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Abstract: This paper introduces low level operators in the context of detecting cylindrical axis in 

3-D images. Knowing the axis of a cylinder is particularly useful since cylinder location, length 

and curvature derive from this knowledge. This paper introduces a new gradient-based optimal 

operator dedicated to accurate estimation of the direction toward the axis. The operator relies on 

Finite Impulse Response filters. The approach is presented first in a 2-D context, thus providing 

optimal gradient masks for locating the center of circular objects. Then, a 3-D extension is 

provided, allowing the exact estimation of the orientation toward the axis of cylindrical objects 

when this axis coincides with one of the mask reference axes. Applied to more general cylinders 

and to noisy data, the operator still provides accurate estimation and outperforms classical gradient 

operators.  
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1. Introduction 

3-D Image acquisition techniques allow characterizing effectively the internal 

structure of material [1] or finely depicting organ shape in medical imaging [2]. 

Among the structures which are found within such 3-D data, tubular and 

cylindrical objects are especially of interest, since they appear in fibrous 

composite material (carbon or glass fibers) [3] as well as in angiography (blood 

vessels) [4]. Characterizing the shape of such objects mainly consists in locally 

determining both axis and section. Knowing the axis is particularly useful because 

cylinder location, length and curvature derive from it. 

The axis of a cylindrical object can be detected in two distinct ways. On one hand, 

the objects of interest can be detected or segmented from their background 

[4][6][7]; the axis of each component is then estimated. This approach is suitable 

when voxels within the cylindrical objects are homogeneous and distinguishable 

from the background. Image segmentation algorithms constitute the first step of 

such an approach [8][9]. Axis detection then derives from statistics or 

mathematical morphology. Algorithms based on the Hough transform of the voxel 

cloud resulting from the segmentation step have also been successfully used for 

this purpose [10][11][12].  

On the other hand, the axis of each cylindrical object can be detected directly from 

the 3-D data, without preliminary segmentation of the objects. In this case, it 

should be noted that once the axis is detected, a cylinder detection algorithm can 

retrieve the whole cylinder using the axis as an initialization step 

[13][14][15][16]. Since this kind of approach does not need any pre-segmentation, 

this is an appropriate choice if the cylindrical objects are not homogeneous, or if 

the voxel grey levels are similar to those of the background (see Figure a).  

Detecting the axis of the cylinder directly from image intensity can be achieved 

by estimating, from each voxel, the direction in which the axis will be found. 

Hereafter, this direction will be referred to as the orientation toward the cylinder 

axis [17]. Estimating the orientation toward the axis relies on computing the 

derivatives of image intensity. For discrete images, the derivatives cannot be 

directly computed but are usually estimated using the convolution between 

dedicated masks and the grey level data. Classical gradient masks can be found in 

the literature. Among them, Prewitt and Sobel masks are frequently used with 2-D 
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images [18] and can be easily extended to 3-D. However, they are not well 

adapted to orientation estimation in the case of cylindrical objects as they provide 

biased estimation. Other gradient estimators have been optimized regarding some 

specific criteria. For example, Canny [19] proposes well-known gradient masks 

optimized for the detection of a step profile in white Gaussian noise. Le Pouliquen 

[20] also proposes unbiased masks for estimating the orientation of 2-D 

directional textures.  

This paper proposes new gradient masks for the estimation of gradient direction 

with a view to obtaining the most accurate axis location of cylinders in 3-D 

images. Theoretical developments were carried out starting from cylindrical 

objects for which the axis coincided with one of the mask reference axes. In the 

following sections, such cylindrical objects will be referred to as vertical 

cylinders. First, our approach is introduced for 2-D images, in the case of circular 

objects with monomial profile functions such as ( ) kf r r= . Relations between 

mask coefficients are established and 2-D masks are proposed. In section 3, the 

previous 2-D approach is extended to 3-D for vertical cylinders, and 3-D masks 

are proposed. The 3-D masks provided are applied to both synthetic and real data 

in the fourth section. Experiments are extended to any cylindrical object and the 

noise sensitivity of the proposed masks is also addressed. 

