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ON THE DIMENSION OF THE SHEETS OF A REDUCTIVE

LIE ALGEBRA

by

Anne Moreau

Abstract. — Let g be a complex finite dimensional Lie algebra and G its adjoint
group. Following a suggestion of A. A. Kirillov, we investigate the dimension of the
subsets of linear forms f ∈ g∗ whose coadjoint orbit has dimension 2m. In this paper
we focus on the reductive case. If this case the problem reduces to compute the
dimension of the sheets of g. These sheets are known to be parameterized by the
pairs (l,Ol), up to G-conjugation class, consisting of a Levi subalgebra l of g and a
rigid nilpotent orbit Ol in l. By using this parametrization, we provide the dimension
of the above subsets for any m.

Introduction

0.1. — Let g be a finite dimensional Lie algebra over a field K, and G be the
adjoint group of g. The Lie algebra g acts on g and on its dual g∗ via the adjoint
and coadjoint actions. Coadjoint orbits play a leading part in representation
theory. There are the origin of the famous “orbit method”, initiated by A.
A. Kirillov 40 years ago motivated by the problem of describing the unitary
dual of the group of upper triangular matrices with ones on the diagonal. For
f ∈ g∗, denote by Bf the skew-symmetric bilinear form on g × g defined by:

Bf (x, y) = f([x, y]), ∀x, y ∈ g.

As the kernel of Bf is the stabilizer of f in g∗ for the coadjoint action, the rank
of Bf is equal to the dimension of the coadjoint orbit of f . The notion of the
index was introduced by J. Dixmier for its importance in representation theory.
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By definition, the index of g, denoted by ind g, is the minimal codimension of
the coadjoint orbits in g∗. Namely,

ind g = dim g − max
f∈g∗

rank Bf .

A linear form is said to be regular if the dimension of its stabilizer for the
coadjoint action is equal to the index of g. As Bf is a skew-symmetric bilinear
form, its rank is even and we set

g∗m := {f ∈ g∗ | rank Bf = 2m}.

Following a suggestion of A. A. Kirillov, we investigate the dimension of the
sets g∗m, for any m ∈ N. If dg is the integer (dim g − ind g)/2, the subset
g∗dg

has dimension dim g∗ = dim g, since the subset of regular linear forms

of g is a dense open subset of g∗. Moreover g∗m is an empty set for any m
strictly bigger than dg, and it is a nonempty set for m = dg. What about the
smaller integers? The problem is closely related to the problem of computing
the index, which is a very hard problem in general. So far, the index was
studied only in some particular cases (see for instance [5], [20], [9], [27], [16]
and [17]). Consequently, it would be too ambitious to get such integers, as
well as the dimension of the g∗m, for any Lie algebra. In [13], A. A. Kirillov
approaches the case where g is the Lie algebra of the Lie group of upper
triangular matrices with ones on the diagonal over a field Fq of characteristic
q. In this note, we provide the dimension of the subsets g∗m, for all m ∈ N, in
the case where g is a complex finite dimensional reductive Lie algebra.

0.2. — From now on K = C and g is supposed to be reductive. We denote by
〈·, ·〉 a non-degenerate G-invariant bilinear form on g which extends the Killing
form of the semisimple part of g. The Lie algebra g can be identified with g∗

through 〈·, ·〉. In particular the index of g is nothing but the rank rk g of g.

Moreover, g∗m can be identified with the subset g(m) of elements x ∈ g such
that dimG.x = 2m, where G.x is the G-orbit of x under the adjoint action
of G on g. The subset g∗≤m := {f ∈ g∗ | rankBf ≤ 2m} is a G-invariant
closed subset of g∗ as a finite union of nullvarieties of regular functions on g∗.
Therefore the subset g∗m = g∗≤m \ g∗≤m−1 is a G-invariant locally closed subset

of g∗, and so g(m) is a G-invariant locally closed subset of g. The irreducible
components of g(m) are called the sheets of g (see [6]). Obviously, g is the finite
union of its sheets. Thus, our problem reduces to compute the dimension of
the sheets of g. In addition, the reductive case easily deduces from the case
where g is simple. For x ∈ g, we denote by gx its centralizer in g in such a way
that dim G.x = dim g − gx. An element is said to be regular if its centralizer
has minimal dimension rk g = ind g. We have already noticed the equality:
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dim g(dg) = dim g. Furthermore, according to [29], the codimension of the
complement of the set of regular elements in g equals 3. As a by-product of
this work, we will precise this result by showing that g(dg−1) is equidimensional
of dimension dim g−3 (Theorem 1.16). For the smaller integers, it seems that
there is no visible general rules, as we will see from our explicit computations.
In particular, the subsets g(m) are not always equidimensional.

0.3. — In Section 1, we recall some known results about G-Jordan classes,
sheets, induced nilpotent orbits and rigid nilpotent orbits. We recall the links
between these different notions. In particular, the subset g(m) is a nonempty
set if and only if 2m is the dimension of a nilpotent orbit of g (Proposition 1.14)
and the sheets of g are parameterized by the pairs (l,Ol), up to G-conjugation
class, consisting of a Levi subalgebra l of g and a rigid nilpotent orbit Ol of l

(Theorem 1.12).
Second 2 deals with the classical Lie algebras. We recall the characterization

of rigid nilpotent orbits in the classical case in term of the corresponding
partitions. Then, we establish an explicit formula for the dimension of g(m),
for all m ∈ N (Theorems 2.2 and 2.11). Tables 1, 3, 4 and 5 provide these
dimensions for sl6, so7, sp6 and so12.

Section 3 concerns the exceptional case. Using the description of the sheets
of g obtained Section 1, we give for each exceptional simple Lie algebra, the
dimension of the sets g(m), for all m ∈ N (cf Tables 7, 9, 11, 15, 16).

Acknowledgment: I would like to thank A. A. Kirillov for having pro-
vided the motivation for this work. I am also very grateful to Karin Baur for
her many comments and suggestions. In particular, she brought the thesis of
Andreas Emanuel Im Hof to my attention.
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1. G-Jordan Classes, sheets and induced nilpotent orbits

1.1. — If a is a Lie subalgebra of g, we denote by zg(a) the centralizer in
g of a. As a rule, we respectively denote by xs and xn the semisimple and
nilpotent components in g of an element x ∈ g. The results of this subsection
are mostly due to W. Borho and H. Kraft [2] and they are also presented in
[28].

Definition 1.1. — Let x, y ∈ g. We say that x and y are G-Jordan equivalent
if there exists g ∈ G such that:

gys = gg(xs) = g(gxs), yn = g(xn).

This defines an equivalence relation on g. The equivalence class of x, that we
shall denote by JG(x), is called the G-Jordan class of x in g.

