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This note is a corrigendum to [M08]. As it has been recently pointed out to me by Alexander Premet, [M08, Remark 3.12] is incorrect

Introduction

Let g be a complex simple Lie algebra and G its adjoint group. We investigate in [M08] the dimension of the subsets, for m ∈ N,

g (m) := {x ∈ g | dim(Gx) = 2m},
where Gx denotes the adjoint orbit of x ∈ g. The irreducible components of the subsets g (m) are called the sheets of g, [START_REF] Borho | Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen[END_REF][START_REF] Borho | Über Schichten halbeinfacher Lie-Algebren[END_REF]. Thus, for any m ∈ N,

dim g (m) = max{dim S ; S ⊂ g (m) }, (1) 
where S runs through all sheets contained in g (m) . The sheets are known to be parameterized by the pairs (l, O l ), up to G-conjugacy class, consisting of a Levi subalgebra l of g and a rigid nilpotent orbit O l in l, cf. [B81]. This parametrization enables to write the dimension of a sheet S associated with a pair (l, O l ) as the sum of the dimension of the center of l and the dimension of the unique nilpotent orbit contained in S, see e.g. [START_REF] Moreau | On the dimension of the sheets of a reductive Lie algebra[END_REF]Proposition 2.11].

In the classical case, formulas for g (m) are given in [START_REF] Moreau | On the dimension of the sheets of a reductive Lie algebra[END_REF]Theorems 3.3 and 3.13] in term of partitions associated with nilpotent elements of g. As it has been recently pointed out by Alexander Premet, Remark 3.12 in [M08] which claims that "in the classical case, the dimension of a sheet containing a given nilpotent orbit does not depend on the choice of a sheet containing it" is incorrect. We give here some counter-examples (cf. Examples 3.1 and 3.2; see also [START_REF] Premet | Derived subalgebras of centralisers and finite W -algebras[END_REF]Remark 4]). This is true only for the type A where each nilpotent element belongs to only one sheet. The error stems from the proof of [START_REF] Moreau | On the dimension of the sheets of a reductive Lie algebra[END_REF]Proposition 3.11]; see Section 3 for explanations. As a consequence, the proof of [START_REF] Moreau | On the dimension of the sheets of a reductive Lie algebra[END_REF]Theorems 3.13], partly based on [START_REF] Moreau | On the dimension of the sheets of a reductive Lie algebra[END_REF]Proposition 3.11], is incorrect too. However its statement remains true. This can be shown through a recent work of Premet and Topley,[START_REF] Premet | Derived subalgebras of centralisers and finite W -algebras[END_REF]. In more details, another formula for g (m) in term of partitions can be traced out from [START_REF] Premet | Derived subalgebras of centralisers and finite W -algebras[END_REF]Corollary 9] and the equality (1). In this note, we verify (cf. Theorems 2.10) that the Premet-Topley formula for g (m) coincides with the one of [START_REF] Moreau | On the dimension of the sheets of a reductive Lie algebra[END_REF]Theorem 3.13].

The note is organized as follows.

In Section 2, we recall some definitions and results of [START_REF] Premet | Derived subalgebras of centralisers and finite W -algebras[END_REF] and show that the statement of [START_REF] Moreau | On the dimension of the sheets of a reductive Lie algebra[END_REF]Theorem 3.13] is correct in spite of the error in [START_REF] Moreau | On the dimension of the sheets of a reductive Lie algebra[END_REF]Proposition 3.11], see Theorem 2.10(ii). In Section 3, we precisely pin down the error in the proof [START_REF] Moreau | On the dimension of the sheets of a reductive Lie algebra[END_REF]Proposition 3.11] and describe the impacts of that error in [M08]. As a conclusion, we list in Section 4 all corrections which have to be taken into account in [M08].