2. 2-D unbiased masks for radial objects 

2.1. Profile function 

Let us consider a 2-D case, i.e. the orthogonal cross section of a 3-D cylindrical 

object. The corresponding disk is described by its profile function Nrrf =)(  

with 22 yxr += . Figure b illustrates the case 8)( rrf = . 

For each pixel, the direction toward the axis of the cylinder becomes the direction 

toward the center of the disk and is given by the gradient orientation θ : 
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Most functions ( )f r which have continuous derivatives up to order N can be 

approximated by a polynomial of order N using its Taylor expansion. Moreover, if 

the masks induce no bias for any monomial k
k rrf =)( ( Nk ≤ ), they induce no 

bias for the polynomial function ∑
=

=
N

k

k
k rarf

0

)( . 

Therefore, in this paper, the choice was made to design optimal masks for 

monomial functions ( ) N
Nf r r= , with order N as high as possible. If N is even, 

finding masks to obtain unbiased orientation estimation is an attainable goal. The 

profile functions considered are, for N even: 

nnN yxrrrf )()( 222 +===  (2) 

However, if N is odd, the polynomial expansion of ( )Nyx 22 + is infinite, 

making it impossible to find masks which do not involve any bias with the profile 

function ( )f r . In this case, optimal masks that minimize the orientation error will 

be sought.  

2.2. Convolution mask coefficients 

Let the ),( yx ffv =  be the “orientation vector”, i.e. any vector whose argument θ  

equals the orientation toward the center and such as 0v ≠ . Estimating the 

orientation θ  then consists in finding two convolution masks xm and ym , such 

that xx mff ⊗=  and yy mff ⊗= , and: 

arctan arctany

x

f y
f x

θ
⎛ ⎞ ⎛ ⎞= ≡⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 (3) 

Let { }+∈ Sjibij ),/(  be the coefficients of the discrete mask, with +S  

corresponding to the right part ( 0>i ) of the graph (see Figure c for xm ) and 

−S the left part ( 0<i ). Symmetries are imposed on the mask coefficients in order 

to carry out gradient estimation: 

 ijij bb −=−  
 ijji bb =− )(  
 00 =jb  

 0 ,),( =∪∉∀ −+
ijbSSji  
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When relation (3) is verified, the masks provide the exact orientation toward the 

center. Theses masks are referred to as unbiased masks. The following properties 

are proposed to assess whether a mask is biased or not. If one of these properties 

is satisfied, the corresponding masks give unbiased orientation estimation. 

xx Gf =  and yy Gf =  (4) 

xfx ×= α  and yf y ×= α , 0≠α  (5) 

),( yxxfx ψ×= , ),( xyyf y ψ×= and ),( yx∀ , ),(),( xyyx ψψ =  (6) 

Conditions (4) and (5) are sufficient but too restrictive to be useful, while (6) is 

necessary and sufficient. Furthermore, it makes finding relations between the 

coefficients possible, in order to obtain unbiased orientation estimation. 

For each point ),( yx of the image, the discrete convolution can be written as: 

( , ) ( , )
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f f m b f x i y j f x i y j b
+ +∈ ∈
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with ( ) ( )nn
ij jyixjyix 2222 )()()()( ++−−+++=Δ . 

Using Newton’s binomial theorem, the complete expansion of the components of 

the orientation vector v  gives 
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To obtain 
x

y

f
f

x
y
= , the following existence condition (9) as well as the non-bias 

condition (10) have to be satisfied. 

[ ] [ ] 0 ,1,0,1,0 ≠−−∈∃−∈∃ rsrnsnr α  (9) 

srrsr,s αα =∀   (10) 

Combining condition (10) with equation (8) leads to establishing the relations 

between the mask coefficients. 
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2.3. Constraints for unbiased orientation estimation 

The constraints for unbiased orientation estimation are given below for 4=n  and 

5=n . Let us note that considering higher values of n  is pointless, since a 

polynomial profile function of order 102 == nN  leads to quasi binary images. 

As a result of the expansion, the following relations are obtained. 
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 (12) 

It can be easily proven that if the mask verifies relations (11) and (12), it is 

unbiased for all profile functions defined by nyxrf 222 )()( +=  5≤∀n . 