For any G-invariant subset Y of g we denote by Y reg the set of regular
elements of Y , that is to say those of maximal G-orbit dimension. Recall that
a Levi subalgebra of g is the reductive part of a parabolic subalgebra of g.
The group G acts on the set of the pairs (l,Ol) consisting of a Levi subalgebra
l of g and a nilpotent orbit Ol of l in a obvious way.

The following lemma, proven for instance in [28], doesn’t present any diffi-
culty:

Lemma 1.2 ([28], Propositions 39.1.5 and 39.2.9)
Let x = xs + xn be in g and JG(x) its G-Jordan class. Then:
(i) JG(x) = G.(z(gxs)reg + xn),
(ii) dim JG(x) = dim(G.x) + dim z(gxs).

The following lemma, proven for instance in [28], doesn’t present any diffi-
culty:

Lemma 1.3 ([28], Propositions 39.1.5 and 39.2.9)
Let x = xs + xn be in g and JG(x) its G-Jordan class. Then:
(i) JG(x) = G.(z(gxs)reg + xn),
(ii) dim JG(x) = dim(G.x) + dim z(gxs).

We deduce from Lemma 1.3 the following known proposition, whose we
recall the proof:

Proposition 1.4. — There is a one-to-one correspondence between G-Jordan
classes and the set of pairs (l,Ol), up to G-conjugation, where l is a Levi
subalgebra of g and Ol a nilpotent orbit of l.

Proof. — Let JG(x) be a G-Jordan class of g. Set l = gxs . Since xs is
semisimple, l is a Levi subalgebra of g which contains xn, because [xs, xn] = 0.
Denote by O the nilpotent orbit of xn in l. The G-orbit of the pair (l,O) only
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depends on JG(x) and not on the choice of a representative in JG(x). This
defines the first map.

Conversely, let l be a Levi subalgebra of g and Ol a nilpotent orbit in l.
Fix z ∈ zg(l)

reg, y ∈ Ol and set x = y + z. As z belongs to the center of l,
[z, y] = 0, whence xs = z and xn = y. Then gxs = gz = l, because z ∈ zg(l)

reg.
Since JG(x) = G · (z(gxs)reg + xn) by Lemma 1.3 (i), the G-Jordan class of x
doesn’t depend on the choices of z ∈ z(gxs)reg nor of y ∈ Ol. Furthermore,
it is clear that JG(x) only depends on the G-orbit of (l,Ol) and not on the
choice of one of its representatives, whence the other map.

These two maps are clearly inverse each other, whence the one-to-one cor-
respondence.

We shall say that the G-Jordan class associated via the previous correspon-
dence, to a pair (l,Ol), where l is a Levi subalgebra of g and Ol a nilpotent
orbit of l, has data (l,Ol). It follows from the classification of Levi subalge-
bras of g as well as the one of nilpotent orbits in reductive Lie algebras that
there are only finitely many G-Jordan classes. Therefore, g is a finite disjoint
union of its G-Jordan classes. By Lemma 1.3, a G-Jordan class is G-stable,
irreducible, and it is contained in g(m), for some m ∈ N. As a consequence,
we deduce the following proposition:

Proposition 1.5 ([28], Proposition 39.3.3). — Let S be a sheet of g.
Then, there is an unique G-Jordan class J such that J ⊂ S and S = J.
Moreover, S =

(
J
)reg

.

1.2. — In order to investigate the dimension of the sheets of g, we have
to determinate which G-Jordan classes are dense in a sheet. Theorem 1.12
([1], 4.4) provides an answer. Because of the importance of this result in the
remainders of this paper, we recall the main steps of the proof of this theorem.
In addition, we will need of some of these intermediate results. We start by
recalling some results about induced nilpotent orbits (see [4] for more details).
Then, we use many results due to Borho [1] presented in the thesis of Andreas
im Hof [11].

Theorem-Definition 1.6 ([4], Theorem 7.1.1). — Let l be the reductive
part of a parabolic Lie algebra p = l ⊕ n of g with nilradical n. Let P be
the connected subgroup of G with Lie algebra p. Then there is a unique
nilpotent orbit Og in g meeting Ol + n in an open dense subset. We have
dimOg = dimOl + 2dim n. The orbit Og is the unique nilpotent orbit in g of
this dimension which meets Ol + n. The intersection Og∩ (Ol + n) consists in
a single P -orbit.

We say that the orbit Og is induced from Ol and we denote it by Indg
p(Ol).

If Ol = 0, then we say that Og is a Richardson orbit.
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Lemma 1.7 ([4], Theorem 7.1.3). — Let p = l ⊕ n and p
′

= l ⊕ n
′

be two
parabolic subalgebras of g with the same Levi subalgebra l, and let Ol be a
nilpotent orbit in l. Then, Indg

p(Ol) = Indg

p
′ (Ol).

As a consequence of this result, we can use the notation Indg

l
(Ol) instead

of Indg
p(Ol).

Proposition 1.8 ([4], Proposition 7.1.4). — Let p = l ⊕ n be the Levi
decomposition of a parabolic subalgebra in g and Ol a nilpotent orbit in l.

(i) codiml(Ol) = codimg(Indg
l (Ol)), i.e: dim Indg

l (Ol) = dim g − dim l + dimOl.
(ii) Let l1 and l2 be two Levi subalgebras of g with l1 ⊂ l2. Then

Indg
l2
(Indl2

l1
(Ol1)) = Indg

l1
(Ol1).

Proposition 1.9 ([1], 3.1, Satz a). — Let J be a G-Jordan class with data

(l,Ol). Then
(
J
)reg

contains a unique nilpotent orbit. It is equal to Indg
l (Ol).

Corollary 1.10 ([1], 3.6). — Let J and J
′

be two G-Jordan classes with

data (l,Ol) and (l
′

,Ol
′ ) respectively such that l contains l

′

. Then J is contained

in J
′ if and only if Ol is Indl

l
′ (Ol

′ ) up to G-conjugation class.

Proposition 1.8, (i) implies that not every nilpotent orbit is induced from
another. A nilpotent orbit in g which is not induced from any proper parabolic
subalgebra is called rigid.

Corollary 1.11 ([1], 4.2). — A G-Jordan class with data (l,Ol) is dense in
a sheet if and only if Ol is rigid in l.

We conclude this paragraph with the expected classification of sheets of g,
which is a consequence of Corollary 1.11 and Proposition 1.5:

Theorem 1.12 ([1], 4.4). — There is a one-to-one correspondence between
the set of pairs (l,Ol), up to G-conjugation class, where l is a Levi subalgebra
of g and Ol a rigid nilpotent orbit in l, and the set of sheets of g.