Since the corrections in [M08] only concern the types B, C and D, we assume for the remaining of the note that g is either so(N) or sp(N), with N 2, and ε is 1 or -1 depending on whether g = so(N) or sp(N). Following the notations of [M08] (or [START_REF] Premet | Derived subalgebras of centralisers and finite W -algebras[END_REF]), we denote by P ε (N) the set of partitions of N associated with the nilpotent elements of g. For λ = (λ 1 , . . . , λ n ) ∈ P ε (N), we denote by e(λ) the corresponding nilpotent element of g whose Jordan block sizes are λ 1 , . . . , λ n . We will always assume that λ 1 • • • λ n .
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The main result

For the convenience of the reader, we recall here all the necessary definitions and results of [START_REF] Premet | Derived subalgebras of centralisers and finite W -algebras[END_REF]. Given a partition λ = (λ 1 , . . . , λ n ) ∈ P ε (N) we set,

∆(λ) := {1 i < n ; ε(-1) λ 1 = ε(-1) λ i+1 = -1, λ i-1 = λ i λ i+1 = λ i+2 }.
Our convention is that λ 0 = 0 and λ i = 0 for all i > n. Recall the following result of Kempken and Spaltenstein (also recalled in [M08] and [START_REF] Premet | Derived subalgebras of centralisers and finite W -algebras[END_REF]):

Theorem 2.1 ([K83, S82]). Let λ = (λ 1 , . . . , λ n ) ∈ P ε (N). Then e(λ) is rigid if and only if • λ i -λ i+1 ∈ {0, 1} for all 1 i n; • the set {i ∈ ∆(λ) ; λ i = λ i+1 } is empty.
Denote by P * ε (N) the set of λ ∈ P ε (N) such that e(λ) is rigid. We call the elements of P * ε (N) the rigid partitions. We first introduce the notion of admissible sequences, see [PT12, §3.1]. This is an extended version of the algorithm described in [M08] which takes λ ∈ P ε (N) and returns an element of P * ε (N) compatible for the induction process of nilpotent orbits. Let i be a finite sequence of integers between 1 and n. The procedure of [START_REF] Premet | Derived subalgebras of centralisers and finite W -algebras[END_REF] is as follows: the algorithm commences with input λ = λ i ∈ P ε (N) where i = ∅ is the empty sequence. At the l th iteration, the algorithm takes λ i ∈ P ε (N -2 l-1 j=1 i j ) where i = (i 1 , . . . , i l-1 ) and returns λ i ′ ∈ P ε (N -2 l j=1 i j ) where i ′ = (i 1 , . . . , i l-1 , i l ) for some i l . If the output λ i ′ is a rigid partition then the algorithm terminates after the l th iteration with output λ i ′ . We shall now explicitly describe the l th iteration of the algorithm. If after the (l -1) th iteration the input λ i is not rigid then the algorithm behaves as follows. Let i l denote any index in the range 1 i n such that either of the following case occur:

Case 1: λ i i l λ i i l +1 + 2; Case 2: i l ∈ ∆(λ i ) and λ i i l = λ i i l +1
. Note that no integer i l will fulfill both criteria. If i = (i 1 , . . . , i l-1 ) then define i ′ = (i 1 , . . . , i l-1 , i l ). For Case 1 the algorithm has output

λ i ′ = (λ i 1 -2, λ i 2 -2, . . . , λ i i l -2, λ i i l +1 , .
. . , λ i n ) whilst for Case 2 the algorithm has output

λ i ′ = (λ i 1 -2, λ i 2 -2, . . . , λ i i l -1 -2, λ i i l -1, λ i i l +1 -1, λ i i l +2 , . . . , λ i n ).
Due to its definition and the classification of rigid partitions the above algorithm certainly terminates after a finite number of steps.

Definition 2.2 ([PT12, §3.1]). We say that a sequence i = (i 1 , . . . , i l ) is an admissible sequence for λ if Case 1 or Case 2 occurs at the point i k for the partition λ (i 1 ,...,i k-1 ) for each k = 1, . . . , l. An admissible sequence i for λ is be called a maximal admissible sequence for λ if neither Case 1 nor Case 2 occurs for any index i between 1 and n for the partition λ i . By convention the empty sequence is admissible for any λ ∈ P ε (N).

As observed in [PT12, Lemma 6], if i is an admissible sequence for λ, then i is maximal admissible if and only if λ i is a rigid partition. We will denote by |i| := l the length of an admissible sequence for λ.

