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ON THE DIMENSION OF THE SHEETS OF A REDUCTIVE

LIE ALGEBRA

by

Anne Moreau

Abstract. — Let g be a complex finite dimensional Lie algebra and G its adjoint
group. For f ∈ g∗, we denote by Bf the skew-symmetric bilinear form on g × g

defined by : Bf (x, y) = f([x, y]), for all x, y ∈ g. For m ∈ N, the subset

g∗m := {f ∈ g∗ | rank Bf = 2m}

is a G-invariant locally closed subset of g∗. The study of the sets g∗m should give
information about the coadjoint orbits of g, because the kernel of Bf is nothing but
the stabilizer of f for the coadjoint action. Following a suggestion of A. A. Kirillov,
we investigate the dimension of the sets g∗m. We quickly realize that this problem is
closely related to the problem of computing the index of g. Because computing the
index for any Lie algebra is a very hard problem in general, it would be too ambitious
to hope to get these dimensions for any Lie algebra. In this paper we focus on the
reductive case. If g is reductive, then g is identified with its dual g∗, and the problem
reduces to compute the dimension of the set g(m) = {x ∈ g | dim(G · x) = 2m},

for m ∈ N, where G · x is the G-orbit of x, for x ∈ g. It is known that g(m) is
nonempty if and only if 2m is the dimension of a nilpotent orbit of g, and that its
irreducible components, called sheets of g, are parameterized by the pairs (l,Ol), up
to G-conjugation class, consisting of a Levi subalgebra l of g and a rigid nilpotent
orbit Ol in l. That’s why our approach consists in computing the dimension of the
sheets of g, whence we deduce the dimension of the subsets g(m).

Introduction

0.1. — Let g be a finite dimensional Lie algebra over a field K, and G be the
adjoint group of g. The Lie algebra g acts on g and on its dual g∗ via the adjoint
and coadjoint actions. Coadjoint orbits play a leading part in Representation
Theory. There are the origin of the famous Orbit Method, initiated by A. A.
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2 A. MOREAU

Kirillov 40 years ago motivated by the problem of describing the unitary dual
of the group of upper triangular matrices with ones on the diagonal.

For f ∈ g∗, denote by Bf the skew-symmetric bilinear form on g×g defined
by :

Bf (x, y) = f([x, y]), ∀x, y ∈ g.

As the kernel of Bf is nothing but the stabilizer of f in g∗ for the coadjoint
action, the rank of Bf is equal to the dimension of the coadjoint orbit of f .
By definition, the index of g, denoted by ind g, is the minimal codimension of
the coadjoint orbits in g∗. Namely,

ind g = dim g − max
f∈g∗

rank Bf .

A linear form is said to be regular if the dimension of its stabilizer for the
coadjoint action is equal to the index of g. The notion of the index goes back
to J. Dixmier. He introduced it for its importance in Representation Theory.
As Bf is a skew-symmetric bilinear form, its rank is even and we set

g∗m := {f ∈ g∗ | rank Bf = 2m}.

If we set

dg :=
1

2
(dim g − ind g),

then the subset g∗dg
has dimension dim g∗ = dim g, since g∗dg

is the subset

of regular linear forms of g, which is a dense open subset of g∗. Following
a suggestion by A. A. Kirillov, we now investigate the dimension of the
sets g∗m, for any m ∈ N. These subsets should give information about the
coadjoint orbits. It is natural to ask now for which m ∈ N, the subset g∗m is
nonempty. Clearly, it is an empty set for all m strictly bigger than dg, and
it is a nonempty set for m = dg. What about the smaller integers? From
that point, it turns out that our problem is closed related to the problem of
computing the index, which is a very hard problem in general. The index was
studied only in some particular cases (see for instance [5], [20], [9], [27], [17]
and [18]). Consequently, it would be too ambitious to get such integers, as
well as the dimension of the g∗m, for any Lie algebra. In [13], A. A. Kirillov
approaches the case where g is the Lie algebra of the Lie group of upper
triangular matrices with ones on the diagonal over a field Fq of characteristic
q. In this note, we provide the dimension of the subsets g∗m, for all m ∈ N, in
the case where g is a complex finite dimensional reductive Lie algebra.

0.2. — From now on K = C and g is supposed to be reductive. We denote
by 〈·, ·〉 a non-degenerate G-invariant bilinear form on g which extends the
Killing form of the semisimple part of g. The Lie algebra g can be identified
with g∗ through 〈·, ·〉. In particular the index of g is nothing but rkg, the rank
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of g. Moreover, g∗m can be identified with the subset g(m) of elements x ∈ g

such that dim(G · x) = 2m, where G · x is the G-orbit of x under the adjoint
action of G on g. The subset g∗≤m := {f ∈ g∗ | rankBf ≤ 2m} is a G-invariant
closed subset of g∗ as finite union of nullvarieties of regular functions on g∗.
Therefore the subset g∗m = g∗≤m \ g∗≤m−1 is a G-invariant locally closed subset

of g∗, and so g(m) is a G-invariant locally closed subset of g. The irreducible
components of g(m) are called the sheets of g. The notion of sheet was first
introduced by J. Dixmier in [6]. Obviously, g is the finite union of its sheets.
Thus, our problem reduces to compute the dimension of the sheets of g.

An element x ∈ g is said to be regular if its centralizer gx = {y ∈ g | [x, y] =
0} has minimal dimension rkg = indg. We have already noticed the equality :

dim g(dg) = dim g. In addition, according to [29], the codimension of the
complement of the set of regular elements in g equals 3. We precise this result,
showing that g(dg−1) is equidimensional of dimension dim g−3 (Theorem 1.15).
For the smaller integers, it seems that there is no visible general rules, as we
will see from our explicit computations. In particular, the subsets g(m) are not
always equidimensional.

0.3. — In the first section, we recall some results about G-Jordan classes,
sheets, induced nilpotent orbits and rigid nilpotent orbits. We recall the links
between these different notions. In particular, it is known that the integers
m for which the subset g(m) is nonempty are exactly the integers m for which
there is a nilpotent orbit of g of dimension 2m (Proposition 1.13) and that
the sheets of g are parameterized by the pairs (l,Ol), up to G-conjugation
class, consisting of a Levi subalgebra l of g and a rigid nilpotent orbit Ol of l

(Theorem 1.11).
The second section deals with the classical Lie algebras. We recall the

characterization of rigid nilpotent orbits in the classical case in term of the
corresponding partitions. Then, we establish an explicit formula for the di-
mension of g(m), for all m ∈ N (Theorems 2.2 and 2.11). Tables 1, 3, 4 and 5
provide these dimensions for sl6, so7, sp6 and so12.

Section 3 concerns the exceptional case. Using the description of the sheets
of g obtained in section 1, we give for each exceptional simple Lie algebra, the
dimension of the sets g(m), for all m ∈ N (cf Tables 7, 9, 11, 15, 16).