1.3. — Let S be a sheet of g(m), for m ∈ N. Then S corresponds to a
pair (l,Ol) via the correspondence established in Theorem 1.12. According
to Propositions 1.5 and 1.9, Indg

l
(Ol) is the unique nilpotent orbit contained

in S. Denote by JG(x) the G-Jordan class whose data is (l,Ol). Necessarily,
gxs = l. So, Lemma 1.3 (ii) implies:

dimJG(x) = dim G.x + dim zg(l).

In addition, since Indg
l (Ol) is contained in S, dim Indg

l (Ol) = dimG.x, because

these two G-orbits belong to g(m). In conclusion, we obtain the following
proposition:
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Proposition 1.13. — Let S be the sheet corresponding to the pair (l,Ol) via
the correspondence established in Theorem 1.12. Then Indg

l
(Ol) is the unique

nilpotent orbit contained in S. Moreover:

dimS = dim Indg
l (Ol) + dim zg(l)

= dim g − dim l + dimOl + dim zg(l).

Denote by Ng the set of all the dimensions of the nilpotent orbits in g and

by Nrigid
g those of all the dimensions of the rigid nilpotent orbits of g. As a

consequence of Proposition 1.13, we get the following proposition:

Proposition 1.14 ([28], Remarks 39.3.2). — The set g(m) is non-empty
if and only if 2m ∈ Ng.

Fix a Cartan subalgebra h of g. Let Π be a simple root system of the
root system ∆ associated to the couple (g, h). Denote by ∆+ the positive
root system corresponding to Π. For α ∈ ∆, denote by gα the root subspace
associated to α. For S any subset of Π, we denote by ∆S the root subsystem
of ∆ generated by S, and by ∆S

+ the intersection ∆+ ∩ ∆S . Set

lS = h ⊕
⊕

α∈∆S

gα.

Then lS is a Levi subalgebra of g and it is well-known (see [4], Lemma 3.8.1)
that every Levi subalgebra of g is G-conjugated to lS , for some S in Π. For

the sake of the simplicity, we shall denote by NS and Nrigid
S respectively the

sets NlS and Nrigid
lS

.

Lemma 1.15. — Suppose that the semisimple part of g has dimension strictly

bigger than 3. Then the subregular nilpotent orbit Osubreg
g of g is not rigid.

Proof. — Let α ∈ Π and set l = h ⊕ gα ⊕ g−α. Then the nilpotent orbit of g

induced from the zero orbit of l has dimension,

dim g − dim l = dim g − rkg − 2,

by Proposition 1.8, (i). As a consequence Osubreg
g = Indg

l (O0), because Osubreg
g

is the only nilpotent orbit of g of dimension dim g − rkg − 2. By hypothesis,

g is different from l, whence Osubreg
g is not rigid.

Recall that 2dg = dim g − indg.

Theorem 1.16. — (i) If m > dg, then g(m) is an empty set of g.

(ii) The subset g(dg) is irreducible of dimension dim g.

(iii) The subset g(dg−1) is equidimensional of dimension dim g − 3.
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Proof. — (i) is an obvious consequence of the definition of dg.

(ii) is true because g(dg) is the subset of regular elements of g, which is a
dense open subset of g.

(iii) Let S be a sheet of g(dg−1) associated to the G-Jordan class with
data (l,Ol), via the correspondence established in Theorem 1.12. According
to Proposition 1.8, (i), the codimension in l of Ol is rkl + 2 = rkg + 2. As a
consequence, Ol is the subregular nilpotent orbit of l. As Ol is a rigid nilpotent
orbit of l, Lemma 1.15 implies that the semisimple part of l has dimension 3.
Then Ol is the zero orbit of l and S has dimension

dim g − dim l + 0 + dim zg(l) = (dim g − rkg − 2) + (rkg − 1)

= dim g − 3,

according to 1.13, because the center of l has dimension rkg−1, whence (ii).

Remark 1. — We cannot expect similar results for the smaller integers. In-
deed, we will see from our explicit computations that g(m) is not always equidi-
mensional. This phenomenon mainly results from two problems. Firstly, a
nilpotent orbit can be induced in two different ways. Secondly, two different
orbits can have the same dimension.

2. Computations in the classical cases

In this section, we study the dimensions of the sets g(n), for n ∈ N such
that 2n ∈ Ng in the case where g is a classical simple Lie algebra. Because
of the one-to-one correspondence established in Theorem 1.12, we first need a
precise description of rigid nilpotent orbits. These results will also be useful
Section 3 for the exceptional case, since Levi subalgebras of simple exceptional
Lie algebras may have simple factors of classical type.

2.1. Type Al. — In this paragraph, we suppose that g = slN , with N ≥ 2.
First of all, recall that nilpotent orbits of g are in one-to-one correspondence
with the set P(N) of all partitions of n. Here, partition means a sequence
d = [d1, . . . , dN ] of non-negative integers, possibly zero, with d1 ≥ · · · ≥ dN

and d1 + · · · + dN = N . If d = [d1, . . . , dN ] ∈ P(N), we denote by Od the
corresponding nilpotent orbit of g.

Let d = [d1, . . . , dN ] be in P(N). Set si = #{j | dj ≥ i} the dual partition
of d. Notice that d1 is the biggest integer j such that sj is different from zero.

Define a subset Sd of Π as follows: the connected components Sd
1 , . . . , Sd

d1
of
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Sd have the cardinalities s1 − 1, . . . , sd1 − 1 respectively. Then we denote by
ld the Levi subalgebra lSd with the notations of 1.3.

Proposition 2.1 ([4], Theorem 7.2.3). — The partition associated to
Indg

ld
(O0) is d. In particular, every non-zero nilpotent orbit in g is Richard-

son and the unique rigid nilpotent orbit is the zero orbit.

Let d be a partition of N . The dimension of Od is 2m(d), where m(d) is
defined by ([4], Corollary 6.1.4):

m(d) :=
1

2
(N2 −

d1∑

i=1

s2
i ).(1)

Let us remark that we can also obtain that formula from Propositions 2.1 and

1.8 (i), since ld has dimension
d1∑

i=1
s2
i − 1.

Theorem 2.2. — Let m ∈ N. If 2m ∈ Ng, then

dim g(m) = 2m + max
d∈P(N)
m(d)=m

(d1 − 1).

Otherwise, g(m) is an emptyset.

Proof. — Let m ∈ N such that 2m ∈ Ng. Let S be a sheet of g(m). By
Theorem 1.12 and proposition 2.1, S corresponds to a pair (ld,O0), for some
d ∈ P(N). By Proposition 2.1 and Formula (1), dim Indg

ld
(O0) = 2m(d). In

particular, m(d) has to be equal to m. In addition, Proposition 1.13 gives:

dim S = 2m(d) + d1 − 1,

since the center of ld has dimension

rk g − #Sd = N − 1 −

d1∑

i=1

(si − 1) = N − 1 − (N − d1) = d1 − 1.

The first assertion of the theorem is now clear. The secund assertion results
from Proposition 1.14.

As example, we present the dimension of the g(m) for g = sl6 in Table
1. In this table, we provide, for each d ∈ P(6), the dimension 2m(d) of
the corresponding nilpotent orbit and the quantity d1 − 1. Then, we deduce
the dimension of the sets g(m(d)), according to Theorem 2.2. Because two
different orbits can have the same dimension, we need to compute d1 − 1, for
all d ∈ P(N) such that m(d) = m, to get the dimension of dim g(m) (e.g.
there are two nilpotent orbits of dimension 18).
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2m ∈ Ng d ∈ P(6) such that 2m(d) = 2m d1 − 1, for d ∈ P(6) dim g(m) = 2m + max
m(d)=m

(d1 − 1)

30 [6] 5 35

28 [5, 1] 4 32

26 [4, 2] 3 29

24 [4, 12] [32] 3 2 27

22 [3, 2, 1] 2 24

18 [3, 13] [23] 2 1 20

16 [22, 12] 1 17

10 [2, 14] 1 11

0 [16] 0 0

Table 1. Dimensions of the sets g(m) for sl6.

2.2. Type Bl, Cl and Dl. — Set ε = ±1 and consider a non-degenerate
bilinear form 〈·, ·〉ε on CN such that:

〈a, b〉ε = ε〈a, b〉ε, for all b, a ∈ CN .

If ε = −1 (resp. 1), then the form is 〈·, ·〉ε is symplectic (resp. symmetric).
We then define:

I(〈·, ·〉ε) = {g ∈ GLN | 〈ga, gb〉ε = 〈a, b〉ε, for all a, b ∈ CN},

gε = {x ∈ slN | 〈xa, b〉ε = −〈a, xb〉ε, for all a, b ∈ CN}.

If ε = −1, then N = 2n and g−1 ≃ sp2n. If ε = 1, then g−1 ≃ soN . Thus
I(〈·, ·〉ε) is the isotropy group of the form 〈·, ·〉ε on CN , and gε is its Lie algebra.
Now, set:

Pε(N) = {[d1, . . . , dN ] ∈ P(N) | #{j | dj = i} is even for all i with (−1)i = ε}.

Theorem 2.3 ([4], Theorem 5.1.6). — Nilpotent orbits in gε are in one-
to-one correspondence with the partition Pε(N) of N , except that if ε = 1,
and N = 2n, then very even partitions of N (those with only even parts, each
having even multiplicity) correspond to two orbits that we label with I and II.

To make some statements more understandable, we will include some of the
proofs of known results presented in [4] concerning induced nilpotent orbits
in classical simple Lie algebras.

We endow the set of the partitions of N with the classical order which
corresponds to the classical order on the set of nilpotent orbits of slN . First,
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recall a result due to Gerstenhaber which generalizes the transpose operation
in the set P(N) ;

Proposition-Definition 2.4 (Gerstenhaber: cf [4], Lemma 6.3.3)
Let p = [p1, . . . , p2n+1] be a partition in P(2n+1). Then there is an unique

largest partition in P1(2n + 1) dominated by p. This partition, called the
B-collapse of p and denoted by pB, may be defined as follows. If p is not
already in P1(2n + 1), then at least one of its even parts must occur with odd
multiplicity; let q be the largest such part. Replace the last occurrence of q in p
by q−1 and the first subsequent part r strictly less than q−1 by r+1; we may
have to add a 0 to p to find such an r. Repeat this process until a partition
in P1(2n + 1) is obtained. Similarly, there are a unique largest partition qC ,
qD in P−1(2n + 1), P1(2n + 1) dominated by any given partition q of 2n + 1.
They are called the C− and D−collapses of q; their definitions are the obvious
analogues of that of pB.

From now on, we shall denote by X the type of gε, that is to say B, C or
D.

Let l be a Levi subalgebra of g. Then, there are integers i1, . . . , iS ≥ 0 and
R such that,

l ≃ gliS × · · · gli1 × g′,

where g′ has the same type as gε and whose standard representation has
dimension R. After a possible renumbering, we can suppose that [i1, . . . , iS ]
belongs to P(S), with 2S + R = N . Then we define:

PLevi
ε = {(i, R) ∈ P(S) × N≥0 | 2S + R = N,S ≥ 0 and R 6= 2, if ε = 1}.

Lemma 2.5. — There is a one-to-one correspondence between G-conjugation
classes of Levi subalgebras of g and elements of PLevi

ε .

If l corresponds to the element (i;R) of PLevi
ε , we shall say that l is of type

(i;R).

Proposition 2.6 ([4], Corollary 7.3.4). — Let l = gll × g′ be a maximal
Levi subalgebra, where g′ has the same type as gε (then 2l + r = N if r is
the dimension of the standard representation of g′ and l is of type (l; r)). Let
Ol = O0 × Of be a nilpotent orbit in l whose component in the gll factor is
the zero orbit and whose component Of in the g′ factor has partition f . Then
the partition of Indgε

l
(Ol) is p, where the partition p is obtained from f as

follows:

We add 2 to the first l terms of f , obtaining a partition f̃ (extending by

zero if necessary in f if necessary), and then take the X-collapse of f̃ , where
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X = B,C or D (cf Proposition-Definition 2.4). If the collapse is nontrivial

(ie f̃X 6= f̃)), it is obtained by subtracting 1 from the lth part of f̃ and adding
1 to its (l + 1)th part. If gε = so4n, r 6= 0 and the collapsed partition is very
even, then f is also very even and the induced orbit inherits the label I or II
of Of ; if r = 0, then the label of the induced orbit is the same as that of Ol if
n is even but differs from it if n is odd.

Define P∗
ε (N) to be the set of all the partitions [d1, . . . , dN ] in Pε(N) such

that the following two conditions hold:

(i) 0 ≤ di+1 ≤ di ≤ di+1 + 1 for all i,

(ii) #{j | dj = i} 6= 2 if ε(−1)i = −1.

We will show that P∗
ε (N) encodes rigid nilpotent orbits. Let d =

[d1, . . . , dN ] be in Pε(N). We want to construct an element of P∗
ε (N)

from d. Set i0 = 0, d(0) = d and g
′(0) = gε.

Step 1: if d ∈ P∗
ε (N), set d(1) = d = d(0). Otherwise, there is j ∈ {1, . . . , N}

such that either dj ≥ dj+1 +2, or dj−1 > dj = dj+1 > dj+2 with ε(−1)dj = −1
(where we have set d0 = 0 and dj = 0, for all j > N , by convention). De-
note by i1 the smallest integer j such that one of these two situations happens.

a) In the first situation, set:

d(1) := [d1 − 2, . . . , di1 − 2, di1+1, . . . , dN ].

b) In the second situation, set:

d(1) := [d1 − 2, . . . , di1−1 − 2, di1 − 1, di1+1 − 1, di1+2, . . . , dN ].

In both situations, d(1) remains an element of Pε(N − 2i1) so O
d(1) is a

nilpotent orbit of g′(1), where g′(1) is a classical simple Lie algebra of the same
type as gε whose standard representation has dimension N − 2i1. Moreover,
by Proposition 2.6,

Od = Indgε

l(1)
(O0 ×O

d(1)),

where l(1) is a Levi subalgebra of gε of type (i1;N − 2i1).

Step 2: suppose that i0, i1, . . . , ip−1, d
(0),d(1), . . . ,d(p−1), g′(0), g′(1), . . . , g′(p−1)

and l(1), . . . , l(p−1) are defined for some p ∈ {1, . . . , N} in such way that:

(c1) for all k ∈ {0, . . . , p − 1}, O
d(k) is a nilpotent orbit of g′(k), where

g′(k) is a classical simple Lie algebra of same type as gε whose corresponding
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standard representation has dimension N − 2i0 − 2i1 − · · · − 2ik,

(c2) for all k ∈ {1, . . . , p − 1}, O
d(k−1) = Indg′(k−1)

l(k) (O0 × O
d(k)), where l(k)

is a Levi subalgebra of g′(k−1) of type (ik;N − 2i0 − 2i1 − · · · − 2ik).

Then, we define ip, d(p), l(p) and g′(p) as in Step 1. More precisely, if

d(p−1) ∈ P∗
ε (N − 2i0 − 2i1 · · · − 2ip−1), set d(p) = d(p−1). Otherwise, there is

j ∈ {1, . . . , N − 2i0 − 2i1 · · · − 2ip−1} such that either d
(p−1)
j ≥ d

(p−1)
j+1 + 2, or

d
(p−1)
j−1 > d

(p−1)
j = d

(p−1)
j+1 > d

(p−1)
j+2 with d

(p−1)
j odd. Denote by ip the smallest

integer j such that one of these two situations happens.

a) In the first situation, set:

d(p) := [d
(p−1)
1 − 2, . . . , d

(p−1)
ip

− 2, d
(p−1)
ip+1 , . . . , d

(p−1)
N−2i0−2i1···−2ip−1

].

b) In the second situation, set:

d(p) := [d
(p−1)
1 −2, . . . , d

(p−1)
ip−1 −2, d

(p−1)
ip

−1, d
(p−1)
ip+1 −1, d

(p−1)
ip+2 , . . . , d

(p−1)
N−2i0−2i1···−2ip−1

].

As before, in both cases d(p) is an element of Pε(N − 2i0 − 2i1 · · · − 2ip)

so O
d(p) is a nilpotent orbit of g′(p), where g′(p) is a classical simple Lie

algebra of the same type as gε whose standard representation has dimension
N − 2i0 − 2i1 · · · − 2ip. And, by Proposition 2.6,

O
d(p−1) = Indg′(p−1)

l(p) (O0 ×O
d(p)),

where l(p) is a Levi subalgebra of g′(p−1) of type (ip;N − 2i0 − 2i1 · · · − 2ip).

Then i0, i1, . . . , ip, d(0),d(1), . . . ,d(p), g′(0), g′(1), . . . , g′(p) and l′(1), . . . , l′(p)

satisfy conditions (c1) and (c2).

The process clearly ends after a finite number of steps.

Definition 2.7. — We denote by z(d) the smallest integer j such that d(j) =

d(j+1).
If a partition d′ is obtained from another partition d by a transformation of

type a) or b) as described in Steps 1 or 2 (in particular d has to be different
from d′), then we shall say that d′ is deduced from d by an elementary
transformation. In this case, it is clear that

z(d′) = z(d) − 1.(2)

Clearly, the previous construction proves that Od is not rigid whenever
z(d) 6= 0. Using Proposition 2.6, we can easily prove that the converse also
holds, whence the following corollary:



14 A. MOREAU

Corollary 2.8. — The nilpotent orbit corresponding to a partition
d ∈ Pε(N) is rigid if and only if z(d) = 0.

As z(d) is clearly equal to 0 if and only if d belongs to P∗
ε (N), Corollary

2.8 gives the following result, enounced in [4]:

Corollary 2.9 ([4], Corollary 7.3.5). — The orbit corresponding to a par-
tition d ∈ Pε(N) is rigid if and only if d ∈ Pε(N)∗.

Let d = [d1, . . . , dN ] be in Pε(N). Put ri = #{j | dj = i} and si =
#{j | dj ≥ i}. Denote by m(d) the half dimension of Od. According to [4],
Corollary 6.1.4, m(d) is given by the following formulas:

m(d) =







1

2
(2n2 + n −

1

2

∑

i

s2
i +

1

2

∑

i odd

ri), if g = so2n+1

1

2
(2n2 + n −

1

2

∑

i

s2
i −

1

2

∑

i odd

ri), if g = sp2n

1

2
(2n2 − n −

1

2

∑

i

s2
i +

1

2

∑

i odd

ri), if g = so2n.

(3)

The construction preceding Definition 2.7 gives a process to compute the
number z(d), for d ∈ Pε(N). Then, according to Corollary 2.8, we obtain the
list of rigid nilpotent orbits with their dimensions (computed with formulas
(3)) in B2, B3, C3, D4, D5, D6 and D7 in Table 2. We list these cases since they
all appear as simple factors of Levi subalgebras in the exceptional Lie algebras.

B2 C3 B3 D4 D5 D6 D7

[15] 0 [16] 0 [17] 0 [18] 0 [110] 0 [112] 0 [114] 0

[22, 1] 4 [2, 14] 6 [22, 13] 8 [22, 14] 10 [22, 16] 14 [22, 18] 18 [22, 110] 22

[3, 22, 1] 16 [3, 22, 13] 24 [24, 14] 28 [24, 16] 36

[3, 22, 15] 32 [3, 22, 17] 40

[3, 24, 1] 36 [3, 24, 13] 48

[33, 22, 1] 58

Table 2. Rigid nilpotent orbits with their dimensions in so5, sp6, so7,
so8, so10, so12 and so14
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Proposition 2.10. — Let d = [d1, . . . , dN ] be in Pε(N). Suppose that Od =
Indgε

l
(Ol), where l is a Levi subalgebra of gε and Ol a rigid nilpotent orbit in

l. Then

dim zgε(l) = z(d).

Remark 2. — A nilpotent orbit Od can be induced in different ways by a rigid
nilpotent orbit of a Levi subalgebra of g. Proposition 2.10 claims that the
dimension of the center of a such Levi subalgebra only depends on d and not
on the choice of this Levi subalgebra, nor on the choice of a rigid nilpotent
orbit in this Levi subalgebra.

Proof. — 1) If Od is rigid, then l = gε, and dim zgε(l) = 0. On the other
hand, z(d) = 0, according to Corollary 2.8.

2) We suppose that d 6∈ Pε(N). In other words, Od is not rigid, therefore l

is strictly contained in gε. According to Lemma 2.5, l is G-conjugated to

gliS × · · · × gli1 × g′,

with 2i1 + · · · 2iS +R = N , i1 ≥ · · · ≥ iS , and where g′ is a Lie algebra of same
type as gε whose standard representation has dimension R. In other words, l

has type (i;R), with i = [i1, . . . , iS ] ∈ P(S). Notice that the center of l has
dimension S. By Theorem 2.1,

Ol = O0 × · · · × O0 ×Of ,

where f is an element of Pε(R) such that Of is rigid in g′ and where the
component of Ol on the glik factor is zero, for k = 1, . . . , S.

Set i0 = 0 and g′(0) = l̃(0) = g′. For p = 1, . . . , S, denote by g′(p) a Lie
algebra of the same type as gε whose standard representation has dimension

Rp := 2ip + · · · + 2i1 + 2i0 + R,

and by l̃(p) a Levi subalgebra of g′(p) of type (ip; 2ip−1 + · · · + 2i1 + 2i0 + R).

Set l(S) = gε and, for p = 0, . . . , S − 1, denote by l(p) a Levi subalgebra of
gε of type ([ip+1, . . . , iS ]; 2ip + · · · + 2i1 + 2i0 + R) such that:

l = l(0) ⊆ · · · ⊆ l(S) = gε.

As defined, l(p) is G-conjugated to

gliS × · · · × glip+1
× g′(p),

for all p = 0, . . . , S − 1.
Set d(0) = f and define d(p), for p = 1, . . . , S, by induction as follows; d(p)

is the element of Pε(Rp) such that:

O
d(p) = Indg′(p)

l̃(p)
(O0 ×O

d(p−1)),
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where O0 is the zero orbit in the glip factor.

Let us first check that d(S) = d. By Lemma 1.8, (ii), we can write:

Od = Indl(S)

l(S−1)(. . . (Indl(1)

l(0)
(O0 × · · · × O0 ×Of )
︸ ︷︷ ︸

S factors

))).

In addition, we easily see that

Indl(p)

l(p−1)(O0 × · · · × O0
︸ ︷︷ ︸

S−p+1 factors

×O
d(p−1)) ≃ O0 × · · · × O0

︸ ︷︷ ︸

S−p factors

×Indg′(p)

l̃(p)
(O0 ×O

d(p−1))

= O0 × · · · × O0
︸ ︷︷ ︸

S−p factors

×O
d(p) ,

for all p = 1, . . . , S, because the S − p first factors of l(p−1) and l(p) are the
same. Then, by induction, we obtain:

Od = Indl(S)

l(S−1)(. . . (Indl(1)

l(0)
(O0 × · · · × O0 ×Of
︸ ︷︷ ︸

S factors

))

= Indl(S)

l(S−1)(. . . Indl(2)

l(1)
(O0 × · · · × O0
︸ ︷︷ ︸

S−1 factors

×O
d(1))

...

= Indl(S)

l(S−1)(O0 ×O
d(S−1))

= Indg′(S)

l̃(S)
(O0 ×O

d(S−1)),

because l(S) ≃ g′(S) ≃ gε and l̃(S) ≃ l(S−1). The definition of d(S) thus implies
d = d(S).

It remains to compute the number z(d(S)). Prove by induction on p ∈

{0, . . . , S}, that z(d(p)) = p and that, for all i < ip+1:






(i)’ 0 ≤ d
(p)
i+1 ≤ d

(p)
i ≤ d

(p)
i+1 + 1,

(ii)’ #{j | d
(p)
j = i} 6= 2, if ε(−1)i = −1.

Then we will deduce the expected result from the p = S case, since the center
of l has dimension S.

p = 0: since Of is rigid in g′, it follows from Corollary 2.8 that

z(f) = z(d(0)) = 0 and that the conditions (i)’ and (ii)’ hold.



ON THE DIMENSION OF THE SHEETS 17

(p − 1) ⇒ p: suppose that, for all k ∈ {0, . . . , p − 1}, z(d(k)) = k and that

conditions (i)’ and (ii)’ holds for i < ik+1, for some p ∈ {1, . . . , S}. We have

to prove first that z(d(p)) = p. According to relation (2), it is enough to
prove that d(p−1) is deduced from d(p) by an elementary transformation, since
z(d(p−1)) = p − 1 by the induction hypothesis. As l̃(p) is a maximal Levi

subalgebra of g′(p), we can apply Proposition 2.6 to

O
d(p) = Indg′(p)

l̃(p)
(O0 ×O

d(p−1)).

With the notations of Proposition 2.6, we have:

d(p) = ˜(d(p−1))X .

By the induction hypothesis, for all i < ip, conditions (i)’ and (ii)’ hold for

d(p−1). Consequently the smallest integer l such that one of the situations
a) or b) of Step 1 happens in d(p) is equal to ip, because l̃(p) is of type

(ip;Rp − 2ip). We distingue two cases: either d̃(p−1)
X equals to d̃(p−1) or not.

We easily check that in both situations, d(p−1) is deduced from ˜(d(p−1))X by
an elementary transformation. Moreover, for all i < ip+1, conditions (i)’ and

(ii)’ hold for d(p) because ip+1 ≤ ip.

By induction, for all p = 1, . . . , S, z(d(p)) = p and conditions (i)’ and (ii)’
hold, for all i < ip+1. In particular, with p = S, we have: z(d(S)) = z(d) =
S = dim zg(l).

We are now ready to compute the dimension of the subsets g
(m)
ε . Recall

that m(d) is given by the formulas (3).

Theorem 2.11. — Let m ∈ N. If 2m ∈ Ngε, then

dim g(m)
ε = 2m + max

d∈Pε(N)
m(d)=m

z(d).

Otherwise, g
(m)
ε is an emptyset.

Proof. — Let m ∈ N such that 2m ∈ Ngε . Let S be a sheet of g
(m)
ε associated

to the pair (l,Ol), where l is a Levi subalgebra of gε and Ol a nilpotent
rigid orbit in l. According to Proposition 1.9, the unique nilpotent orbit Od

contained in S is Indgε

l (Ol). In particular, Indgε

l (Ol) has dimension 2m, and
so m = m(d). Proposition 2.10 implies that the center of l has dimension
z(d). As a result, we deduce from Proposition 1.13 the expected relation. The
secund assertion results from Proposition 1.14.
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Tables 3, 3 and 5 provide, for each d ∈ Pε(N), the integers 2m(d) and z(d),

and then the dimensions of the sets g
(m(d))
ε , for N = 3 with ε = ±1 and for

N = 6 with ε = 1.

2m ∈ Ng d ∈ P(6) such that 2m(d) = 2m z(d), for d ∈ P(6) dim g
(m)
ε = 2m + max

m(d)=m
z(d)

18 [7] 3 21

16 [5, 12] 2 18

14 [32, 1] 1 15

12 [3, 22] 1 13

10 [3, 14] 1 11

8 [22, 13] 0 8

0 [17] 0 0

Table 3. Dimensions of the sets g
(m)
ε for so7.

2m ∈ Ng d ∈ P(6) such that 2m(d) = 2m z(d), for d ∈ P(6) dim g
(m)
ε = 2m + max

m(d)=m
z(d)

18 [6] 3 21

16 [4, 2] 2 18

14 [32] [4, 12] 1 1 15

12 [23] 1 13

10 [22, 12] 1 11

6 [2, 14] 0 6

0 [16] 0 0

Table 4. Dimensions of the sets g
(m)
ε for sp6.

3. Computations in the exceptional cases

We suppose in this section that g is a simple exceptional Lie algebra. We
intend in this section to explicitly compute the dimensions of all the sheets of
g.
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2m ∈ Ng d ∈ P(6) such that 2m(d) = 2m z(d), for d ∈ P(6) dim g
(m)
ε = 2m + max

m(d)=m
z(d)

60 [11, 1] 6 66

58 [9, 3] 5 63

56 [9, 13] [7, 5] 4 4 60

54 [7, 3, 12] [62] 4 3 58

52 [52, 12] [7, 22, 1] 3 2 55

50 [5, 3, 22] 2 52

48 [43] [42, 3, 1] 2 2 50

46 [42, 22] [5, 3, 14] 2 2 48

44 [42, 14] [5, 22, 13] [34] 1 1 1 45

42 [33, 13] 1 43

40 [32, 22, 12] 1 41

36 [5, 17] [3, 24, 1] 2 0 38

34 [32, 16] 1 35

32 [3, 22, 15] 0 32

30 [26] 1 31

28 [24, 14] 0 28

18 [22, 18] 0 18

0 [112] 0 0

Table 5. Dimensions of the sets g
(m)
ε for so12.

For each pair (S, p) consisting of a subset S of Π and the dimension p of a
nilpotent orbit of the Levi subalgebra lS = h ⊕ (

⊕

α∈∆S

gα), set

dS,p := dim g − rkg − 2#∆S
+ + p.
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According to Lemma 1.8 (i), dS,p is the dimension of the nilpotent orbit
induced by any nilpotent orbit of dimension p in lS . Then, by Lemma 1.3, the
dimension of a G-Jordan class with data (lS ,O), for any nilpotent orbit O in
lS of dimension p, is

(dim g − rkg − 2#∆S
+ + p) + (rkg − #S),

since the center of lS has dimension rkg − #S. In addition, by Proposition
1.12, this dimension corresponds to the dimension of a sheet of g(m), where
2m = dS,p, if and only if p is the dimension of a rigid nilpotent orbit in lS .

When all the simple factors of lS are of classical type, then the set Nrigid
S

is given by Table 2. In [24], Chapter II, the rigid nilpotent orbits of the ex-
ceptional types are listed from Elashvili’s computations. We observe that the
present method “almost” allows to recover in a simpler way the dimensions
of the rigid nilpotent orbits in the exceptional types. More precisely, if for

some m ∈ Ng, there is no pair (S, p), with S ⊂ Π, S 6= Π, and p ∈ Nrigid
lS

such

that dS,p = m, then m ∈ Nrigid
g . Unfortunately, the converse is not true in

general. Indeed, a non-rigid nilpotent orbit can be induced in two different
ways. Nevertheless, if there is only one nilpotent orbit of dimension m then

we can decide if m belongs to Nrigid
g or not. Whatever the case, for what we

intend to do, this approach is sufficient because computing the dimension of
a G-Jordan class possibly not dense in a sheet doesn’t affect the final result:
in that case, the corresponding dimension will not appear as a dimension of
some g(m). To precisely know the G-Jordan classes which are dense in a sheet
is useful only to simplify the computations. For completeness, we present
here the computations without referring to [24]. Noting that our conclusions
agree with the data of [24].

In the Tables 6, 8, 10, 12, 13 and 14, we present the necessary data for
each exceptional type. For each subset S ∈ Π, we give the type of ∆S, the

cardinality of S, the cardinality of ∆S
+, the set Nrigid

S when we are able to
compute it, and a set possibly bigger otherwise, the set dS,p, for p running

through the 4th column, and at last the set of the numbers dS,p+(rkg−#S), for

p running through the 4th column. In the 4th column, we add a question mark

to identify the dimensions which might not belong to Nrigid
S . The dimension

of the varieties g(m) are given Tables 7, 9, 11, 15 and 16.

Remark 3. — A short look at the tables of [24] shows that, each time there is
a question mark in Tables 6, 8, 10, 12, 13 and 14, the corresponding orbit is
actually not rigid.
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∆S #S #∆S
+ N

rigid
S

dS,p = dim g − rkg − 2(#∆S
+) + p, for p ∈ N

rigid
S

dS,p + (rkg − #S), for p ∈ N
rigid
S

∅ 0 0 0 12 14

A1 1 1 0 10 11

G2 2 6 8 6 0 8 6 0 8 6 0

Table 6. Dimension of the sheets for g = G2 (dim g = 14, rkg = 2)

2m ∈ Ng 12 10 8 6 0

dim g(m) 14 11 8 6 0

Table 7. Dimensions of the subsets g(m) for G2

∆S #S #∆S
+ N

rigid
S

dS,p, for p ∈ N
rigid
S

dS,p + (rkg − #S), for p ∈ N
rigid
S

∅ 0 0 0 48 52

A1 1 1 0 46 49

A1 × A1 2 2 0 44 46

A2 2 3 0 42 44

B2 2 4 4 0 44 40 46 42

A1 × A2 3 4 0 40 41

B3 3 9 8 0 38 30 39 31

C3 3 9 6 0 36 30 37 31

F4 4 24 36 34 30? 28 22 16 0 36 34 30? 28 22 16 0 36 34 30? 28 22 16 0

Table 8. Dimension of the sheets for g = F4 (dim g = 52, rkg = 4)
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Lie Simples Exceptionnelles. Université de Poitiers, 1980.
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Mathématique de France, No. 2. Dunod, Paris, 1967.
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∆S #S #∆S
+ N

rigid
S

dS,p, for p ∈ N
rigid
S

dS,p + (rkg − #S),for p ∈ N
rigid
S

∅ 0 0 0 126 133

A1 1 1 0 124 130

A1 × A1 2 2 0 122 127

A2 2 3 0 120 125

A1 × A1 × A1 3 3 0 120 124

A2 × A1 3 4 0 118 122

A3 3 6 0 114 118

A1 × A1 × A1 × A1 4 4 0 118 121

A2 × A1 × A1 4 5 0 116 119

A2 × A2 4 6 0 114 117

A3 × A1 4 7 0 112 115

A4 4 10 0 106 109

D4 4 12 16 10 0 118 112 102 121 115 105

A2 × A1 × A1 × A1 5 6 0 114 116

A2 × A2 × A1 5 7 0 112 114

A3 × A1 × A1 5 8 0 110 112

A3 × A2 5 9 0 108 110

A4 × A1 5 11 0 104 106

D4 × A1 5 13 16 10 0 116 110 100 118 112 102

A5 5 15 0 96 98

D5 5 20 24 14 0 110 100 86 112 102 88

A3 × A2 × A1 6 10 0 106 107

A4 × A2 6 13 0 100 101

A5 × A1 6 16 0 94 95

A6 6 21 0 84 85

D5 × A1 6 21 24 14 0 108 98 84 109 99 85

D6 6 30 36 32 28 18 0 102 98 94 84 66 103 99 95 85 67

E6 6 36 64? 60? 54 40 22 0 118? 114? 108 94 76 54 119? 115? 109 95 77 55

E7 7 63 120? 118? 114? 112? 110? 120? 118? 114? 112? 110? 120? 118? 114? 112? 110?

108? 106? 100? 96? 92 90 108? 106? 100 ? 96? 92 90 108? 106? 100 ? 96? 92 90

84? 82 70 64 52 34 0 84? 82 70 64 52 34 0 84? 82 70 64 52 34 0

Table 12. Dimension of the sheets for g = E7 (dim g = 133, rkg = 7)
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∆S #S #∆S
+ N

rigid
S

dS,p, for p ∈ N
rigid
S

dS,p + (rkg − #S),for p ∈ N
rigid
S

∅ 0 0 0 240 248

A1 1 1 0 238 245

A1 × A1 2 2 0 236 242

A2 2 3 0 234 240

A1 × A1 × A1 3 3 0 234 239

A2 × A1 3 4 0 232 237

A3 3 6 0 228 233

A1 × A1 × A1 × A1 4 4 0 232 236

A2 × A1 × A1 4 5 0 230 234

A2 × A2 4 6 0 228 232

A3 × A1 4 7 0 226 230

A4 4 10 0 220 224

D4 4 12 16 10 0 232 226 216 236 230 220

A2 × A1 × A1 × A1 5 6 0 228 231

A2 × A2 × A1 5 7 0 226 229

A3 × A1 × A1 5 8 0 224 227

A3 × A2 5 9 0 222 225

A4 × A1 5 11 0 218 221

D4 × A1 5 13 16 10 0 230 224 214 233 227 217

A5 5 15 0 210 213

D5 5 20 24 14 0 224 214 200 227 217 203

Table 13. Dimension of the sheets for dim g = E8 (dim g = 248, rkg = 8) I
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∆S #S #∆S
+ N

rigid
S

dS,p, for p ∈ N
rigid
S

dS,p + (rkg − #S), for p ∈ N
rigid
S

A2 × A2 × A1 × A1 6 8 0 224 226

A3 × A2 × A1 6 10 0 220 222

A3 × A3 6 12 0 216 218

A4 × A2 6 13 0 214 216

D4 × A2 6 15 16 10 0 226 220 210 228 222 212

A5 × A1 6 16 0 208 210

A6 6 21 0 198 200

D5 × A1 6 21 24 14 0 222 212 198 224 214 200

D6 6 30 36 32 28 18 0 216 212 208 198 180 218 214 210 200 182

E6 6 36 64? 60? 54 40 22 0 232? 228? 222 208 190 168 234? 230? 224 210 192 170

D4 × A3 7 16 0 208 209

A6 × A1 7 22 0 196 197

D5 × A2 7 23 24 14 0 218 208 194 219 209 195

A7 7 28 0 184 185

E6 × A1 7 37 64? 60? 54 40 22 0 230? 226? 220 206 188 166 231? 227? 221 207 189 167

D7 7 42 58 48 40 36 22 0 214 204 196 192 178 156 215 205 197 193 179 157

E7 7 63 120? 118? 114? 112? 234? 232? 228? 226? 235? 233? 229? 227?

110? 108? 106? 100? 224? 222? 220? 214? 225? 223? 229? 215?

96? 92 90 84? 82 210? 206 204 198? 196 211? 207 205 199? 197

70 64 52 34 0 184 178 166 148 114 185 179 167 149 115

E8 8 120 232? 228? 226? 224? 232? 228? 226? 224? 232? 228? 226? 224?

222? 220? 218? 216? 222? 220? 218? 216? 222? 220? 218? 216?

214? 212? 210? 208? 214? 212? 210? 208? 214? 212? 210? 208?

204? 202 200 198? 204? 202 200 198? 204? 202 200 198?

196 188 184? 182 196 188 184? 182 196 188 184? 182

176 172 164 162 176 172 164 162 176 172 164 162

154 146 136 128 154 146 136 128 154 146 136 128

112 92 58 0 112 92 58 0 112 92 58 0

Table 14. Dimension of the sheets for dim g = E8 II
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2m ∈ Ng 126 124 122 120 118 116 114 112 110 108 106 104 102 100 98

dim g(m) 133 130 127 125 122 119 118 115 112 110 109 106 105 102 99

2m ∈ Ng 96 94 92 90 86 84 82 76 70 66 64 54 52 34 0

dim g(m) 98 95 92 90 88 85 82 77 70 67 64 55 52 34 0

Table 15. Dimensions of the subsets g(m) for E7

2m ∈ Ng 240 238 236 234 232 230 228 226 224 222 220 218 216 214 212 210 208

dim g(m) 248 245 242 240 237 234 233 230 227 225 224 221 220 217 214 213 210

2m ∈ Ng 206 204 202 200 198 196 194 192 190 188 184 182 180 178 176 172 168

dim g(m) 207 205 202 203 200 197 195 193 192 189 185 182 182 179 176 172 170

2m ∈ Ng 166 164 162 156 154 148 146 136 128 114 112 92 58 0

dim g(m) 167 164 162 157 154 149 146 136 128 115 112 92 58 0

Table 16. Dimensions of the subsets g(m) for E8