Definition 2.3. The algorithm as described in [M08] corresponds to the special case where in the above algorithm, we define at each step i l to be the smallest integer which fulfills one the Case 1 or Case 2 criteria, and λ i is rigid. In the sequel, we will refer the so obtained maximal admissible sequence for λ to as the canonical maximal admissible sequence for λ and we denote it by i 0 . Then we set z M (λ) := |i 0 |.

Remark. The integer z M (λ) corresponds to the integer z(λ) of [M08].

Definition 2.4 ([PT12, Definition 1]). If i ∈ ∆(λ) then the pair (i, i + 1) is called a 2-step of λ. If i > 1 and (i, i + 1) is a 2-step of λ then λ i-1 and λ i+2 are referred to as the boundary of (i, i + 1). If 1 ∈ ∆(λ) then λ 3 is referred to as the boundary of (1, 2) (if n = 2 then λ 3 = 0 by convention).

We observe that ∆(λ) is the set of 2-steps of λ, and by |∆(λ)| its cardinality.

Definition 2.5 ([PT12, §3.2]). If i ∈ ∆(λ) then we say that the 2-step (i, i + 1) has a good boundary if λ 1 and the boundary of (i, i + 1) have the opposite parity. If the boundary of a 2-step (i, i + 1) of λ is not good then we say that it is bad and we refer to (i, i + 1) as a bad 2-step. Note that (i, i + 1) is a bad 2-step of λ if and only if either i > 1 and λ i-1 -λ i ∈ 2N, or λ i+1 -λ i+2 ∈ 2N.

To ease notation, we simply denote here by i := i 0 the canonical maximal sequence for λ. Then recall that by Definition 2.3, z M (λ) = |i|. Set λ ′ := λ (i 1 ) . Clearly, z M (λ ′ ) = z M (λ) -1. By the induction hypothesis, we have z PT (λ ′ ) = z M (λ ′ ). Hence, we have to show that:

z PT (λ ′ ) = z PT (λ) -1.
Our strategy is to compare the formulas for z PT (λ ′ ) and z PT (λ) given by Definition 2.8. Recall that i 1 is the smallest integer which fulfills one of the Case 1 or Case 2 criteria for λ. First of all, we observe that if i ∈ ∆(λ) (resp. i ∈ ∆(λ ′ )), then i i 1 . Indeed, if i ∈ ∆(λ) and i < i 1 (if i 1 = 1, it is clear), then either λ i = λ i+1 and then i fulfills the Case 2 which contradicts the minimality of i 1 , or λ i -λ i+1 ∈ 2N {0} and then i fulfills the Case 1 which contradicts the minimality of i 1 too.

We now consider the two situations Case 1 and Case 2 separately.

Case 1:

λ i 1 λ i 1 +1 + 2.
We have,

λ ′ = (λ 1 -2, . . . , λ i 1 -1 -2, λ i 1 -2, λ i 1 +1 , . . . , λ n ),
and

s(λ ′ ) = i 1 -1 i=1 [(λ i -λ i+1 )/2] + [(λ i 1 -2 -λ i 1 +1 )/2] + n i=i 1 +1 [(λ i -λ i+1 )/2] = s(λ) -1.
Compare now the other terms appearing in Definition 2.8. Note that i 1 ∈ ∆(λ) (resp.

i 1 ∈ ∆ bad (λ)) if and only if i 1 ∈ ∆(λ ′ ) (resp. i 1 ∈ ∆ bad (λ ′
)) since the passing from λ to λ ′ preserves the parities. For the same reason, i 1 belongs to a good 2-cluster of λ if and only i 1 belongs to a good 2-cluster of λ ′ . Then we discuss two cases depending on whether i 1 + 1 is in ∆(λ) or not:

• i 1 + 1 ∈ ∆(λ).
Once again, we consider two cases:

* λ i 1 -2 = λ i 1 +1 . Then i 1 + 1 ∈ ∆(λ ′ ) too. Moreover, i 1 + 1 ∈ ∆ bad (λ ′ ) if and only if i 1 + 1 ∈ ∆ bad (λ). Hence, we conclude that |∆(λ ′ )| = |∆(λ)|, |∆ bad (λ ′ )| = |∆ bad (λ)| and |Σ(λ ′ )| = |Σ(λ)|. * λ i 1 -2 = λ i 1 +1 . Then i 1 + 1 ∈ ∆ bad (λ) since λ i 1 -λ i 1 +1 = 2 ∈ 2N. But i 1 + 1 ∈ ∆(λ ′ ). Therefore, |∆(λ ′ )| = |∆(λ)| -1 and |∆ bad (λ ′ )| = |∆ bad (λ)| -1. Moreover, if i 1 + 1 belongs to a 2- cluster of λ, then it is bad because λ i 1 -λ i 1 +1 ∈ 2N. Hence, we have |Σ(λ ′ )| = |Σ(λ)|. • i 1 + 1 ∈ ∆(λ).
In this case, note that i 1 + 1 ∈ ∆(λ ′ ). Hence, we conclude that |∆(λ

′ )| = |∆(λ)|, |∆ bad (λ ′ )| = |∆ bad (λ)| and |Σ(λ ′ )| = |Σ(λ)|.
Case 2: i 1 ∈ ∆(λ) and λ i 1 = λ i 1 +1 .

By the minimality condition of i 1 , we have λ i 1 -1 = λ i 1 + 1 (except for i 1 = 1, in which case λ i 1 -1 = 0 by convention), and so λ i 1 -2 = λ i 1 -1 because ε(-1) λ i 1 -1 = 1. We have

λ ′ = (λ 1 -2, . . . , λ i 1 -1 -2, λ i 1 -1, λ i 1 +1 -1, λ i 1 +2 , . . . , λ n ),
and

s(λ ′ ) = i 1 -2 i=1 [(λ i -λ i+1 )/2] + [(λ i 1 -1 -λ i 1 -1)/2] =0 since λ i 1 -1 =λ i 1 +1 + [(λ i 1 -λ i 1 +1 )/2] + [λ i 1 +1 -1 -λ i 1 +2 )/2] + n i=i 1 +1 [(λ i -λ i+1 )/2] = s(λ) -1 if λ i 1 +1 -λ i 1 +2 ∈ 2N; s(λ) if λ i 1 +1 -λ i 1 +2 ∈ 2N.
(If i 1 = 0, we start at the second line and we get the same conclusion.) Also, observe that in Case 2, we have

|∆(λ ′ )| = |∆(λ)| -1.
Indeed, i 1 ∈ ∆(λ) but i 1 ∈ ∆(λ ′ ) and for the indexes i = i 1 we have here the equivalence:

i ∈ ∆(λ) ⇐⇒ i ∈ ∆(λ ′ ).
We discuss two cases on the parity of λ i 1 +1 -λ i 1 +2 .

• λ i 1 +1 -λ i 1 +2 ∈ 2N.

Then i 1 ∈ ∆ bad (λ). There are two sub-cases depending on whether i 1 + 2 is in ∆(λ) or not:

* i 1 + 2 ∈ ∆(λ). Then, i 1 + 2 ∈ ∆ bad (λ) (since λ i 1 +1 -λ i 1 +2 ∈ 2N) and i 1 + 2 ∈ ∆(λ ′ ).
Once again, there are two sub-cases: [START_REF] Moreau | On the dimension of the sheets of a reductive Lie algebra[END_REF]Proposition 3.7] for the tilda notation). Then the smallest integer such that one of the situations (a) or (b) of Step 1 happens for d = d (1) is 3 = i 1 .

