyc(Im)[NIm/Dm
] for the kernel of this norm on Cyc(Im).

Note that Cyc(Im)[NIm/Dm
] ⊂ C(Im). Then Cyc(Im)[NIm/Dm

] contains Cyc(Im)σp−1

with finite index and is maximal with respect to that property inside C(Im) because

NIm/DM
(Cyc(Im)) ⊂ Cyc(Dm) is torsion-free. To summarize, we have inclusions of

modules with finite index :

Cyc(Im)σp−1 ⊂ C̃m ∩ C(Im) ⊂ Cyc(Im)[NIm/Dm
].(3)

It follows that Tor(Φm) = Cyc(Im)[NIm/Dm
]/C(Im) ∩ C̃m and the exact sequence in

1 becomes tautological. Moreover, if we assume that p does not ramify in F and

KN∞ = 0, then we get C̃m∩C(Im) = C̃m∩C(F ) and nU ′C = 0. By theorem 2.10 the

sequence of modules (C̃m)m satisfies Galois descent and therefore C̃m ∩C(Im) = C̃0.

Now it is not difficult to see on a system of generators of Cyc(Im) that, in that case,

distribution relations imply the equality C̃0 = Cyc(Im)σp−1, so that 2 follows from

1. �

Using the exact sequence of 1, we see that Tor(Φm) turns out to be trivial as soon

as p does not divide the order of σp. Intuitively in the sequence of inclusions (3),

any couple of power of p should occur in some cases as a couple of indices. We prove

something far less ambitious which provides the simplest example of non-trivial

Tor(Φm).

Proposition 4.2. — Let F be a real abelian field of degree p such that σp generates

Gal(F/Q). Then we have KN∞ = 0 and for all m isomorphisms Φ0
∼

−→ Φm.

Moreover Φ0 is finite of order p if and only if at least two distinct rational primes

ramify in F and is trivial if and only if a single prime ℓ 6= p ramifies in F .

Proof. — In the present case we have s+
m = 1 for all m, so that Φm = Tor(Φm).

Then Gal(F/Q) is cyclic and p is unramified in F so that KN∞ is trivial (see [B1]).

By 2 of lemma 4.1 we deduce Φm = Φ0 = Ĥ−1(〈σp〉, Cyc(F )). In this case the

module Cyc(F ) is generated by the single number NQ(ζf )/F (1 − ζf) where f is the

conductor of F . If f is a single prime power then this module is Galois free and has

trivial cohomology. Else this module is isomorphic to Z[ζp], with residue field Fp as

H−1(Z/p, Z[ζp]). �

To conclude this section of examples, let us be completely explicit. Take p = 3,
ℓ1 = 7 and ℓ2 = 13. Observe that 3 is not a third power modulo 7 neither modulo
13. Then for i = 1 or 2 the field Q(ζℓi

) contains a cubic subfield (say Fi) which
admits F27 as residue field (in other word the ideal (3) remains prime in Fi). Let L
be the compositum F1F2. Then Gal(L/Q) is of type [3, 3] and therefore L admits
4 cubic subfields. These subfields are the inertia subfield at ℓ2, which is F1, the
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inertia subfield at ℓ1, which is F2, the decomposition subfield at 3 say D and a
fourth subfield F which has conductor f = ℓ1ℓ2 and in which the ideal (3) remains
prime. In these very simple cases, using proposition 4.2, we have trivial Φ0 for the
fields Fi, an example of finite Φ0 of order p for the field F and an example of Zp-free
Φ0 of rank 2 for the field D.

Acknowledgement : Its my pleasure to thank Thong Nguyen Quang Do and
Filippo Nuccio for careful reading and helpful comments.
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