Acknowledgment : I would like to thank A. A. Kirillov for his interest
in my work. I am also very grateful to Karin Baur for her many comments
and suggestions. In particular, she brought the thesis of Andreas Emanuel Im
Hof to my attention.
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1. G-Jordan Classes, sheets and induced nilpotent orbits

1.1. Sheets and Jordan classes. — If a is a Lie subalgebra of g, we denote
by zg(a) the centralizer in g of a. As a rule, we respectively denote by xs and
xn the semisimple and nilpotent components in g of an element x ∈ g. The
results of this paragraph are mostly due to W. Borho and H. Kraft [2] and
they are also presented in [28].

Definition 1.1. — Let x, y ∈ g. We say that x and y are G-Jordan equivalent
if there exists g ∈ G such that :

gys = gg(xs) = g(gxs), yn = g(xn).

This defines an equivalence relation on g. The equivalence class of x, that we
shall denote by JG(x), is called the G-Jordan class of x in g.

For any G-invariant subset Y of g we denote by Y reg the set of regular
elements of Y , that is to say those of maximal G-orbit dimension. Recall that
a Levi subalgebra of g is the reductive part of a parabolic subalgebra of g.
The group G acts on the set of the pairs (l,Ol) consisting of a Levi subalgebra
l of g and a nilpotent orbit Ol of l in a obvious way.

The following lemma, proven for instance in [28], doesn’t present any diffi-
culty :

Lemma 1.2 ([28], Propositions 39.1.5 and 39.2.9)
Let x = xs + xn be in g and JG(x) its G-Jordan class. Then :
(i) JG(x) = G · (z(gxs)reg + xn),
(ii) dim JG(x) = dim(G · x) + dim z(gxs).

We deduce from Lemma 1.2 the following known proposition, whose we
recall the proof :

Proposition 1.3. — There is a one-to-one correspondence between G-Jordan
classes and the set of pairs (l,Ol), up to G-conjugation, where l is a Levi
subalgebra of g and Ol a nilpotent orbit of l.

Proof. — Let JG(x) be a G-Jordan class of g. Set l = gxs . Since xs is
semisimple, l is a Levi subalgebra of g which contains xn, because [xs, xn] = 0.
Denote by O the nilpotent orbit of xn in l. The G-orbit of the pair (l,O) only
depends on JG(x) and not on the choice of a representative in JG(x). This
defines the first map.

Conversely, let l be a Levi subalgebra of g and Ol a nilpotent orbit in l.
Fix z ∈ zg(l)

reg, y ∈ Ol and set x = y + z. As z belongs to the center of l,
[z, y] = 0, whence xs = z and xn = y. Then gxs = gz = l, because z ∈ zg(l)

reg.
Since JG(x) = G · (z(gxs)reg + xn) by Lemma 1.2 (i), the G-Jordan class of x
doesn’t depend on the choices of z ∈ z(gxs)reg nor of y ∈ Ol. Furthermore,
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it is clear that JG(x) only depends on the G-orbit of (l,Ol) and not on the
choice of one of its representatives, whence the other map.

These two maps are clearly inverse, whence the one-to-one correspondence.

We shall say that the G-Jordan class associated via the previous correspon-
dence, to a pair (l,Ol), where l is a Levi subalgebra of g and Ol a nilpotent
orbit of l, has data (l,Ol). It follows from the classification of Levi subalge-
bras of g as well as the one of nilpotent orbits in reductive Lie algebras that
there are only finitely many G-Jordan classes. Therefore, g is a finite disjoint
union of its G-Jordan classes. By Lemma 1.2, a G-Jordan class is G-stable,
irreducible, and it is contained in g(m), for some m ∈ N. As a consequence,
we deduce the following proposition :

Proposition 1.4 ([28], Proposition 39.3.3). — Let S be a sheet of g.
Then, there is an unique G-Jordan class J such that J ⊂ S and S = J.
Moreover, S =

(
J
)reg

.

1.2. Induced nilpotent orbits and sheet. — In order to investigate the
dimension of the sheets of g, we have to determinate which G-Jordan classes
are dense in a sheet. Theorem 1.11 ([1], 4.4) provides an answer. Because of
the importance of this result in the remainders of this paper, we recall the
main steps of the proof of this theorem. In addition, we will need of some of
these intermediate results. We start by recalling some results about induced
nilpotent orbits (see [4] for more details). Then, we use many results due
to Borho [1] presented in the thesis of Andreas im Hof [11]. His thesis is
available on http : //aleph.unibas.ch/ but we recall all the results needed.

Theorem-Definition 1.5 ([4], Theorem 7.1.1). — Let P be the con-
nected Lie subgroup of G with Lie algebra p = l ⊕ n. There is a unique
nilpotent orbit Og in g meeting Ol + n in an open dense subset. We have
dimOg = dimOl + 2dim n. The orbit Og is the unique nilpotent orbit in g of
this dimension which meets Ol + n. The intersection Og∩ (Ol + n) consists in
a single P -orbit.

We say that the orbit Og is induced from Ol and we denote it by Indg
p(Ol).

If Ol = 0, then we say that Og is a Richardson orbit.

Lemma 1.6 ([4], Theorem 7.1.3). — Let p = l ⊕ n and p
′

= l ⊕ n
′

be two
parabolic subalgebras of g with the same Levi subalgebra l, and let Ol be a
nilpotent orbit in l. Then, Indg

p(Ol) = Indg

p
′ (Ol).

As a consequence of this result, we can use the notation Indg
l (Ol) instead

of Indg
p(Ol).
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Proposition 1.7 ([4], Proposition 7.1.4). — Let p = l ⊕ n be the Levi
decomposition of a parabolic subalgebra in g and Ol a nilpotent orbit in l.

(i) codiml(Ol) = codimg(Indg
l (Ol)), i.e : dim Indg

l (Ol) = dim g − dim l + dimOl.
(ii) Let l1 and l2 be two Levi subalgebras of g with l1 ⊂ l2. Then

Indg
l2
(Indl2

l1
(Ol1)) = Indg

l1
(Ol1).

Proposition 1.8 ([1], 3.1, Satz a). — Let J be a G-Jordan class with data

(l,Ol). Then
(
J
)reg

contains a unique nilpotent orbit. It is equal to Indg
l (Ol).

Corollary 1.9 ([1], 3.6). — Let J and J
′

be two G-Jordan classes with data

(l,Ol) and (l
′

,O
l
′ ) respectively such that l contains l

′

. Then J is contained in

J
′ if and only if Ol is Indl

l
′ (Ol

′ ) up to G-conjugation class.

Proposition 1.7, (i) implies that not every nilpotent orbit is induced from
another. A nilpotent orbit in g which is not induced from any proper parabolic
subalgebra is called rigid.

Corollary 1.10 ([1], 4.2). — A G-Jordan class with data (l,Ol) is dense in
a sheet if and only if Ol is rigid in l.

We conclude this paragraph with the expected classification of sheets of g,
which is a consequence of Corollary 1.10 and Proposition 1.4 :

Theorem 1.11 ([1], 4.4). — There is a one-to-one correspondence between
the set of pairs (l,Ol), up to G-conjugation class, where l is a Levi subalgebra
of g and Ol a rigid nilpotent orbit in l, and the set of sheets of g.

1.3. First results concerning the dimension of the sheets. — Let S

be a sheet of g(m), for m ∈ N. Then S corresponds to a pair (l,Ol) via the
correspondence established in Theorem 1.11. According to Propositions 1.4
and 1.8, Indg

l (Ol) is the unique nilpotent orbit contained in S. Denote by
JG(x) the G-Jordan class whose data is (l,Ol). Necessarily, gxs = l. So,
Lemma 1.2 (ii) implies :

dim JG(x) = dim(G · x) + dim zg(l).

In addition, since Indg
l (Ol) is contained in S, dim Indg

l (Ol) = dim(G · x),

because these two G-orbits belong to g(m). In conclusion, we obtain the
following proposition :

Proposition 1.12. — Let S be the sheet corresponding to the pair (l,Ol) via
the correspondence established in Theorem 1.11. Then Indg

l
(Ol) is the unique

nilpotent orbit contained in S. Moreover :

dimS = dim Indg
l (Ol) + dim zg(l)

= dim g − dim l + dimOl + dim zg(l).
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Denote by Ng the set of all the dimensions of the nilpotent orbits in g and

by Nrigid
g those of all the dimensions of the rigid nilpotent orbits of g. As a

consequence of Proposition 1.12, we get the following proposition :

Proposition 1.13 ([28], Remarks 39.3.2). — The set g(m) is non-empty
if and only if 2m ∈ Ng.

Fix a Cartan subalgebra h of g. Let Π be a simple root system of the
root system ∆ associated to the couple (g, h). Denote by ∆+ the positive
root system corresponding to Π. For α ∈ ∆, denote by gα the root subspace
associated to α. For S any subset of Π, we denote by ∆S the root subsystem
of ∆ generated by S, and by ∆S

+ the intersection ∆+ ∩ ∆S . Set

lS = h ⊕
⊕

α∈∆S

gα.

Then lS is a Levi subalgebra of g and it is well-known (see [4], Lemma 3.8.1)
that every Levi subalgebra of g is G-conjugated to lS , for some S in Π. For

the sake of the simplicity, we shall denote by NS and Nrigid
S respectively the

sets NlS and Nrigid
lS

.

Lemma 1.14. — Suppose that the semisimple part of g has dimension strictly

bigger than 3. Then the subregular nilpotent orbit Osubreg
g of g is not rigid.

Proof. — Let α ∈ Π and set l = h ⊕ gα ⊕ g−α. Then the nilpotent orbit of g

induced from the zero orbit of l has dimension,

dim g − dim l = dim g − rkg − 2,

by Proposition 1.7, (i). As a consequence Osubreg
g = Indg

l
(O0), because Osubreg

g

is the only nilpotent orbit of g of dimension dim g − rkg − 2. By hypothesis,

g is different from l, whence Osubreg
g is not rigid.

Recall that 2dg = dim g − indg.

Theorem 1.15. — (i) If m > dg, then g(m) is an empty set of g.

(ii) The subset g(dg) is irreducible of dimension dim g.

(iii) The subset g(dg−1) is equidimensional of dimension dim g − 3.

Proof. — (i) is an obvious consequence of the definition of dg.

(ii) is true because g(dg) is the subset of regular elements of g, which is a
dense open subset of g.

(iii) Let S be a sheet of g(dg−1) associated to the G-Jordan class with
data (l,Ol), via the correspondence established in Theorem 1.11. According
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to Proposition 1.7, (i), the codimension in l of Ol is rkl + 2 = rkg + 2. As a
consequence, Ol is the subregular nilpotent orbit of l. As Ol is a rigid nilpotent
orbit of l, Lemma 1.14 implies that the semisimple part of l has dimension 3.
Then Ol is the zero orbit of l and S has dimension

dim g − dim l + 0 + dim zg(l) = (dim g − rkg − 2) + (rkg − 1)

= dim g − 3,

according to 1.12, because the center of l has dimension rkg−1, whence (ii).

Remark 1. — We cannot expect similar results for the smaller integers. In-
deed, we will see from our explicit computations that g(m) is not always equidi-
mensional. This phenomenon mainly results from two problems. Firstly, a
nilpotent orbit can be induced in two different ways. Secondly, two different
orbits can have the same dimension.

2. Computations in the classical cases

In this part, we study the dimensions of the sets g(n), for n ∈ N such that
2n ∈ Ng in the case where g is a classical simple Lie algebra. Because of the
one-to-one correspondence established in Theorem 1.11, we first need a precise
description of rigid nilpotent orbits. These results will also be useful in section
3 for the exceptional case, because Levi subalgebras of simple exceptional Lie
algebras often have simple factors of classical type.

2.1. Type Al. — In this paragraph, we suppose that g = slN , with N ≥ 2.
First of all, recall that nilpotent orbits of g are in one-to-one correspondence
with the set P(N) of all partitions of n. Here, partition means a sequence
d = [d1, . . . , dN ] of non-negative integers, possibly zero, with d1 ≥ · · · ≥ dN

and d1 + · · · + dN = N . If d = [d1, . . . , dN ] ∈ P(N), we denote by Od the
corresponding nilpotent orbit of g.

Let d = [d1, . . . , dN ] be in P(N). Set si = #{j | dj ≥ i} the dual partition
of d. Notice that d1 is the biggest integer j such that sj is different from zero.

Define a subset Sd of Π as follows : the connected components Sd
1 , . . . , Sd

d1
of

Sd have the cardinalities s1 − 1, . . . , sd1 − 1 respectively. Then we denote by
ld the Levi subalgebra lSd with the notations of 1.3.

Proposition 2.1 ([4], Theorem 7.2.3). — The partition associated to
Indg

ld
(O0) is d. In particular, every non-zero nilpotent orbit in g is Richard-

son and the unique rigid nilpotent orbit is the zero orbit.
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Let d be a partition of N . The dimension of Od is 2m(d), where m(d) is
defined by ([4], Corollary 6.1.4) :

m(d) :=
1

2
(N2 −

d1∑

i=1

s2
i ).(1)

Let us remark that we can also obtain that formula from propositions 2.1 and

1.7 (i), since ld has dimension
d1∑

i=1
s2
i − 1.

Theorem 2.2. — Let m ∈ N. If 2m ∈ Ng, then

dim g(m) = 2m + max
d∈P(N)
m(d)=m

(d1 − 1).

Otherwise, g(m) is an emptyset.

Proof. — Let m ∈ N such that 2m ∈ Ng. Let S be a sheet of g(m). By
Theorem 1.11 and proposition 2.1, S corresponds to a pair (ld,O0), for some
d ∈ P(N). By Proposition 2.1 and Formula (1), dim Indg

ld
(O0) = 2m(d). In

particular, m(d) has to be equal to m. In addition, Proposition 1.12 gives :

dim S = 2m(d) + d1 − 1,

since the center of ld has dimension

rk g − #Sd = N − 1 −

d1∑

i=1

(si − 1)

= N − 1 − (N − d1)

= d1 − 1.

The first assertion of the theorem is now clear. The secund assertion results
from Proposition 1.13.

As an example, we present the dimension of the g(m), for g = sl6 : Table
1 provides, for each d ∈ P(N), the dimension 2m(d) of the corresponding
nilpotent orbit and the quantity d1 − 1. Then, we present in Table ?? the
dimension of the sets g(m), according to Theorem 2.2. Because two different
orbits can have the same dimension, we need to compute d1 − 1, for all
d ∈ P(N) such that m(d) = m, to get the dimension of dim g(m) (eg there are
two nilpotent orbits of dimension 18).



10 A. MOREAU

2m ∈ Ng d ∈ P(6) such that 2m(d) = 2m d1 − 1, for d ∈ P(6) dim g(m) = 2m + max
m(d)=m

(d1 − 1)

30 [6] 5 35

28 [5, 1] 4 32

26 [4, 2] 3 29

24 [4, 12] [32] 3 2 27

22 [3, 2, 1] 2 24

18 [3, 13] [23] 2 1 20

16 [22, 12] 1 17

10 [2, 14] 1 11

0 [16] 0 0

Table 1. Dimensions of the sets g(m) for sl6.

2.2. Type Bl, Cl and Dl. — Set ε = ±1 and consider a non-degenerate
bilinear form 〈·, ·〉ε on CN such that :

〈a, b〉ε = ε〈a, b〉ε, for all b, a ∈ CN .

If ε = −1 (resp. 1), then the form is 〈·, ·〉ε is symplectic (resp. symmetric).
We then define :

I(〈·, ·〉ε) = {g ∈ GLN | 〈ga, gb〉ε = 〈a, b〉ε, for all a, b ∈ CN},

gε = {x ∈ slN | 〈xa, b〉ε = −〈a, xb〉ε, for all a, b ∈ CN}.

If ε = −1, then N = 2n and g−1 ≃ sp2n. If ε = 1, then g−1 ≃ soN . Thus
I(〈·, ·〉ε) is the isotropy group of the form 〈·, ·〉ε on CN , and gε is its Lie algebra.
Now, set :

Pε(N) = {[d1, . . . , dN ] ∈ P(N) | #{j | dj = i} is even for all i with (−1)i = ε}.

Theorem 2.3 ([4], Theorem 5.1.6). — Nilpotent orbits in gε are in one-
to-one correspondence with the partition Pε(N) of N , except that if ε = 1,
and N = 2n, then very even partitions of N (those with only even parts, each
having even multiplicity) correspond to two orbits that we label with I and II.



ON THE DIMENSION OF THE SHEETS 11

To make some statements more understandable, we will include some of the
proofs of known results presented in [4] concerning induced nilpotent orbits
in classical simple Lie algebras.

We endow the set of the partitions of N with the classical order which
corresponds to the classical order on the set of nilpotent orbits of slN . First,
recall a result due to Gerstenhaber which generalizes the transpose operation
in the set P(N) ;

Proposition-Definition 2.4 (Gerstenhaber : cf [4], Lemma 6.3.3)
Let p = [p1, . . . , p2n+1] be a partition in P(2n+1). Then there is an unique

largest partition in P1(2n + 1) dominated by p. This partition, called the
B-collapse of p and denoted by pB, may be defined as follows. If p is not
already in P1(2n + 1), then at least one of its even parts must occur with odd
multiplicity; let q be the largest such part. Replace the last occurrence of q in p
by q−1 and the first subsequent part r strictly less than q−1 by r+1; we may
have to add a 0 to p to find such an r. Repeat this process until a partition
in P1(2n + 1) is obtained. Similarly, there are a unique largest partition qC ,
qD in P−1(2n + 1), P1(2n + 1) dominated by any given partition q of 2n + 1.
They are called the C− and D−collapses of q; their definitions are the obvious
analogues of that of pB.

From now on, we shall denote by X the type of gε, that is to say B, C or
D.

Let l be a Levi subalgebra of g. Then, there are integers i1, . . . , iS ≥ 0 and
R such that,

l ≃ gliS × · · · gli1 × g
′

,

where g
′

has the same type as gε and whose standard representation has
dimension R. After a possible renumbering, we can suppose that [i1, . . . , iS ]
belongs to P(S), with 2S + R = N . Then we define :

PLevi
ε = {(i, R) ∈ P(S) × N≥0 | 2S + R = N,S ≥ 0 and R 6= 2, if ε = 1}.

Lemma 2.5. — There is a one-to-one correspondence between G-conjugation
classes of Levi subalgebras of g and elements of PLevi

ε .

If l corresponds to the element (i;R) of PLevi
ε , we shall say that l is of type

(i;R).

Proposition 2.6 ([4], Corollary 7.3.4). — Let l = gll × g
′

be a maximal

Levi subalgebra, where g
′

has the same type as gε (then 2l + r = N if r is

the dimension of the standard representation of g
′

and l is of type (l; r)). Let
Ol = O0 ×Of be a nilpotent orbit in l whose component in the gll factor is the

zero orbit and whose component Of in the g
′

factor has partition f . Then the
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partition of Indgε

l
(Ol) is p, where the partition p is obtained from f as follows :

We add 2 to the first l terms of f , obtaining a partition f̃ (extending by

zero if necessary in f if necessary), and then take the X-collapse of f̃ , where
X = B,C or D (cf Proposition-Definition 2.4). If the collapse is nontrivial

(ie f̃X 6= f̃)), it is obtained by subtracting 1 from the lth part of f̃ and adding
1 to its (l + 1)th part. If gε = so4n, r 6= 0 and the collapsed partition is very
even, then f is also very even and the induced orbit inherits the label I or II
of Of ; if r = 0, then the label of the induced orbit is the same as that of Ol if
n is even but differs from it if n is odd.

Define P∗
ε (N) to be the set of all the partitions [d1, . . . , dN ] in Pε(N) such

that the following two conditions hold :

(i) 0 ≤ di+1 ≤ di ≤ di+1 + 1 for all i,

(ii) #{j | dj = i} 6= 2 if ε(−1)i = −1.

We will show that P∗
ε (N) encodes rigid nilpotent orbits. Let d =

[d1, . . . , dN ] be in Pε(N). We want to construct an element of P∗
ε (N)

from d. Set i0 = 0, d(0) = d and g
′(0) = gε.

Step 1 : if d ∈ P∗
ε (N), set d(1) = d = d(0). Otherwise, there is j ∈ {1, . . . , N}

such that either dj ≥ dj+1 +2, or dj−1 > dj = dj+1 > dj+2 with ε(−1)dj = −1
(where we have set d0 = 0 and dj = 0, for all j > N , by convention). De-
note by i1 the smallest integer j such that one of these two situations happens.

a) In the first situation, set :

d(1) := [d1 − 2, . . . , di1 − 2, di1+1, . . . , dN ].

b) In the second situation, set :

d(1) := [d1 − 2, . . . , di1−1 − 2, di1 − 1, di1+1 − 1, di1+2, . . . , dN ].

In both situations, d(1) remains an element of Pε(N − 2i1) so O
d(1) is a

nilpotent orbit of g
′(1), where g

′(1) is a classical simple Lie algebra of the same
type as gε whose standard representation has dimension N − 2i1. Moreover,
by Proposition 2.6,

Od = Indgε

l(1)
(O0 ×O

d(1)),

where l(1) is a Levi subalgebra of gε of type (i1;N − 2i1).

Step 2 : suppose that i0, i1, . . . , ip−1, d
(0),d(1), . . . ,d(p−1), g

′(0), g
′(1), . . . , g

′(p−1)
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and l(1), . . . , l(p−1) are defined for some p ∈ {1, . . . , N} in such way that :

(c1) for all k ∈ {0, . . . , p − 1}, O
d(k) is a nilpotent orbit of g

′(k), where

g
′(k) is a classical simple Lie algebra of same type as gε whose corresponding

standard representation has dimension N − 2i0 − 2i1 − · · · − 2ik,

(c2) for all k ∈ {1, . . . , p − 1}, O
d(k−1) = Indg

′(k−1)

l(k) (O0 × O
d(k)), where l(k)

is a Levi subalgebra of g
′(k−1) of type (ik;N − 2i0 − 2i1 − · · · − 2ik).

Then, we define ip, d(p), l(p) and g
′(p) as in Step 1. More precisely, if

d(p−1) ∈ P∗
ε (N − 2i0 − 2i1 · · · − 2ip−1), set d(p) = d(p−1). Otherwise, there is

j ∈ {1, . . . , N − 2i0 − 2i1 · · · − 2ip−1} such that either d
(p−1)
j ≥ d

(p−1)
j+1 + 2, or

d
(p−1)
j−1 > d

(p−1)
j = d

(p−1)
j+1 > d

(p−1)
j+2 with d

(p−1)
j odd. Denote by ip the smallest

integer j such that one of these two situations happens.

a) In the first situation, set :

d(p) := [d
(p−1)
1 − 2, . . . , d

(p−1)
ip

− 2, d
(p−1)
ip+1 , . . . , d

(p−1)
N−2i0−2i1···−2ip−1

].

b) In the second situation, set :

d(p) := [d
(p−1)
1 −2, . . . , d

(p−1)
ip−1 −2, d

(p−1)
ip

−1, d
(p−1)
ip+1 −1, d

(p−1)
ip+2 , . . . , d

(p−1)
N−2i0−2i1···−2ip−1

].

As before, in both cases d(p) is an element of Pε(N − 2i0 − 2i1 · · · − 2ip)

so O
d(p) is a nilpotent orbit of g

′(p), where g
′(p) is a classical simple Lie

algebra of the same type as gε whose standard representation has dimension
N − 2i0 − 2i1 · · · − 2ip. And, by Proposition 2.6,

O
d(p−1) = Indg

′(p−1)

l(p) (O0 ×O
d(p)),

where l(p) is a Levi subalgebra of g
′(p−1) of type (ip;N − 2i0 − 2i1 · · · − 2ip).

Then i0, i1, . . . , ip, d(0),d(1), . . . ,d(p), g
′(0), g

′(1), . . . , g
′(p) and l

′(1), . . . , l
′(p)

satisfy conditions (c1) and (c2).

The process clearly ends after a finite number of steps.

Definition 2.7. — We denote by z(d) the smallest integer j such that d(j) =

d(j+1).
If a partition d

′

is obtained from another partition d by a transformation
of type a) or b) as described in Steps 1 or 2 (in particular d has to be different

from d
′

), then we shall say that d
′

is deduced from d by an elementary
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transformation. In this case, it is clear that

z(d
′

) = z(d) − 1.(2)

Clearly, the previous construction proves that if z(d) 6= 0 then Od is not
rigid. Using Proposition 2.6, we can easily prove that the converse also holds,
whence the following corollary :

Corollary 2.8. — The nilpotent orbit corresponding to a partition
d ∈ Pε(N) is rigid if and only if z(d) = 0.

Because z(d) is clearly equal to 0 if and only if d belongs to Pε(N)∗,
Corollary 2.8 gives the following result, enounced in [4] :

Corollary 2.9 ([4], Corollary 7.3.5). — The orbit corresponding to a par-
tition d ∈ Pε(N) is rigid if and only if d ∈ Pε(N)∗.

Let d = [d1, . . . , dN ] be in Pε(N). Put ri = #{j | dj = i} and si =
#{j | dj ≥ i}. Denote by m(d) the half dimension of Od. According to [4],
Corollary 6.1.4, m(d) is given by the following formulas :

m(d) =







1

2
(2n2 + n −

1

2

∑

i

s2
i +

1

2

∑

i odd

ri), if g = so2n+1

1

2
(2n2 + n −

1

2

∑

i

s2
i −

1

2

∑

i odd

ri), if g = sp2n

1

2
(2n2 − n −

1

2

∑

i

s2
i +

1

2

∑

i odd

ri), if g = so2n.

(3)

The construction preceding the definition 2.7 enables to compute the num-
ber z(d), for d ∈ Pε(N). Then, according to Corollary 2.8, we obtain the list
of rigid nilpotent orbits with their dimensions (computed with formulas (3))
in B2, B3, C3, D4, D5, D6 and D7 in Table 2. We list these cases since they
all appear as simple factors of Levi subalgebras in the exceptional Lie algebras.

Lemma 2.10. — Let d = [d1, . . . , dN ] be in Pε(N). Suppose that Od =
Indgε

l (Ol), where l is a Levi subalgebra of gε and Ol a rigid nilpotent orbit in
l. Then

dim zgε(l) = z(d).

Remark 2. — A nilpotent orbit Od can be induced in different ways by a rigid
nilpotent orbit of a Levi subalgebra of g. Lemma 2.10 claims that the dimension
of the center of a such Levi subalgebra only depends on d and not on the choice
of this Levi subalgebra, nor on the choice of a rigid nilpotent orbit in this Levi
subalgebra.



ON THE DIMENSION OF THE SHEETS 15

B2 C3 B3 D4 D5 D6 D7

[15] 0 [16] 0 [17] 0 [18] 0 [110] 0 [112] 0 [114] 0

[22, 1] 4 [2, 14] 6 [22, 13] 8 [22, 14] 10 [22, 16] 14 [22, 18] 18 [22, 110] 22

[3, 22, 1] 16 [3, 22, 13] 24 [24, 14] 28 [24, 16] 36

[3, 22, 15] 32 [3, 22, 17] 40

[3, 24, 1] 36 [3, 24, 13] 48

[33, 22, 1] 58

Table 2. Rigid nilpotent orbits with their dimensions in so5, sp6, so7,
so8, so10, so12 and so14

Proof. — 1) If Od is rigid, then l = gε, and dim zgε(l) = 0. On the other
hand, z(d) = 0, according to Corollary 2.8.

2) We suppose that d 6∈ Pε(N). In other words, Od is not rigid, therefore l

is strictly contained in gε. According to Lemma 2.5, l is G-conjugated to

gliS × · · · × gli1 × g
′

,

with 2i1 + · · · 2iS +R = N , i1 ≥ · · · ≥ iS , and where g
′

is a Lie algebra of same
type as gε whose standard representation has dimension R. In other words, l

has type (i;R), with i = [i1, . . . , iS ] ∈ P(S). Notice that the center of l has
dimension S. By Theorem 2.1,

Ol = O0 × · · · × O0 ×Of ,

where f is an element of Pε(R) such that Of is rigid in g
′

and where the
component of Ol on the glik factor is zero, for k = 1, . . . , S.

Set i0 = 0 and g
′(0) = l̃(0) = g

′

. For p = 1, . . . , S, denote by g
′(p) a Lie

algebra of the same type as gε whose standard representation has dimension

Rp := 2ip + · · · + 2i1 + 2i0 + R,

and by l̃(p) a Levi subalgebra of g
′(p) of type (ip; 2ip−1 + · · · + 2i1 + 2i0 + R).

Set l(S) = gε and, for p = 0, . . . , S − 1, denote by l(p) a Levi subalgebra of
gε of type ([ip+1, . . . , iS ]; 2ip + · · · + 2i1 + 2i0 + R) such that :

l = l(0) ⊆ · · · ⊆ l(S) = gε.

As defined, l(p) is G-conjugated to

gliS × · · · × glip+1
× g

′(p),

for all p = 0, . . . , S − 1.
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Set d(0) = f and define d(p), for p = 1, . . . , S, by induction as follows; d(p)

is the element of Pε(Rp) such that :

O
d(p) = Indg

′(p)

l̃(p)
(O0 ×O

d(p−1)),

where O0 is the zero orbit in the glip factor.

Let us first check that d(S) = d. By Lemma 1.7, (ii), we can write :

Od = Indl(S)

l(S−1)(. . . (Indl(1)

l(0)
(O0 × · · · × O0 ×Of )
︸ ︷︷ ︸

S factors

))).

In addition, we easily see that

Indl(p)

l(p−1)(O0 × · · · × O0
︸ ︷︷ ︸

S−p+1 factors

×O
d(p−1)) ≃ O0 × · · · × O0

︸ ︷︷ ︸

S−p factors

×Indg
′(p)

l̃(p)
(O0 ×O

d(p−1))

= O0 × · · · × O0
︸ ︷︷ ︸

S−p factors

×O
d(p) ,

for all p = 1, . . . , S, because the S − p first factors of l(p−1) and l(p) are the
same. Then, by induction, we obtain :

Od = Indl(S)

l(S−1)(. . . (Indl(1)

l(0)
(O0 × · · · × O0 ×Of
︸ ︷︷ ︸

S factors

))

= Indl(S)

l(S−1)(. . . Indl(2)

l(1)
(O0 × · · · × O0
︸ ︷︷ ︸

S−1 factors

×O
d(1))

...

= Indl(S)

l(S−1)(O0 ×O
d(S−1))

= Indg
′(S)

l̃(S)
(O0 ×O

d(S−1)),

because l(S) ≃ g
′(S) ≃ gε and l̃(S) ≃ l(S−1). The definition of d(S) thus implies

d = d(S).

It remains to compute the number z(d(S)). Prove by induction on p ∈

{0, . . . , S}, that z(d(p)) = p and that, for all i < ip+1 :






(i)’ 0 ≤ d
(p)
i+1 ≤ d

(p)
i ≤ d

(p)
i+1 + 1,

(ii)’ #{j | d
(p)
j = i} 6= 2, if ε(−1)i = −1.
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Then we will deduce the expected result from the p = S case, since the center
of l has dimension S.

p = 0 : since Of is rigid in g
′

, it follows from Corollary 2.8 that

z(f) = z(d(0)) = 0 and that the conditions (i)’ and (ii)’ hold.

(p − 1) ⇒ p: suppose that, for all k ∈ {0, . . . , p − 1}, z(d(k)) = k and that

conditions (i)’ and (ii)’ holds for i < ik+1, for some p ∈ {1, . . . , S}. We have

to prove first that z(d(p)) = p. According to relation (2), it is enough to

prove that d(p−1) is deduced from d(p) by an elementary transformation, since
z(d(p−1)) = p − 1 by the induction hypothesis. As l̃(p) is a maximal Levi

subalgebra of g
′(p), we can apply Proposition 2.6 to

O
d(p) = Indg

′(p)

l̃(p)
(O0 ×O

d(p−1)).

With the notations of Proposition 2.6, we have :

d(p) = ˜(d(p−1))X .

By the induction hypothesis, for all i < ip, conditions (i)’ and (ii)’ hold for

d(p−1). Consequently the smallest integer l such that one of the situations
a) or b) of Step 1 happens in d(p) is equal to ip, because l̃(p) is of type

(ip;Rp − 2ip). We distingue two cases : either d̃(p−1)
X equals to d̃(p−1) or not.

We easily check that in both situations, d(p−1) is deduced from ˜(d(p−1))X by
an elementary transformation. Moreover, for all i < ip+1, conditions (i)’ and

(ii)’ hold for d(p) because ip+1 ≤ ip.

By induction, for all p = 1, . . . , S, z(d(p)) = p and conditions (i)’ and (ii)’

hold, for all i < ip+1. In particular, with p = S, we have : z(d(S)) = z(d) =
S = dim zg(l).

We are now ready to compute the dimension of the subsets g
(m)
ε . Recall

that m(d) is given by the formulas (3).

Theorem 2.11. — Let m ∈ N. If 2m ∈ Ngε, then

dim g(m)
ε = 2m + max

d∈Pε(N)
m(d)=m

z(d).

Otherwise, g
(m)
ε is an emptyset.

Proof. — Let m ∈ N such that 2m ∈ Ngε . Let S be a sheet of g
(m)
ε associated

to the pair (l,Ol), where l is a Levi subalgebra of gε and Ol a nilpotent
rigid orbit in l. According to Proposition 1.8, the unique nilpotent orbit Od
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contained in S is Indgε

l
(Ol). In particular, Indgε

l
(Ol) has dimension 2m, and

so m = m(d). Lemma 2.10 implies that the center of l has dimension z(d). As
a result, we deduce from Proposition 1.12 the expected relation. The secund
assertion results from Proposition 1.13.

Tables 3, 3 and 5 provide, for each d ∈ Pε(N), the integers 2m(d) and z(d),

and then the dimensions of the sets g
(m(d))
ε , for N = 3 with ε = ±1 and for

N = 6 with ε = 1.

2m ∈ Ng d ∈ P(6) such that 2m(d) = 2m z(d), for d ∈ P(6) dim g
(m)
ε = 2m + max

m(d)=m
z(d)

18 [7] 3 21

16 [5, 12] 2 18

14 [32, 1] 1 15

12 [3, 22] 1 13

10 [3, 14] 1 11

8 [22, 13] 0 8

0 [17] 0 0

Table 3. Dimensions of the sets g
(m)
ε for so7.

3. Computations in the exceptional cases

We suppose in this part that g is a simple exceptional Lie algebra. The
point is to explicitly compute the dimensions of all the sheets of g.

For each pair (S, p) consisting of a subset S of Π and the dimension p of a
nilpotent orbit of the Levi subalgebra lS = h ⊕ (

⊕

α∈∆S

gα), set

dS,p := dim g − rkg − 2#∆S
+ + p.

According to Lemma 1.7 (i), dS,p is the dimension of the nilpotent orbit
induced by any nilpotent orbit of dimension p in lS . Then, by Lemma 1.2, the
dimension of a G-Jordan class with data (lS ,O), for any nilpotent orbit O in
lS of dimension p, is

(dim g − rkg − 2#∆S
+ + p) + (rkg − #S),
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2m ∈ Ng d ∈ P(6) such that 2m(d) = 2m z(d), for d ∈ P(6) dim g
(m)
ε = 2m + max

m(d)=m
z(d)

18 [6] 3 21

16 [4, 2] 2 18

14 [32] [4, 12] 1 1 15

12 [23] 1 13

10 [22, 12] 1 11

6 [2, 14] 0 6

0 [16] 0 0

Table 4. Dimensions of the sets g
(m)
ε for sp6.

since the center of lS has dimension rkg − #S. In addition, by Proposition
1.11, this dimension corresponds to the dimension of a sheet of g(m), where
2m = dS,p, if and only if p is the dimension of a rigid nilpotent orbit in lS .

When the simple factors of lS are all of classical type, then the set Nrigid
S

is given in Table 2. In [24], Chapter II, the rigid nilpotent orbits of the
exceptional types are listed, provided from Elashvili’s computations. We
observe that our method almost gives a method to recover the dimensions of
the rigid nilpotent orbits of the exceptional types. More precisely, if for some

m ∈ Ng, there is no pair (S, p), with S ⊂ Π, S 6= Π, and p ∈ Nrigid
lS

such that

dS,p = m, then m ∈ Nrigid
g . Unfortunately, the converse is not true in general,

because a non-rigid nilpotent orbit can be induced in two different ways.
Nevertheless, if there is only one nilpotent orbit of dimension m then we can

decide if m belongs to Nrigid
g or not. Anyway, for our goal, this approach is

sufficient because computing the dimension of a G-Jordan class which is not
dense in a sheet doesn’t affect the final result : in that case, the corresponding
dimension will not appear as a dimension of some g(m). Precisely knowing the
G-Jordan classes dense in a sheet is only useful to simplify the computations.
That’s why we present here our computations without refering to [24]. Noting
that our conclusions agree with the data of [24].

In the Tables 6, 8, 10, 12, 13 and 14, we present the necessary data for
each exceptional type. For each subset S ∈ Π, we give the type of ∆S, the
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2m ∈ Ng d ∈ P(6) such that 2m(d) = 2m z(d), for d ∈ P(6) dim g
(m)
ε = 2m + max

m(d)=m
z(d)

60 [11, 1] 6 66

58 [9, 3] 5 63

56 [9, 13] [7, 5] 4 4 60

54 [7, 3, 12] [62] 4 3 58

52 [52, 12] [7, 22, 1] 3 2 55

50 [5, 3, 22] 2 52

48 [43] [42, 3, 1] 2 2 50

46 [42, 22] [5, 3, 14] 2 2 48

44 [42, 14] [5, 22, 13] [34] 1 1 1 45

42 [33, 13] 1 43

40 [32, 22, 12] 1 41

36 [5, 17] [3, 24, 1] 2 0 38

34 [32, 16] 1 35

32 [3, 22, 15] 0 32

30 [26] 1 31

28 [24, 14] 0 28

18 [22, 18] 0 18

0 [112] 0 0

Table 5. Dimensions of the sets g
(m)
ε for so12.

cardinality of S, the cardinality of ∆S
+, the set Nrigid

S when we are able to
compute it, and a set perhaps bigger otherwise. If this is the case, we add a

question mark to identify the dimensions which might not belong to Nrigid
S ,

the set dS,p, for p running through the 4th column, and finally the set of the
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numbers dS,p + (rkg − #S), for p running through the 4th column. Then, the

dimension of the varieties g(m) are given in tables 7, 9, 11, 15 and 16.

Remark 3. — A short look at the tables of [24] shows that, each time there
is a question mark in tables 6, 8, 10, 12 and ??, the corresponding orbit is
actually not rigid.

∆S #S #∆S
+ N

rigid
S

dS,p = dim g − rkg − 2(#∆S
+) + p, for p ∈ N

rigid
S

dS,p + (rkg − #S), for p ∈ N
rigid
S

∅ 0 0 0 12 14

A1 1 1 0 10 11

G2 2 6 8 6 0 8 6 0 8 6 0

Table 6. Dimension of the sheets for g = G2 (dim g = 14, rkg = 2)

2m ∈ Ng 12 10 8 6 0

dim g(m) 14 11 8 6 0

Table 7. Dimensions of the subsets g(m) for G2
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∆S #S #∆S
+ N

rigid
S

dS,p, for p ∈ N
rigid
S

dS,p + (rkg − #S), for p ∈ N
rigid
S

∅ 0 0 0 48 52

A1 1 1 0 46 49

A1 × A1 2 2 0 44 46

A2 2 3 0 42 44

B2 2 4 4 0 44 40 46 42

A1 × A2 3 4 0 40 41

B3 3 9 8 0 38 30 39 31

C3 3 9 6 0 36 30 37 31

F4 4 24 36 34 30? 28 22 16 0 36 34 30? 28 22 16 0 36 34 30? 28 22 16 0

Table 8. Dimension of the sheets for g = F4 (dim g = 52, rkg = 4)

2m ∈ Ng 48 46 44 42 40 38 36 34 30 28 22 16 0

dim g(m) 52 49 46 44 42 39 37 34 31 28 22 16 0

Table 9. Dimensions of the subsets g(m) for F4
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R. Acad. Sci. Paris Sér. A, 279:777–779, 1974.
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∆S #S #∆S
+ N

rigid
S

dS,p, for p ∈ N
rigid
S

dS,p + (rkg − #S),for p ∈ N
rigid
S

∅ 0 0 0 126 133

A1 1 1 0 124 130

A1 × A1 2 2 0 122 127

A2 2 3 0 120 125

A1 × A1 × A1 3 3 0 120 124

A2 × A1 3 4 0 118 122

A3 3 6 0 114 118

A1 × A1 × A1 × A1 4 4 0 118 121

A2 × A1 × A1 4 5 0 116 119

A2 × A2 4 6 0 114 117

A3 × A1 4 7 0 112 115

A4 4 10 0 106 109

D4 4 12 16 10 0 118 112 102 121 115 105

A2 × A1 × A1 × A1 5 6 0 114 116

A2 × A2 × A1 5 7 0 112 114

A3 × A1 × A1 5 8 0 110 112

A3 × A2 5 9 0 108 110

A4 × A1 5 11 0 104 106

D4 × A1 5 13 16 10 0 116 110 100 118 112 102

A5 5 15 0 96 98

D5 5 20 24 14 0 110 100 86 112 102 88

A3 × A2 × A1 6 10 0 106 107

A4 × A2 6 13 0 100 101

A5 × A1 6 16 0 94 95

A6 6 21 0 84 85

D5 × A1 6 21 24 14 0 108 98 84 109 99 85

D6 6 30 36 32 28 18 0 102 98 94 84 66 103 99 95 85 67

E6 6 36 64? 60? 54 40 22 0 118? 114? 108 94 76 54 119? 115? 109 95 77 55

E7 7 63 120? 118? 114? 112? 110? 120? 118? 114? 112? 110? 120? 118? 114? 112? 110?

108? 106? 100? 96? 92 90 108? 106? 100 ? 96? 92 90 108? 106? 100 ? 96? 92 90

84? 82 70 64 52 34 0 84? 82 70 64 52 34 0 84? 82 70 64 52 34 0

Table 12. Dimension of the sheets for g = E7 (dim g = 133, rkg = 7)
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∆S #S #∆S
+ N

rigid
S

dS,p, for p ∈ N
rigid
S

dS,p + (rkg − #S),for p ∈ N
rigid
S

∅ 0 0 0 240 248

A1 1 1 0 238 245

A1 × A1 2 2 0 236 242

A2 2 3 0 234 240

A1 × A1 × A1 3 3 0 234 239

A2 × A1 3 4 0 232 237

A3 3 6 0 228 233

A1 × A1 × A1 × A1 4 4 0 232 236

A2 × A1 × A1 4 5 0 230 234

A2 × A2 4 6 0 228 232

A3 × A1 4 7 0 226 230

A4 4 10 0 220 224

D4 4 12 16 10 0 232 226 216 236 230 220

A2 × A1 × A1 × A1 5 6 0 228 231

A2 × A2 × A1 5 7 0 226 229

A3 × A1 × A1 5 8 0 224 227

A3 × A2 5 9 0 222 225

A4 × A1 5 11 0 218 221

D4 × A1 5 13 16 10 0 230 224 214 233 227 217

A5 5 15 0 210 213

D5 5 20 24 14 0 224 214 200 227 217 203

Table 13. Dimension of the sheets for dim g = E8 (dim g = 248, rkg = 8) I
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∆S #S #∆S
+ N

rigid
S

dS,p, for p ∈ N
rigid
S

dS,p + (rkg − #S), for p ∈ N
rigid
S

A2 × A2 × A1 × A1 6 8 0 224 226

A3 × A2 × A1 6 10 0 220 222

A3 × A3 6 12 0 216 218

A4 × A2 6 13 0 214 216

D4 × A2 6 15 16 10 0 226 220 210 228 222 212

A5 × A1 6 16 0 208 210

A6 6 21 0 198 200

D5 × A1 6 21 24 14 0 222 212 198 224 214 200

D6 6 30 36 32 28 18 0 216 212 208 198 180 218 214 210 200 182

E6 6 36 64? 60? 54 40 22 0 232? 228? 222 208 190 168 234? 230? 224 210 192 170

D4 × A3 7 16 0 208 209

A6 × A1 7 22 0 196 197

D5 × A2 7 23 24 14 0 218 208 194 219 209 195

A7 7 28 0 184 185

E6 × A1 7 37 64? 60? 54 40 22 0 230? 226? 220 206 188 166 231? 227? 221 207 189 167

D7 7 42 58 48 40 36 22 0 214 204 196 192 178 156 215 205 197 193 179 157

E7 7 63 120? 118? 114? 112? 234? 232? 228? 226? 235? 233? 229? 227?

110? 108? 106? 100? 224? 222? 220? 214? 225? 223? 229? 215?

96? 92 90 84? 82 210? 206 204 198? 196 211? 207 205 199? 197

70 64 52 34 0 184 178 166 148 114 185 179 167 149 115

E8 8 120 232? 228? 226? 224? 232? 228? 226? 224? 232? 228? 226? 224?

222? 220? 218? 216? 222? 220? 218? 216? 222? 220? 218? 216?

214? 212? 210? 208? 214? 212? 210? 208? 214? 212? 210? 208?

204? 202 200 198? 204? 202 200 198? 204? 202 200 198?

196 188 184? 182 196 188 184? 182 196 188 184? 182

176 172 164 162 176 172 164 162 176 172 164 162

154 146 136 128 154 146 136 128 154 146 136 128

112 92 58 0 112 92 58 0 112 92 58 0

Table 14. Dimension of the sheets for dim g = E8 II
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2m ∈ Ng 126 124 122 120 118 116 114 112 110 108 106 104 102 100 98

dim g(m) 133 130 127 125 122 119 118 115 112 110 109 106 105 102 99

2m ∈ Ng 96 94 92 90 86 84 82 76 70 66 64 54 52 34 0

dim g(m) 98 95 92 90 88 85 82 77 70 67 64 55 52 34 0

Table 15. Dimensions of the subsets g(m) for E7

2m ∈ Ng 240 238 236 234 232 230 228 226 224 222 220 218 216 214 212 210 208

dim g(m) 248 245 242 240 237 234 233 230 227 225 224 221 220 217 214 213 210

2m ∈ Ng 206 204 202 200 198 196 194 192 190 188 184 182 180 178 176 172 168

dim g(m) 207 205 202 203 200 197 195 193 192 189 185 182 182 179 176 172 170

2m ∈ Ng 166 164 162 156 154 148 146 136 128 114 112 92 58 0

dim g(m) 167 164 162 157 154 149 146 136 128 115 112 92 58 0

Table 16. Dimensions of the subsets g(m) for E8