1) i 1 + 2 ∈ ∆ bad (λ ′ ). Then |∆ bad (λ ′ )| = |∆ bad (λ)| -2. Moreover, (i 1 , i 1 + 2) is a good 2-cluster of λ. Indeed, i 1 + 2 ∈ ∆ bad (λ ′ ) implies that λ i 1 +3 -λ i 1 +4 ∈ 2N. On the other hand, λ i 1 -1 -λ i 1 = 1 ∈ 2N (if i 1 = 1 the first condition in Definition 2.6 should be omitted). But (i 1 , i 1 + 2) is not a 2-cluster of λ ′ since i 1 ∈ ∆(λ ′ ). Hence, we have |Σ(λ ′ )| = |Σ(λ)| -1 by Lemma 2.7. 2) i 1 + 2 ∈ ∆ bad (λ ′ ). Then |∆ bad (λ ′ )| = |∆ bad (λ)| -1. Moreover, the unique 2-cluster of λ which is possibly not a 2-cluster of λ ′ is (i 1 , i 1 + 2) but it is bad in this case. Indeed, λ i 1 +3 -λ i 1 +4 ∈ 2N since i 1 + 2 ∈ ∆ bad (λ ′ ) (and λ ′ i 1 +1 -λ ′ i 1 +2 ∈ 2N). Hence, |Σ(λ ′ )| = |Σ(λ)|. * i 1 + 2 ∈ ∆(λ). Then |∆ bad (λ ′ )| = |∆ bad (λ)| -1. Moreover, since i 1 + 2 ∈ ∆(λ), then neither i 1 nor i 1 + 2 belongs to a 2-cluster for λ. Hence |Σ(λ)| = |Σ(λ ′ )|. S = 1, i 1 = 4, d (0) = f = (2, 2, 1, 1, 1, 1), d = d (1) = d (0) (see

Conclusion

To summarize, we list below all corrections which have to be taken into account in [M08] (the numbering of [M08] is used):

• Proposition 3.11 (its proof and its statement) is incorrect.

• As a consequence Remark 3.12, the sentence "The results of this section specify that, in the classical case, the dimension of a sheet containing a given nilpotent orbit does not depend on the choice of a sheet containing it" in §1.2, and the sentence "Surprisingly, in the classical case, we will notice that if Ind l 1 (O l 1 ) = Ind l 2 (O l 2 ), then dim z g (l 1 ) = dim z g (l 2 )" in Remark 2.15, are also incorrect. • The proof of Theorem 3.13 is incorrect, since it uses Proposition 3.11. Nevertheless, its statement remains valid. In particular, Tables 3, 4 and 5 are still correct.

Remark. There are some misprints in 

  Table 5: line 2m = 48, the partitions are [7, 1 5 ], [5, 3, 2 2 ], [4 2 , 3, 1] and not [4 3 ], [4 2 , 3, 1].

 

We denote by ∆ bad (λ) the set of bad 2-steps of λ, and by |∆ bad (λ)| its cardinality.

Definition 2.6 ([PT12, Definition 2]). A sequence 1

i 1 < • • • < i k < n with k 2 is called a 2-cluster of λ whenever i j ∈ ∆(λ) and i j+1 = i j + 2 for all j. We say that a 2-cluster i 1 , . . . , i k has a bad boundary if either of the following conditions holds:

(if i 1 = 1 the the first condition should be omitted). A bad 2-cluster is one which has a bad boundary, whilst a good 2-cluster is one without a bad boundary.

We denote by Σ(λ) the set of good 2-clusters of λ, and by |Σ(λ)| its cardinality.

Lemma 2.7 ([PT12, Lemma 11]). A good 2-cluster is maximal in the sense that it is not a proper subsequence of any 2-cluster.

Definition 2.8 (Premet-Topley). For any λ ∈ P ε (λ), the integer z PT (λ) is defined by the formula:

Remark. The integer z PT (λ) corresponds to the integer z(λ) of [START_REF] Premet | Derived subalgebras of centralisers and finite W -algebras[END_REF].

By [START_REF] Premet | Derived subalgebras of centralisers and finite W -algebras[END_REF]Theorem 8], we have that

where the maximum is taken over all admissible sequences for λ. Hence, by [START_REF] Premet | Derived subalgebras of centralisers and finite W -algebras[END_REF]Corollary 9] and the equality (1) of the introduction, we get: Theorem 2.9 (Premet-Topley). For any m ∈ N, we have

The main result of this note is:

In other words, the statement of [START_REF] Moreau | On the dimension of the sheets of a reductive Lie algebra[END_REF]Theorem 3.13] is correct.

Proof. (ii) is a direct consequence of (i) and Theorem 2.9. (i) We argue by induction on N (the statement is true for small N). Let N > 2 and assume the statement true for any λ ∈ P ε (N ′ ), with 1 N ′ N, and let λ ∈ P ε (N).