2.4. Example of unbiased masks 

Given the constraints proposed in the preceding paragraph, unbiased masks can be 

established. The masks are centered on )0,0(=O  and are sketched at Figure d. 

Masks are termed GxDN where x is the dimension of the data and N is the degree 

of the profile function. 

The masks G2D10 satisfy (6), (11) and (12), so they induce no bias for the profile 

function for 102 ≤= nN . These masks give estimates of orientation without bias 

for a circular profile. 

3. 3-D unbiased masks for cylindrical objects 

Let the coordinate system be ( , , )i j k . In order to facilitate the extension to the 

3-D case, a vertical cylinder (with axis k ) is considered. The profile function 

becomes ),(),,( yxfzyxf = . 
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3.1. Relations between 2-D and 3-D 

In the 3-D case, the positive and negative domains of a given mask will be noted 

V +  and V −  respectively. The link between S +  (2-D) and V +  (3-D) is given by 

)0( =∩= ++ kVS . 

The coefficients of the mask are { }+∈Vkjiaijk ),,(/  with the symmetry conditions 

imposed by gradient estimation as in the 2-D case. 

The relation between mask coefficients in 2-D and in 3-D is: 

∑
∈

+ =∈∀
Zk

ijkij abSji  ,),(  (13) 

This relation ensures that the unbiased 2-D masks can be extended to 3-D. 

3.2. Example of 3-D masks 

As an example, the extension in 3-D of the 2-D mask G2D10 (Figure d) is 

considered. This 2-D mask can be seen as a projective view of a 3-D mask, where 

the coefficients are the sum of the weights along the axis k  (relation (13)). 

Figure e illustrates the proposed 3-D mask, G3D10. Here, the coordinates of 2−O , 

1−O , 1O  and 2O  are respectively )0,0,2(− , )0,0,1(− , )0,0,1(  and )0,0,2( .  

Note: For a complete representation of xm , the same sections exist respectively in 

1−=i and 2−=i as in 1=i  and 2=i , with negative coefficients. 

4. Results  

Various masks are tested in 3-D. In each case, the orientation bias (angle error) is 

evaluated. The results are compared to those of usual gradient masks. 

4.1. Error definition 

In 3-D, the estimation error θΔ  (Figure f) is given by the angle between the 

estimated orientation unit vector 1.nv v v −= and the unit vector normal to the 

cylinder axis 1.n MH r−= , where H is the orthogonal projection of the current 

point M on the cylinder axis and r MH= : 

sin( ) nn vθΔ = ∧  (14) 
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4.2. Experimental conditions 

The gradients are estimated in 3-D synthetic blocks. The size of these blocks is 

100100100 ×× . The profile functions for defining the cylinders are: 

Nrrf =)(  and ( )Nzyx zuzyuyxyxr 2
0

2
0

2
0 )()()( −+−++−+= λλλ  (15) 

with ),,( 0000 zyxM = and ))sin(),sin()cos(),cos()(cos(),,( ϕθϕθϕ== zyx uuuu . 

θ is the azimuth angle and ϕ  is the elevation angle. The axis equation (Figure f) 

is defined by: { }0 ,OM uλ λ+ ∈ . 

Hereafter, the experimental parameters for the profile functions are 

)0,50,50(0 =M , with N=9 or N=10 and various axis orientations are considered.  

Masks used for comparison 

In each case, the angle error obtained with G3D10 masks is compared to the error 

obtained with Prewitt (Figure g2), Sobel (Figure g3) and cross masks (Figure g4) 

under the same conditions. Figure g1 shows the 3-D shape of theses masks.  

These gradients estimators have been chosen since they are the most frequently 

used local gradients estimators. Others types of gradient estimators can be found 

[19][20] and have been designed in 2-D to be optimal for other specific criteria. 

4.3. Results for profile function of even order 

Vertical cylinder axis 

The estimation error, as defined in section 4.1, is evaluated for each voxel of the 

block. Then, the maximal estimation error of the block is retained. 

As expected, the maximal error for the G3D10 mask (Figure e) is negligible, 
6

max 10 deg.θ
−Δ = . Non-zero bias values are explained by the round-off and 

truncation errors involved during computation. In comparison, if the cross 

gradient is applied, the maximal error obtained is approximately max 8.9deg.θΔ = . 

Applying Prewitt masks, the maximal error obtained is approximately 

max 6.7deg.θΔ =  and for Sobel masks max 5.9deg.θΔ = . 
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Oblique cylinder axis 

Considering the case of oblique cylinders, the masks have been tested for various 

elevation angles [0,180]ϕ ∈  with 90deg.θ = . The estimation error depends on 

the relative location with respect to the cylinder axis. Therefore, to compare mask 

sensitivity to axis elevation ϕ , the maximal error for all locations is computed 

and shown in Figure h. Table a presents the maximal, minimal and mean values 

for all locations and for all ϕ  values. 

The first observation is that G3D10 is slightly biased when the axis does not 

correspond to a coordinate axis. An attempt was made to find mask coefficients 

corresponding to the minimal error, in the case of one specific axis orientation. 

Unfortunately, this was not possible since optimal coefficients are location-

dependant, and, more specifically, depend on the distance from the axis. 

However, compared to cross, Sobel, and Prewitt masks, G3D10 mask gives much 

more accurate results (Table a). 

Noise robustness 

Gaussian white noises with various Signal to Noise Ratios (SNR) are added to the 

3-D block with worse case axis elevation ( 63deg.ϕ = ). The SNR is defined by: 

320log r

b

gradSNR
σ

=⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (16) 

where bσ  is the standard deviation of the noise and gradr=3 is the gradient 

magnitude computed using only voxels for which the distance to the axis is 

5.03±=r pixel.  

For each SNR considered, the maximal value is identified from the orientation 

errors of the selected voxels. In each case, the mean orientation error is then 

computed for 50 noise realizations. 

As seen in Figure i, the mean orientation error obtained with the G3D10 mask is 

less than that obtained with the other masks, whatever the SNR ratio. G3D10 

masks being slightly larger than Sobel, Prewitt and cross masks, this partly 

explains the better noise robustness of the proposed approach. 
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4.4. Results for profile function of odd order 

As seen in section 2.1, for odd order of the exponent N , the profile function has 

an infinite polynomial expansion. Therefore, it is not possible to fulfill the no-bias 

conditions. However, the G3D10 masks are tested in the case of profile functions 

of odd order N=7 and N=9. In each case and for one particular orientation, finding 

optimal mask coefficient values is attempted by estimating the error versus mask 

coefficient values. The coefficients of the G3D10 masks yield the minimum 

estimation error, which is less than deg10 4− . This is a promising sign meaning 

that the proposed masks are quasi-optimal in the case of odd order profile 

functions. 

Figure j presents the results obtained for N=9, using the same protocol as in 

section 4.3. This figure shows that, even in the case of profile function of odd 

order, the G3D10 masks gives better results than the other tested masks. 

4.5 Result for a fibrous composite material 

The G3D10 masks are now being tested on fibrous composite materials. 3-D 

blocks have been acquired at the ESRF (European Synchrotron Radiation 

Facility), ID19 beam line,  using Synchrotron X-Ray Micro Tomography. 

Figure k shows the resulting vectors projected on the section of such a 3-D block. 

The arguments of these vectors gives the orientation toward the axes of the 

corresponding cylinders (modulo π). These estimations appear to be accurate 

within the cylinders. Outside the cylinders, the orientations are not significant, 

which is depicted by low magnitude gradients (magnitudes are not shown in 

Figure k). 

5. Conclusion 

In this paper, new convolution masks have been introduced to estimate the 

orientation toward the axis for cylindrical objects in 3D digital images. The 

approach presented relies on an optimal estimation of the derivatives of the profile 

function. These derivatives, which represent the grey level evolution inside the 

cylinder, are obtained convoluting gradient masks with the profile function. In 

establishing this model, the case of a 2D polynomial profile function of even order 

has been considered first. In this context, i.e. the case of a disk, this class of 
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profile functions leads to designing G2D10, a set of convolution masks unbiased 

for even orders 10N ≤ . The extension of this set of masks to cylinders in 3-D 

gives the set of masks G3D10. These masks maintain the unbiased properties of 

G2D10 when the cylinder lies along one of the main axes of the 3-D digital 

image, thus fulfilling the given objectives. 

Various experiments have been carried out to assess the validity of the approach 

proposed. Applied to synthetic data coherent with the initial hypothesis, i.e. even-

order polynomial profile functions and the cylinder axis lining up on one of the 

reference mask axes, the G2D10 and G3D10 masks provide exact estimations of 

the direction toward the axis for 2. 10N n= ≤ . Even in the case of odd-order 

polynomial profile functions, these masks still provide good estimates. They 

minimize the orientation bias and are at least sub-optimal. 

In the more general case of noisy data, oblique cylinders or odd-order polynomial 

profile functions, the estimators presented in this paper will not provide exact 

solutions. Nevertheless, G3D10 provides accurate estimations and constantly 

outperforms the Prewitt, Sobel and Cross gradient masks. In the cases referred to 

above, other approaches might be considered in order to optimize the masks. 

However, obtaining unbiased orientation estimation may not be an attainable goal. 

These accurate results can easily be combined with the radius estimation of the 

object, which is directly obtained from the derivative components of the gradient. 

Furthermore, this combination can be used as the initial step of a segmentation 

algorithm. The integration of axis location estimation and cylinder segmentation 

in 3-D digital images is currently in progress.  
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Figure legends 

Figure a: Images showing tubular or cylindrical objects; 1) vascular networks (angiography); 

2) Cross section of fiber-reinforced composite material (Synchrotron X-Ray Micro Tomography). 

Figure b: Cross section of a 3-D cylinder along one of the reference mask axes; example of profile 

function )(xf in 2-D. 

Figure c: Shape of the mask im in the 2-D case. Zero coefficients and the signs of non-zero 

coefficients are shown.  

Figure d: Examples of masks im  in the 2-D case. These masks provide the exact orientation 

toward the center of the circle for profile function Nrrf =)( . The masks are centered on 

)0,0(=O . 1) G2D6 with 6=N ; 2) G2D8 with 8=N ; 3) G2D10 with 10=N . 

Figure e: Example of mask im in 3-D case G3D10: 1) 3-D representation of the sections; 2) mask 

coefficients in the plane ),,( 1 jkO with )0,0,1(1 =O ; 3) mask coefficients in the plane 

),,( 2 jkO with )0,0,2(2 =O . For a complete representation of xm , consider the same section as for 

2) and 3) in the planes ),,( 1 jkO−  and ),,( 2 jkO−  with respectively  )0,0,1(1 −=−O  and 

)0,0,2(2 −=−O , and with negative coefficients. 

Figure f: Error θΔ in the case of a cylindrical profile. This error is the angle between the 

orientation unit vector nv and the unit normal vector to the cylinder axis 
r

MHn = with H the 

orthogonal projection of the current point M on the cylinder axis and MHr = . 

Figure g: Masks used in section 4: 1) 3-D shape of the mask xm ;. 2) Section of Prewitt mask; 

3) Section of Sobel mask; 4)   Section of cross mask. The sections are in the plane ),,( 1 jkO with 

)0,0,1(1 =O . For a complete representation of the mask im , consider the same sections in the plane 

),,( 1 jkO− with )0,0,1(1 −=−O and with negative coefficients. 

Figure h: Variation of the maximal angle error maxθΔ  (deg.) for various angles ϕ  (deg) and 

90deg.θ =  with ϕ  and θ defining the axis equation in spherical coordinates and for profile 

function of even order 10=N . Results for G3D10, Prewitt, Sobel and cross masks are shown. 

Figure i: Variation of the maximal angle error maxθΔ  (deg.) estimated for pixels with the axis 

distance 5.03±=r for various Signal to Noise Ratio. deg90=θ  and deg63=ϕ . The signal is the 

gradient norm at the axis distance 3=r . The noise is white and  Gaussian. 
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Figure j: Variation of the maximal angle error maxθΔ  (deg.) for G3D10, Prewitt, Sobel and Cross 

masks for profile function of odd order 9=N ; 1) For various angles ϕ (deg.) and 90deg.θ = ;  

2) For pixels with the axis distance 5.03±=r for various Signal to Noise Ratio. 90deg.θ =  and 

deg63=ϕ . The signal is the gradient norm. Distance to the axis is 3=r . The noise is white and 

Gaussian. 

Figure k: G3D10 gradient vectors projected on the corresponding fiber-reinforced composite 

material. The magnitude of the gradient is not shown. The 3D block results from Synchrotron X-

Ray Micro Tomography.  
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Table legends 

maxθΔ (deg) G3D10 mask Sobel mask Prewitt mask Cross mask 

mean 3.49 12.86 16.26 20.67 

maximum 5.73 15.74 19.5 31.01 

minimum 5.66e-13 4.56 6.78 8.91 

Table a: Orientation error estimations (deg.) for G3D10, Sobel, Prewitt and Cross masks. For each 

mask, the table shows the mean, the minimum and the maximum errors. 
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Figures 

 

1                                                                              2 

Figure a: Images showing tubular or cylindrical objects; 1) vascular networks (angiography); 

2) Cross section of fiber-reinforced composite material (Synchrotron X-Ray Micro Tomography). 
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Figure b: Cross section of a 3-D cylinder along one of the reference mask axes; example of profile 

function )(xf in 2-D. 
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Figure c: Shape of the mask im in the 2-D case. Zero coefficients and the signs of non-zero 

coefficients are shown.  
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1                                             2                                                3 

Figure d: Examples of masks im  in the 2-D case. These masks provide the exact orientation 

toward the center of the circle for profile function Nrrf =)( . The masks are centered on 

)0,0(=O . 1) G2D6 with 6=N ; 2) G2D8 with 8=N ; 3) G2D10 with 10=N . 
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1                                             2                                                3 

Figure e: Example of mask im in 3-D case G3D10: 1) 3-D representation of the sections; 2) mask 

coefficients in the plane ),,( 1 jkO with )0,0,1(1 =O ; 3) mask coefficients in the plane 

),,( 2 jkO with )0,0,2(2 =O . For a complete representation of xm , consider the same section as for 

2) and 3) in the planes ),,( 1 jkO−  and ),,( 2 jkO−  with respectively  )0,0,1(1 −=−O  and 

)0,0,2(2 −=−O , and with negative coefficients. 
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Figure f: Error θΔ in the case of a cylindrical profile. This error is the angle between the 

orientation unit vector nv and the unit normal vector to the cylinder axis 
r

MHn = with H the 

orthogonal projection of the current point M on the cylinder axis and MHr = . 
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1                                    2                                        3                                  4 

Figure g: Masks used in section 4: 1) 3-D shape of the mask xm ;. 2) Section of Prewitt mask; 

3) Section of Sobel mask; 4)   Section of cross mask. The sections are in the plane ),,( 1 jkO with 

)0,0,1(1 =O . For a complete representation of the mask im , consider the same sections in the plane 

),,( 1 jkO− with )0,0,1(1 −=−O and with negative coefficients. 
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Figure h: Variation of the maximal angle error maxθΔ  (deg.) for various angles ϕ  (deg) and 

90deg.θ =  with ϕ  and θ defining the axis equation in spherical coordinates and for profile 

function of even order 10=N . Results for G3D10, Prewitt, Sobel and cross masks are shown. 
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Figure i: Variation of the maximal angle error maxθΔ  (deg.) estimated for pixels with the axis 

distance 5.03±=r for various Signal to Noise Ratio. deg90=θ  and deg63=ϕ . The signal is the 

gradient norm at the axis distance 3=r . The noise is white and  Gaussian. 
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1                                                                   2  

Figure j: Variation of the maximal angle error maxθΔ  (deg.) for G3D10, Prewitt, Sobel and Cross 

masks for profile function of odd order 9=N ; 1) For various angles ϕ (deg.) and 90deg.θ = ;  

2) For pixels with the axis distance 5.03±=r for various Signal to Noise Ratio. 90deg.θ =  and 

deg63=ϕ . The signal is the gradient norm. Distance to the axis is 3=r . The noise is white and 

Gaussian. 
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Figure k: G3D10 gradient vectors projected on the corresponding fiber-reinforced composite 

material. The magnitude of the gradient is not shown. The 3D block results from Synchrotron X-

Ray Micro Tomography.  
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