If λ ∈ P * ε (N), then z PT (λ) = z M (λ) = 0 (see Theorem 2.1, Definition 2.2 and equality (2)). So, we can assume that λ is not a rigid partition. In particular, z PT (λ) > 0 and z M (λ) > 0.

In all the cases, we can check with the formula of Definition 2.8 that z PT (λ ′ ) = z PT (λ) -1 as desired. This concludes the proof of Theorem 2.10.

3.

Counter-examples for [START_REF] Moreau | On the dimension of the sheets of a reductive Lie algebra[END_REF]Proposition 3.11] From now on, we shall denote by z(λ) the integer z M (λ) = z PT (λ) for λ ∈ P ε (N). If l is Levi subalgebra of g and O ′ is a rigid nilpotent orbit of l, we denote by Ind g l (O ′ ) the induced nilpotent orbit of g from O ′ in l.

Proposition 3.11 of [M08] asserts that if a nilpotent element e associated with the partition λ ∈ P ε (N) is induced form a nilpotent orbit in a Levi subalgebra l, then z(λ) is equal to the dimension of the center of l. This result is actually incorrect. If it were true, it would imply that all the sheets containing e share the same dimension (see [START_REF] Moreau | On the dimension of the sheets of a reductive Lie algebra[END_REF]Remark 3.12]). But this is wrong. Below are some counter-examples (see also [START_REF] Premet | Derived subalgebras of centralisers and finite W -algebras[END_REF]Remark 4]):

Example 3.1. Assume that g = so(8) and consider the nilpotent element e of g with partition λ = (3, 3, 1, 1) ∈ P 1 (8) P * 1 (8). The algorithm yields z(λ) = 2. On the other hand, e is induced from two different ways: from the zero orbit in a Levi subalgebra l 1 of type (3, 1; 0), that is l 1 ≃ gl 3 × gl 1 × 0 (see the definition after [START_REF] Moreau | On the dimension of the sheets of a reductive Lie algebra[END_REF]Lemma 3.2] for the meaning of type), and from the zero orbit in a Levi subalgebra l 2 of type (2; 4), that is l 1 ≃ gl 2 × so 4 . The first one, l 1 , has a center of dimension 2, while the second one, l 2 , has a center of dimension 1. The nilpotent orbit of e has dimension 18 and e lies in two different sheets: one of dimension dim z(l 1 ) + dim Ind g l 1 (0) = 20 and one of dimension dim z(l 2 ) + dim Ind g l 2 (0) = 19 (here z(l i ) denotes the center of l i for i = 1, 2). This contradicts Proposition 3.11 of [M08], and also Remark 3.12 of the same paper.

Example 3.2. We give now a counter-example in sp( 14). Consider the partition λ = (4, 4, 2, 2, 1, 1) of P -1 (14). Here, the algorithm yields z(λ) = 2.

The corresponding nilpotent element is induced from the zero orbit in l 1 ≃ gl 1 ×gl 3 ×sp(6), and from the ridid nilpotent orbit 0 × O ′ in l 1 ≃ gl 2 × sp(10) where O ′ corresponds to the partition (2, 2, 2, 2, 1, 1) ∈ P * -1 (10). Again the dimensions of the centers of l 1 and l 2 lead to different dimensions, 2 and 1 respectively.

The origin of the error can be pined down in the proof of [START_REF] Moreau | On the dimension of the sheets of a reductive Lie algebra[END_REF]Proposition 3.11]. Let us briefly explain this. Until the end of the section, we are in the notations of [M08].

At the end of this proof, the assertion "Consequently the smallest integer such that one of the situations (a) or (b) of Step 1 happens in d (p) is equal to i p " is incorrect (here d is an element of P ε (N)). And so, the main induction argument of the proof fails. We can see that is incorrect in general on an explicit example. Consider the partition d = (4, 4, 3, 3, 1, 1) of P 1 (16). Then the corresponding nilpotent orbit is induced from the zero orbit in l ≃ gl 3 × gl 5 × 0 and from the rigid nilpotent orbit with partition (2, 2, 1, 1, 1, 1) in l ≃ gl(4) × so(8). Consider the second induction. In the notations of the proof, we have: