THE LIE MODULE STRUCTURE ON THE HOCHSCHILD COHOMOLOGY GROUPS OF MONOMIAL ALGEBRAS WITH RADICAL SQUARE ZERO
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Abstract. We study the Lie module structure given by the Gerstenhaber bracket on the Hochschild cohomology groups of a monomial algebra with radical square zero. The description of such Lie module structure will be given in terms of the combinatorics of the quiver. The Lie module structure will be related to the classification of finite dimensional modules over simple Lie algebras when the quiver is given by the two loops and the ground field is the complex numbers.

Introduction.

Let A be an associative unital k-algebra where k is a field. The n th Hochschild cohomology group of A , denoted by HH n (A), refers to HH n (A) := HH n (A, A) = Ext n A e (A, A) where A e is the enveloping algebra A op ⊗ k A of A. Thus, for example, HH 0 (A) is the center of A and the first Hochschild cohomology group HH 1 (A) is the vector space of the outer derivations. Note that the first Hochschild cohomology group has a Lie algebra structure given by the commutator bracket. In [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF], Gerstenhaber introduced two operations on the Hochschild cohomology groups: the cup product and the bracket [ -, -] : HH n (A) × HH m (A) -→ HH n+m-1 (A).

He proved that the Hochschild cohomology of A ,

HH * (A) := ∞ n=0
HH n (A) , provided with the cup product is a graded commutative algebra. Furthermore, he demonstrated that HH * +1 (A) endowed with the Gerstenhaber bracket has a graded Lie algebra structure. Consequently, HH 1 (A) is a Lie algebra and HH n (A) is a Lie module over HH 1 (A). As a matter of fact, the Gerstenhaber bracket restricted to HH 1 (A) is the commutator Lie bracket of the outer derivations. Moreover, the cup product and the Gerstenhaber bracket endow HH * (A) with the so-called Gerstenhaber algebra structure.

Besides, it was shown that the algebra structure on HH * (A) is invariant under derived equivalence [START_REF] Happel | Hochschild cohomology of finite-dimensional algebras[END_REF][START_REF] Rickard | Derived equivalences as derived functors[END_REF]. In addition, in [START_REF] Keller | Hochschild cohomology and derived Picard groups[END_REF], Keller proved that the Gerstenhaber bracket on HH * +1 (A) is preserved under derived equivalence.

Therefore, the Lie module structure on HH n (A) over HH 1 (A) is also an invariant under derived equivalence.

Understanding both the graded commuative algebra and the graded Lie algebra structure, on the Hochschild cohomology of algebras is a difficult assigment. Different techniques have been used in order to: (1) describe the Hochschild cohomology algebra (or ring) for some algebras, [Hol96, CS97, Cib98, ES98, EH99, SW00, Alv02, EHS02, GA08, Eu07b, FX06]; (2) study the Hochschild cohomology ring modulo nilpotence, [GSS03, GSS06, GS06] and (3) compute the Gerstenhaber bracket [START_REF] Carlos | The cohomology structure of string algebras[END_REF][START_REF] Eu | The calculus structure of the Hochschild homology/cohomology of preprojective algebras of Dynkin quivers[END_REF].

On the other hand, C. Strametz studied, in [START_REF] Strametz | The Lie algebra structure on the first Hochschild cohomology group of a monomial algebra[END_REF], the Lie algebra structure on the first Hochschild cohomology group of monomial algebras. She accomplishes to describe such Lie algebra structure in terms of the combinatorics of the monomial algebras. Moreover, she relates such description to the algebraic groups which appear in Guil-Asensio and Saorín's study of the outer automorphisms [START_REF] Guil | The group of outer automorphisms and the Picard group of an algebra[END_REF]. In [START_REF] Strametz | The Lie algebra structure on the first Hochschild cohomology group of a monomial algebra[END_REF], Strametz also gave criteria for simplicity of the first Hochschild cohomology group.

In this paper we are interested in the Lie module structure on the Hochschild cohomology groups induced by the Gerstenhaber bracket. This approach was suggested by C. Kassel and motivated by the work of C. Strametz. The aim of this paper is to describe the Lie module structure on the Hochschild cohomology groups for monomial algebras of (Jacobson) radical square zero. Recall that a monomial algebra of radical square zero is the quotient of the path algebra of a quiver Q by the two-sided ideal generated by the set of paths of length two. We will use the combinatorics of the quiver in order to describe the Lie module structure. Moreover, for the case of the two loops quiver, we relate such Lie module structure of HH n (A) to the classification of the (finite-dimensional) irreducible Lie modules over sl 2 when the ground field is the complex numbers.

The Hochschild cohomology groups of those algebras have been described in [START_REF]Hochschild cohomology algebra of radical square zero algebras, Algebras and modules[END_REF] using the combinatorics of the quiver. Such description enables to prove that the cup product of elements of positive degree is zero when Q is not an oriented cycle. In this paper, we use Cibils' description of HH n (A) in order to study the Lie module structure on the Hochschild cohomology groups. First, we reformulate the Gerstenhaber bracket for the realization of the Hochschild cohomology groups obtained through the computations in [START_REF]Hochschild cohomology algebra of radical square zero algebras, Algebras and modules[END_REF]. In the first section we construct two quasi-ismorphisms between the Hochschild cochain complex and the complex induced by the reduced projective resolution. Then in the second section, using such quasi-isomorphisms, we introduce a new bracket; which coincides with the Gerstenhaber bracket. In the third section, we use the combinatorics of the quiver to describe the Gerstenhaber bracket.

In the last section, we study a particular case: the monomial algebra of radical square zero given by the two loops quiver. For this algebra, we prove that HH 1 (A) is isomorphic as a Lie algebra to gl 2 C and then we identify a copy of sl 2 C in HH 1 (A). In order to decribe HH n (A) as a Lie module over HH 1 (A), we start studying the Lie module structure of HH n (A) over sl 2 C. In this article, we determine the decomposition of HH n (A) into direct sum of irreducible modules over sl 2 C. Moreover, we show that such decomposition can be obtained by an algorithm. In the following table we illustrate the decomposition for the Hochschild cohomology groups of degrees between 2 and 7. We denote by V(i) the unique irreducible Lie module of dimension i + 1 over sl 2 C.

n V(0) V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) HH 2 (A) 1 1 HH 3 (A) 1 2 1 HH 4 (A) 3 3 1 HH 5 (A) 3 6 4 1 HH 6 (A) 9 10 5 1 HH 7 (A) 9 19 15 6 1
In the above table, let us remark that the three last diagonal form a component of the Pascal triangle. Note also that the integer sequence given by the first and second column are the same. We will prove that these two remarks are in general true. This will enable to show the validity of the algorithm and in consequence obtain the other diagonals of the table. Moreover, we have introduced the sequence of numbers in the Encyclopedia of Integer Sequences [http://www.research.att.com/ njas/sequences/index.html], it appears to be related with two sequences. Among these sequence, there is one that represents the expected saturation of a binary search tree (or BST) on n nodes times the number of binary search trees on n nodes, or alternatively, the sum of the saturation of all binary search trees on n nodes. Another sequence gives the number of standard tableaux of shapes (n+1,n-1). The two sequences are given by explicit formulas.

In a future paper, we will apply the same techniques, as those we use in this article, to prove that the first Hochschild cohomology group of the monomial algebra of radical square zero is the Lie algebra gl n C when the quiver is given by n loops. Moreover, we will determine, as we did for the two loops case, the decomposition into direct sum of irreducible modules over sl n C but only for the second Hochschild cohomology group. We will also be dealing with the case when the quiver has no loops and no cycles.

Acknowledgment. This work will be part of my PhD thesis at the University of Montpellier 2. I am indebted to my advisor, Professor Claude Cibils, not only for valuable discussions about the subject and his helpful remarks on this paper, but also for his encouragement. I would like to thank the referee for helpful suggestions in improving this paper.

1. A comparison map beetween the bar projective resolution and the reduced bar projective resolution.

In this section, we deal with finite dimensional k-algebras whose semisimple part (i.e the quotient by its radical) is isomorphic to a finite number of copies of the field. Monomial algebras of radical square are a particular case of these algebras.

Two projective resolutions. The usual A e -projective resolution of A used to calculate the Hochschild cohomology groups is the standard bar resolution. The standard bar resolution, that we will denote by S, is given by the following exact sequence:

S := • • • → A ⊗ n+1 k δ → A ⊗ n k δ → • • • δ → A ⊗ 3 k δ → A ⊗ k A µ → A → 0
where µ is the multplication and the A e -morphisms δ are given by

δ(x 1 ⊗ • • • ⊗ x n+1 ) = n i=1 (-1) i+1 x 1 ⊗ • • • ⊗ x i x i+1 ⊗ • • • ⊗ x n+1
where x i ∈ A and ⊗ means ⊗ k . Now, the A e -projective resolution of A used in [START_REF]Hochschild cohomology algebra of radical square zero algebras, Algebras and modules[END_REF] to compute the Hochschild cohomology groups of a monomial radical square zero is the reduced bar resolution. It is defined for a finite dimensional k-algebra A whose Wedderburn-Malcev decomposition is given by the direct sum A = E ⊕ r where r is the Jacobson radical of A and

E ∼ = A/r ∼ = k × k • • • × k.
In the sequel A denotes an algebra verifying those conditions. Let us denote by R the reduced bar resolution. It is given by the following exact sequence:

R := • • • → A⊗ E r ⊗ n+1 E ⊗ E A δ → A⊗ E r ⊗ n E ⊗ E A δ → • • • δ → A⊗ E r⊗ E A δ → A⊗ E A µ → A → 0
where µ is the multplication and the A e -morphisms δ are given by

δ(a ⊗ x 1 ⊗ • • • ⊗ x n+1 ⊗ b) = ax 1 ⊗ x 2 ⊗ • • • ⊗ x n+1 ⊗ b + n i=1 (-1) i a ⊗ x 1 ⊗ • • • ⊗ x i x i+1 ⊗ • • • ⊗ b + (-1) n+1 a ⊗ x 1 ⊗ • • • ⊗ x n ⊗ x n+1 b where a, b ∈ A, x i ∈ r and ⊗ means ⊗ E .
The proof that this sequence is a projective resolution can be found in [START_REF] Cibils | Rigidity of truncated quiver algebras[END_REF].

Comparison maps. Theorically, a comparison map exists between these two projective resolutions. The objective of this section is to give an explicit comparison map between the projective resolutions S and R in both directions. Such comparison map will induce some quasi-isomorphisms between the Hochschild cochain complex and the complex induced by the reduced bar resolution. The explicit calculations of these quasi-isomorphisms, enables to reformulate the Gerstenhaber bracket.

In this paragraph, we are going to give two maps of complexes:

p : S → R and s : R → S.
This means we will define maps (p n ) and (s n ) such that the next diagram

(1) • • • A ⊗ k A ⊗ n+1 k ⊗ k A p n+1 δ A ⊗ k A ⊗ n k ⊗ k A • • • pn A ⊗ k A p 0 µ A id 0 • • • A ⊗ E r ⊗ n+1 E ⊗ E A δ s n+1 A ⊗ E r ⊗ n E ⊗ E A • • • sn A ⊗ E A s 0 µ A id 0 • • • A ⊗ k A ⊗ n+1 k ⊗ k A δ A ⊗ k A ⊗ n k ⊗ k A • • • A ⊗ k A µ A 0 commutes.
Map (p n ). We define p 0 as the linear map given by

p 0 : A ⊗ k A → A ⊗ E A a ⊗ k b → a ⊗ E b . Now, let n ≥ 1. Define p n : A ⊗ k A ⊗ n k ⊗ k A → A ⊗ E r ⊗ n E ⊗ E A
as the linear map given by

a ⊗ k x 1 ⊗ k • • • ⊗ k x i ⊗ k • • • ⊗ k x n+1 ⊗ k b → a ⊗ E π(x 1 ) ⊗ E • • • ⊗ E π(x i ) ⊗ E • • • ⊗ E π(x n+1 ) ⊗ E b.
where π denotes the projection map from A to the Jacobson radical square zero. Notice that p n is an A e -morphism for all n.

In order to define the maps (s n ) we introduce some notation. In the sequel, let E 0 denote a complete system of idempotents and orthogonal elements of E. Note that the set E 0 is finite.

Remark. Now, consider elements of

A ⊗ E r ⊗ n E ⊗ E A of the form ae j 1 ⊗ E • • • ⊗ E e j i-1 x i-1 e j i ⊗ E e j i x i e j i+1 ⊗ E e j i+1 x i+1 e j i+2 ⊗ E • • • ⊗ E e j n+1 b
where each e j i is in E 0 , a, b are in A and x i in r. It is not difficult to see that those elements generate the vector space

A ⊗ E r ⊗ n E ⊗ E A. Indeed, we have that a ⊗ E x 1 ⊗ E • • • ⊗ E x i ⊗ E • • • ⊗ E x n ⊗ E b = j 1 ,...,j n+1 ae j 1 ⊗ E • • • ⊗ E e j i-1 x i-1 e j i ⊗ E e j i x i e j i+1 ⊗ E e j i+1 x i+1 e j i+2 ⊗ E • • • ⊗ E e j n+1 b
where the sum is over all (n + 1)-tuples (e j 1 , . . . , e j i , . . . , e j n+1 ) of elements of E 0 .

Map (s n ). Define s 0 as the linear map given by

s 0 : A ⊗ E A → A ⊗ k A ae ⊗ E eb → ae ⊗ k eb .
So we have that s 0 (a

⊗ E b) = e∈E 0 ae ⊗ k eb .
It is well defined because s 0 (ae

⊗ E b) = ae ⊗ k eb = s 0 (a ⊗ E eb) for all e ∈ E. Now, let n ≥ 1. Define s n : A ⊗ E r ⊗ n E ⊗ E A → A ⊗ k A ⊗ n k ⊗ k A
as the linear map given by

ae j 1 ⊗ E • • • ⊗ E e j i-1 x i-1 e j i ⊗ E e j i x i e j i+1 ⊗ E e j i+1 x i+1 e j i+2 ⊗ E • • • ⊗ E e j n+1 b → ae j 1 ⊗ k • • • ⊗ k e j i-1 x i-1 e j i ⊗ k e j i x i e j i+1 ⊗ k e j i+1 x i+1 e j i+2 ⊗ k • • • ⊗ k e j n+1 b
where each e j i is in E 0 . So we have that

s n (a ⊗ E x 1 ⊗ E • • • ⊗ E x i ⊗ E • • • ⊗ E x n ⊗ E b) = j 1 ,...,j n+1 ae j 1 ⊗ k • • • ⊗ k e j i-1 x i-1 e j i ⊗ k e j i x i e j i+1 ⊗ k e j i+1 x i+1 e j i+2 ⊗ k • • • ⊗ k e j n+1 b
where the sum is over all (n + 1)-tuples (e j 1 , . . . , e j i , . . . , e j n+1 ) of elements of E 0 . Notice that s n is an A e -morphism.

Remark. It is clear that p n s n = id A⊗ E r ⊗ n E ⊗ E A .
Lemma 1.1. The maps p : S → R and s : R → S defined above are maps of complexes.

Proof. A straightforward verification shows that the diagram (1) is commutative.

Two complexes. We will denote the Hochschild cochain complex by C • (A, A).

Recall that it is defined by the complex,

0 → A δ → Hom k (A, A) δ -→ • • • • • • -→ Hom k (A ⊗ n k , A) δ -→ Hom k (A ⊗ n+1 k , A) • • • where δ(a)(x) = xa -ax for a in A and δf(x 1 ⊗ • • • ⊗ x n ⊗ x n+1 ) = x 1 f(x 2 ⊗ • • • ⊗ x n+1 ) + n i=1 (-1) i f(x 1 ⊗ • • • ⊗ x i x i+1 ⊗ • • • ⊗ x n+1 )+ (-1) n+1 f(x 1 ⊗ • • • ⊗ x n )x n+1 for f in Hom k (A ⊗ n k , A).
Notice that after applying the functor Hom A e (-, A) to the standard bar resolution, the Hochschild cochain complex is obtained by identifying

Hom A e (A ⊗ k A ⊗ n k ⊗ k A, A) to Hom k (A ⊗ n k , A).
The reduced complex is obtained from the reduced bar resolution in a similar way. First we apply Hom A e (-, A) to the reduced bar resolution, then we identify the vector space

Hom A e (A ⊗ E r ⊗ n E ⊗ E A, A)
to Hom E e (r ⊗ n E , A). Therefore, the reduced bar complex that we denote by R • (A, A) is given by

0 → A E δ → Hom E e (r, A) δ -→ • • • • • • -→ Hom E e (r ⊗ n E , A) δ -→ Hom E e (r ⊗ n+1 E , A) • • •
where A E is the subalgebra of A defined as follows:

A E := {a ∈ A | ae = ea for all e ∈ E}.
The differentials in the reduced complex are given as the above formulas.

Induced quasi-isomorphism. In this paragraph, we will compute the quasiismorphisms between the Hochschild cochain complex and the reduced complex, induced by the comparison maps p and s. We will denote them by

p • : R • (A, A) → C • (A, A) and s • : C • (A, A) → R • (A, A).
Map (p • ). In degree zero, we have that p 0 :

A E → A is the inclusion map. For n ≥ 1, p n : Hom E e (r ⊗ n E , A) -→ Hom k (A ⊗ n k , A)
is given by

p n f(x 1 ⊗ k • • • ⊗ k x n ) = f(π(x 1 ) ⊗ E • • • ⊗ E π(x n ))
where f is in Hom E e (r ⊗ n E , A) and x i ∈ r.

Map (s • ). In degree zero, we have that s 0 : A → A E is given by s 0 (x) = e∈E 0 exe where x ∈ A. For n ≥ 1, we have that

s n : Hom k (A ⊗ n k , A) -→ Hom E e (r ⊗ n E , A)
is given by

s n f(x 1 ⊗ E • • • ⊗ E x n ) = j 0 ,...,jn e j 0 f(e j 0 x 1 e j 1 ⊗ k • • • ⊗ k e j i-1 x i e j i ⊗ k • • • ⊗ k e j n-1 x n e jn )e jn
where the sum is over all (n + 1)-tuples (e j 0 , . . . , e j i , . . . , e jn ) of elements of E 0 , f is in Hom k (A ⊗ n k , A) and x i is in r.

Remark. Let us remark that s

• p • = id R • (A,A) .
2. Gerstenhaber bracket and reduced bracket.

The Gerstenhaber bracket is defined on the Hochschild cohomology groups using the Hochschild complex. In this section we will define the reduced bracket using the reduced complex. We show that the Gerstenhaber bracket and the reduced bracket provides the same graded Lie algebra structure on HH * +1 (A). We begin by recalling the Gerstenhaber bracket in order to fix notation.

Gerstenhaber bracket. Set C 0 (A, A) := A and for n ≥ 1, we will denote the space of Hochschild cochains by

C n (A, A) := Hom k (A ⊗ n k , A).
In [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF], Gerstenhaber defined a right pre-Lie system {C n (A, A), • i } where elements of C n (A, A) are declared to have degree n -1. The operation • i is given as follows. Given n ≥ 1, let us fix i = 1, . . . , n. The bilinear map

• i : C n (A, A) × C m (A, A) -→ C n+m-1 (A, A)
is given by the following formula:

f n • i g m (x 1 ⊗ • • • ⊗ x n+m-1 ) := f n (x 1 ⊗ • • • ⊗ g m (x i ⊗ • • • ⊗ x i+m-1 ) ⊗ • • • ⊗ x n+m-1 )
where f n is in C n (A, A) and g m is in C m (A, A). Then he proved that such pre-Lie system induces a graded pre-Lie algebra structure on

C * +1 (A, A) := ∞ n=1 C n (A, A)
by defining an operation • as follows:

f n • g m := n i=1 (-1) (i-1)(m-1) f n • i g m .
Finally, C * +1 (A, A) becomes a graded Lie algebra by defining the bracket as the graded commutator of •. So we have that

[f n , g m ] := f n • g m -(-1) (n-1)(m-1) g m • f n .
Remark. The Gerstenhaber restricted to C 1 (A, A) is the usual Lie commutator bracket.

Moreover, Gerstenhaber proved that

δ[f n , g m ] = [f n , δg m ] + (-1) m-1 [δf n , g m ]
where δ is the differential of Hochschild cochain complex. This formula implies that the following bilinear map:

[ -, -] : HH n (A) × HH m (A) -→ HH n+m-1 (A)
is well defined. Therefore, HH * +1 (A) endowed with the induced Gerstenhaber bracket is also a graded Lie algebra.

Reduced Bracket. In order to define the reduced bracket, we proceed in the same way as Gerstenhaber did. We will define the reduced bracket as the graded commutator of an operation •

R

. Such operation will be given by • i . Denote by

C n E (r, A) the cochain space of the reduced complex, this is

C n E (r, A) := Hom E e (r ⊗ n E , A).
Definition. Let n ≥ 1 and fix i = 1, . . . , n. The bilinear map

• i : C n E (r, A) × C m E (r, A) → C n+m-1 E (r, A)
is given by the following formula:

f n • i g m (x 1 ⊗ E • • •⊗ E x n+m-1 ) := f n (x 1 ⊗ E • • •⊗ E πg m (x i ⊗ E • • •⊗ E x i+m-1 )⊗ E • • •⊗ E x n+m-1 )
where f n is in C n E (r, A) and g m is in C m E (r, A) and x 1 , . . . , x n+m-1 are in r. Let us remark that the image of g m does not necessarily belong to the radical but the image of πg m clearly does. Therefore

f n • i g m is well defined. Then we can define • R on C * +1 E (r, A) := ∞ n=1
C n E (r, A)

as above but replacing • i instead of • i . This means that f n • R g m := n i=1 (-1) (i-1)(m-1) f n • i g m Let us remark • R is a graded operation on C * +1 E (r, A
) by declaring elements of C n E (r, A) to have degree n -1. Definition. We call the reduced bracket, denoted by [ -, -] R , to the graded commutator bracket of • R . This is,

[ -, -] R : C n E (r, A) × C m E (r, A) -→ C n+m-1 E (r, A) is given by [f n , g m ] R := f n • R g m -(-1) (n-1)(m-1) g m • R f n .
The following lemmas will relate the Gerstenhaber bracket and the reduced bracket.

Lemma 2.1. We have the following formula:

[f n , g m ] R = s n+m-1 [ p n f n , p m g m ].
Proof. A straightforward verification shows that

f n • i g m = s n+m-1 ( p n f n • i p m g m ).
Since s n+m-1 is a linear application we have the formula wanted.

Lemma 2.2. We have the following formula:

p n+m-1 [ f n , g m ] R = [ p n f n , p m g m ]
Proof. Since p n+m-1 is a complex morphism, we prove that

p n+m-1 (f n • i g m ) = p n f n • i p m g m by a direct computation.
We will write p * for the morphism p * : C * +1 E (r, A) -→ C * +1 (A, A) induced by p • . We have the following proposition due to the above lemmas that relate both brackets.

Proposition 2.3. The graded product [ -, -] R endows C * E (r, A) with the structure of graded Lie algebra. We also have that p * is a morphism of graded Lie algebras.

Proof. Using the lemma 2.1, it is easy to see that the reduced bracket satisfies the graded antisymmetric property as a consequence of the fact that the Gerstenhaber bracket satisfies the same condition. For the graded Jacobi identity, we proceed in the same way. First, let us write a formula that relates both brackets, using the lemma 2.1 and the lemma 2.2 we have that

[ [ f n , g m ] R , h l ] R = s n+m+p-2 [ p n+m-1 [ f n , g m ] R , p l h l ] = s n+m+p-2 [ [ p n f n , p m g m ] , p l h l ]
Then, using the linearity of s n+m+p-2 and the fact that the Gerstenhaber bracket satisfies the graded Jacobi identity we have proved that [ -, -] R satisfies the two conditions of the definition of graded Lie algebra. Finally, p * becomes a Lie graded morphism because of lemma 2.2. Now, the reduced bracket induce a bracket in Hochschild cohomology groups because of the following lemma.

Lemma 2.4. Let δ be the differential of the Hochschild cocomplex then we have

δ[ f n , g m ] R = [ f n , δg m ] R + (-1) m-1 [ δf n , g m ] R .
Hence we have a well defined bracket in the Hochschild cohomology groups:

[ -, -] R : HH n (A) × HH m (A) -→ HH n+m-1 (A) . Proof. We have that δ[ f n , g m ] R = δs n+m-1 [ p n f n , p m g m ] = s n+m-1 δ[ p n f n , p m g m ] = s n+m-1 [ p n f n , δp m g m ] + (-1) m-1 s n+m-1 [ δp n f n , p m g m ] = s n+m-1 [ p n f n , p m δg m ] + (-1) m-1 s n+m-1 [ p n δf n , p m g m ] = [ f n , δg m ] R + (-1) m-1 [ δf n , g m ] R
We have equipped HH * +1 (A) with a graded Lie algebra structure induced by the reduced bracket. We know that HH * +1 (A) is already a graded Lie algebra and this structure is given by the Gerstenhaber bracket. We have then the following proposition.

Proposition 2.5. The graded Lie algebra HH * +1 (A) endowed with the Gerstenhaber bracket is isomorphic to HH * +1 (A) endowed with the reduced bracket.

Proof. By abuse of notation we continue to write p * for the automorphism of HH * +1 (A) given by the family of morphisms (p n ). Thus, a direct consequence of the above proposition is that p * becomes an isomorphism of graded Lie algebras.

Reduced bracket for monomial algebras

with radical square zero.

Let Q be a quiver. The path algebra kQ is the k-linear span of the set of paths of Q where multiplication is provided by concatenation or zero. We denote by Q 0 the set of vertices and Q 1 the set of arrows. The trivial paths are denoted by e i where i is a vertex. The set of all paths of length n is denoted by Q n .

In the sequel, let A be a monomial algebra with radical square zero, this is

A := kQ < Q 2 > .
The Jacobson radical of A is given by r = kQ 1 . Moreover, the Wedderburn-Malcev decomposition of these algebras is A = kQ 0 ⊕kQ 1 where E = kQ 0 . In this section we are going to describe the reduced bracket on HH * +1 (A). Such bracket is given in terms of the combinatorics of the quiver. We will use computations of the Hochschild cohomology groups of these algebras given by Cibils in [START_REF]Hochschild cohomology algebra of radical square zero algebras, Algebras and modules[END_REF].

The reduced complex. Notice that in the case of monomial algebras with radical square zero, the middle-sum terms of the coboundary morphism of the reduced projective resolution R vanishes because the multiplication of two arrows is always zero. Therefore, we have that the coboundary morphism is given by the following formula:

δ(a ⊗ x 1 ⊗ • • • ⊗ x n+1 ⊗ b) = ax 1 ⊗ x 2 ⊗ • • • ⊗ x n+1 ⊗ b + (-1) n+1 a ⊗ x 1 ⊗ • • • ⊗ x n ⊗ x n+1 b.
In [START_REF]Hochschild cohomology algebra of radical square zero algebras, Algebras and modules[END_REF] an isomorphic complex to R • (A, A) is given. This new complex is obtained in terms of the combinatorics of the quiver. To describe it we will need to introduce some notation. We say that two paths α and β are parallels if and only if they have the same source and the same end. If α and β are parallel paths we write α β. Let X and Y be sets consisting of paths of Q, the set of parallel paths X Y is given by :

X Y : = { (γ, γ ′ ) ∈ X × Y | γ γ ′ }.
For example:

• Q n Q 0 is the set of pointed oriented cycles, this is the set of pairs (γ n , e) where γ n is an oriented cycle of length n.

• Q n Q 1 is the set of pairs (γ n , a)
where the arrow a is a shortcut of the path γ n of length n.

We denote by k(X Y) the k-vector space generated by the set X Y.

For each natural number n, Cibils defines

D n : k(Q n Q 0 ) → k(Q n+1 Q 1 )
as follows:

(2)

D n (γ n , e) = a∈Q 1 e (aγ n , a) + (-1) n+1 a∈eQ 1 (γ n a, a)
where the path γ n is parallel to the vertex e.

In [START_REF]Hochschild cohomology algebra of radical square zero algebras, Algebras and modules[END_REF], the Hochschild cohomology groups of a radical square zero algebra are obtained from the following complex, denoted by C • (Q) :

0 → k(Q 0 Q 0 ) ⊕ k(Q 0 Q 1 ) 0 0 D0 0 -→ k(Q 1 Q 0 ) ⊕ k(Q 1 Q 1 ) 0 0 D1 0 -→ • • • • • • k(Q n Q 0 ) ⊕ k(Q n Q 1 ) 0 0 Dn 0 -→ k(Q n+1 Q 0 ) ⊕ k(Q n+1 Q 1 ). Cibils proved that C • (Q) is isomorphic to the reduced complex R • (A, A) using the following lemma. Lemma 3.1 ([Cib98]). Let A := kQ/ < Q 2 > where Q is a finite quiver. The vector space C n E (r, A) = Hom E e (r ⊗ n E , A) is isomorphic to k(Q n Q 0 ∪ Q 1 ) = k(Q n Q 0 ) ⊕ k(Q n Q 1 ).
The reduced bracket. Once we have the combinatorial description of C n E (r, A), we are going to compute the reduced bracket in the same terms. To do so we use the above lemma. We begin by introducing some notation.

Notation. Given two paths: α n in Q n and β m in Q m , we will suppose that

α n = a 1 a 2 . . . a n β m = b 1 b 2 . . . b m
where a i and b j are in Q 1 . Under this assumption, we say that a i and b j are arrows in the decomposition of α n and β m , respectively. Let i = 1, . . . , n, if a i β m , we denote by α n ⋄ i β m the path in Q n+m-1 obtained by replacing the arrow a i with the path β m . This means

α n ⋄ i β m := a 1 • • • a i-1 b 1 • • • b m a i+1 • • • a n If a i is not parallel to β m then α n ⋄ i β m has no sense. Clearly, ⋄ i is not commu- tative. For example, let a in Q 1 . If a β m then we have that a ⋄ 1 β m = β m Now, if b i a we have that β m ⋄ i a = b 1 . . . b i-1 ab i+1 . . . b m .
Definition. Let Q be a finite quiver and n ≥ 1. Fix i = 1, . . . , n. The bilinear map

• i : k(Q n Q 0 ∪ Q 1 ) × k(Q m Q 0 ∪ Q 1 ) -→ k(Q n+m-1 Q 0 ∪ Q 1 ) is given by (α n , x) • i (β m , y) = δ a i ,y • (α n ⋄ i β m , x)
where

δ a i ,y = 1 if a i = y 0 otherwise and α n = a 1 • • • a i • • • a n .
Denote by C * +1 (Q) the following vector space

C * +1 (Q) := ∞ n=1 k(Q n Q 0 ) ⊕ k(Q n Q 1 ) .
Definition. Let Q be a finite quiver. The biliner map

[ -, -] Q : k(Q n Q 0 ∪ Q 1 ) × k(Q m Q 0 ∪ Q 1 ) -→ k(Q n+m-1 Q 0 ∪ Q 1 )
is defined as follows

[ (α n , x) , (β m , y) ] Q = n i=1 (-1) (i-1)(m-1) (α n , x) • i (β m , y) -(-1) (n-1)(m-1) m i=1 (-1) (i-1)(n-1) (β m , y) • i (α n , x).
Theorem 3.2. Let Q be a finite quiver. The vector space C * +1 (Q) together with the bracket [ -, -] Q is a graded Lie algebra. Moreover, if A := kQ/ < Q 2 > then the graded Lie algebra C * +1 E (r, A) endowed with the reduced bracket is isomorphic to C * +1 (Q) endowed with the bracket [ -, -] Q .

Proof. Let Q be a finite quiver and A := kQ/ < Q 2 >. Let us remark that C * +1 (Q) is isomorphic as a vector space to C * +1 (r, A) because of lemma 3.1. Using the same isomorphism defined by Cibils to prove lemma (3.1), a straightfoward verification shows that the bracket [ -, -] Q is the combinatorial translation of the reduced bracket.

Corollary 3.3. Let A := kQ/ < Q 2 > where Q is a finite quiver. The graded Lie algebra structure on HH * +1 (A) given by the Gerstenhaber bracket is induced by the graded Lie algebra structure on C * +1 (Q) given by [ -, -] Q .

4. Lie module structure of HH n (A) over HH 1 (A).

In this section, we are going to study the Lie module structure of HH n (A) over HH 1 (A) when A := kQ/Q 2 in two cases. The first case is when Q is a loop and the second case is when Q is a two loops quiver.

The one loop case. It is shown in [START_REF]Hochschild cohomology algebra of radical square zero algebras, Algebras and modules[END_REF] that if char k = 0 and Q is the one loop quiver then the function D n , given by the equation (2), is zero when n is even and D n is injective when n is odd. In fact we have the following proposition:

Proposition ([Cib98]). Assume that Q is the one loop quiver. Let k be a field of characteritic zero and A := kQ/ < Q 2 >. Then we have that HH 0 (A) ∼ = A and for n > 0 we have that

HH n (A) ∼ =        k(Q n Q 0 ) if n is even k(Q n Q 1 ) if n is odd
Therefore, for n ≥ 0 the Hochschild cohomology group HH n (A) is one dimensional.

Proposition 4.1. Assume that Q is the one loop quiver, where e is the vertex and a is the loop. Let k be a field of characteritic zero and A := kQ/ < Q 2 >.

Then HH 1 (A) is the one dimensional (abelian) Lie algebra and the Lie module structure on the Hochschild cohomology groups given by the Gerstenhaber bracket

HH 1 (A) × HH n (A) -→ HH n (A)
is induced by the following morphisms:

If n is even, we have that

k(Q 1 Q 1 ) × k(Q n Q 0 ) -→ k(Q n Q 0 )
is given as follows (a, a).(a n , e) =n (a n , e).

If n is odd, we have that

k(Q 1 Q 1 ) × k(Q n Q 1 ) -→ k(Q n Q 1 )
is given as follows (a, a).(a n , a) = -(n -1) (a n , a).

So, the Lie module HH n (A) over HH 1 (A) corresponds to the one dimensional standard module over k.

Proof. It is an immediate consequence of the definition of the bracket [ -, -] Q and the corollary 3.3.

Moreover, we have that Proposition 4.2. Let k be a field of characteritic zero, Q the one loop quiver and A := kQ/ < Q 2 >. The Lie algebra HH odd is the infinite dimensional Witt algebra.

Proof. If n and m are odd then, using the formula for the bracket, we have

[ (a n , a) , (a m , a) ] Q = (n -m) (a n+m-1 , a) .
The two loops case. In [START_REF]Hochschild cohomology algebra of radical square zero algebras, Algebras and modules[END_REF], Cibils proved that the function D n , given by the equation (2), is injective for n ≥ 1 when Q is neither a loop nor an oriented cycle. Hence we have the following result:

Theorem ([Cib98]). Let A := kQ/ < Q 2 > where Q is the two loops quiver. Then, HH 0 (A) = A and for n ≥ 1

HH n (A) ∼ = k(Q n Q 1 ) Im D n-1 where D n-1 : k(Q n-1 Q 0 ) -→ k(Q n Q 1 )
is given by the formula (2). Moreover, we have that for n > 1,

dim k HH n (A) = 2 n+1 -2 n-1 . Theorem 4.3. Let A := kQ/ < Q 2 >
where Q is a finite quiver. If Q is not an oriented cycle then the Lie module structure on the Hochschild cohomology groups given by the Gerstenhaber bracket

HH 1 (A) × HH n (A) -→ HH n (A)
is induced by the following bilinear map:

k(Q 1 Q 1 ) × k(Q n Q 1 ) -→ k(Q n Q 1 )
given as follows

(a, x).(α n , y) = δ y,a • (α n , a) - n i=1 δ x,a i • (α n ⋄ i x, y)
where a x and y is a shortcut of the path α n whose decomposition into arrows is given by α

n = a 1 • • • a i • • • a n . The path α n ⋄ i
x is obtained by replacing a i with

x if a i = y
Proof. It is an immediate consequence of the definition of the bracket [ -, -] Q and the corollary 3.3.

In [START_REF] Strametz | The Lie algebra structure on the first Hochschild cohomology group of a monomial algebra[END_REF], Strametz studies the Lie algebra structure on the first Hochschild cohomology group for monomial algebras. She formulates the Lie bracket on HH 1 (A) using the combinatorics of the quiver. Let us remark that the formula given by the above theorem gives the Lie bracket on HH 1 (A) when we set n = 1. Such formula coincides with the one given in [START_REF] Strametz | The Lie algebra structure on the first Hochschild cohomology group of a monomial algebra[END_REF]. Let us describe the Lie algebra HH 1 (A). (ii) Consider H as an endomorphism of Im D n-1 The eigenvalues of H restricted to Im D n-1 are n -1 -2l where l = 0, . . . n -1. As above, denote by W(λ) the eigenspace of H of the eigenvalue λ. We have that

dim k W(n -1 -2l) = n -1 l .
Proof. (i) From the above lemma, it is clear that the set (ii) From the above lemma, it is clear that the set

{(γ n , a) | γ n ∈ Q n } ∪ {(γ n , b) | γ n ∈ Q n } is a basis of k(Q n Q 1 )
{D n-1 (γ n-1 , e) | γ n-1 ∈ Q n-1 }
is a basis of Im D n-1 consisting of eigenvectors. We also have that D n-1 (γ n-1 , e) is an eigenvector of eigenvalue v(γ n-1 ). Since a(γ n-1 ) + b(γ n-1 ) = n -1 for all paths γ n-1 , we have that v(γ n-1 ) = n -1 -2b(γ n-1 ) where b(γ n ) varies from 0 to n -1. Therefore the eignevalues are of the form n -1 -2l where l varies from 0 to n -1 and there are n -1 l eigenvectors of eignevalue n + 1 -2l.

Recall the following result from Lie theory:

Lemma 4.7 (General Multiplicty Formula [START_REF] Bremner | Alternating triple systems with simple Lie algebras of derivations, Non-associative algebra and its applications[END_REF]). Let V a finite dimensional sl 2 C-module. For every integer t, let V t be the eigenspace of H of eigenvalue n.

Then for any nonnegative integer t, the indecomposable module the number of Remark. The algorithm is justify by the above lemma. Moreover, we have that q(n, 2) = n -1 2 . This is the reason why we have a section of the Pascal triangle in the above table.

Finally, once we have the decompostion of HH n (A) into direct sum of irreducible modules over sl 2 C, we return to study HH n (A) as a HH 1 (A)-module.

Corollary 4.11. We have that

HH n (A) ∼ = h(n) l=0 V(n + 1 -2l) q(n,l) ⊗ C
as Lie modules over HH 1 (A).

Proof. Notice that

I.(γ n , x) = (1 -a(γ n ) -b(γ n ))(γ n , x) = (1 -n)(γ n , x).

Proposition 4. 4 .

 4 Assume that Q is the two loops quiver where e is the vertex and the loops are denoted by a and b. Let A := CQ/ < Q 2 > where C is the complex number field. Then the elements H := (b, b) -(a, a) E := (a, b) F := (b, a) (i) Consider H as an endomorphism of k(Q n Q 1 ). The eigenvalues of H are n + 1 -2l where l = 0, . . . n + 1. Denote by W(λ) the eigenspace of H of the eigenvalue λ. We have that dim k W(n + 1 -2l) = n + 1 l .

  consisting of eigenvectors. We also have that (γ n , a) and (γ n , b) are eigenvectors of eigenvalue v(γ n ) + 1 and v(γ n ) -1 respectively. Since a(γ n ) + b(γ n ) = n for all paths γ n , we have that v(γ n ) = n -2b(γ n ) where b(γ n ) varies from 0 to n. Then we have that v(γ n ) ± 1 is of the form n + 1 -2l(γ n ) where l = 0 . . . , n + 1. Let us remark the following: -(a n , b) is the only eigenvector of value n + 1 -(b n , a) is the only eigenvector of value -(n + 1) -If 0 < l < n + 1, we have that • (γ n , a) is an eigenvector of eigenvalue n + 1 -2l iff l = b(γ n ) • (γ n , b) is an eigenvector of eigenvalue n + 1 -2l iff l -1 = b(γ n )On the other hand, if 0 < l < n + 1, we know that there are n l paths γ n such that b(γ n ) = l and n l -1 paths γ n such that b(γ n ) = l -1. Therefore, there are n l + n l -1 = n + 1 l eigenvectors (γ n , x) of eigenvalue n + 1 -2l.

generate a copy of the Lie algebra sl 2 (C) in HH 1 (A). Moreover, the Lie algebra HH 1 (A) is isomorphic to sl 2 (C) × C.

Proof. First notice that HH 1 (A) ∼ = k(Q 1 Q 1 ) and that the elements H, E, F and I := (a, a) + (b, b) form a basis of HH 1 (A). A straightforward verification of the following relations:

proves that HH 1 (A) contains a copy of sl 2 C. Finally, it is easy to see that

In order to study the Lie module HH n (A) over HH 1 (A), we will study HH n (A) as a sl 2 (C)-module. Now, let us recall two classical Lie theory results, see [START_REF] Erdmann | Introduction to Lie algebras[END_REF][START_REF] Fulton | Representation theory[END_REF] for more detail.

(i) Every (finite dimensional) sl 2 C-module has a decomposition into direct sum of irreducible modules (ii) Classification of irreducible sl 2 C-modules: there exists an unique irreducible module for each dimension. We denote by V(t) the irreducible sl 2 C module of dimension t + 1.

Using the above notation, this means that HH n (A) has a decomposition into direct sum of irreducible modules over sl 2 C as follows:

We will determine each q t and to do so we will use the usual tools of the classical Lie theory. We begin by calculating the eigenvector spaces of H as endomorphism of k(Q n Q 0 ) and Im D n-1 . Given a path γ n in Q n we denote by a(γ n ) the number of times that the arrow "a" appears in the decomposition of γ n . We also denote by b(γ n ) the number of times that the arrow "b" appears in the decomposition of γ n . Map (v). Define v as the function given by:

and for all γ n-1 in Q n-1 we have that

Proof. Use the formula given in proposition (4.3).

Proposition 4.6. Assume that char k = 0.

A consequence of the above lemma is the following result:

Lemma 4.8. Let C be the field of complex numbers, Q the quiver given by two loops and A := CQ/ < Q 2 >. For n ≥ 1, we denote by h(n) the following:

and for l = 0, . . . , h(n) we denote by p(n, l) the following:

Then we have that

(ii) the decomposition into direct sum of irreducibles of Im D n-1 as sl 2 (C) Lie module is given by

Proposition 4.9. Let C be the field of complex numbers, Q the quiver given by two loops and A := CQ/ < Q 2 >. For n ≥ 1 and l = 0, . . . , h(n) we denote by q(n, l) the following:

Then, the decomposition of HH n (A) into a direct sum of irreducible Lie modules over sl 2 (C) is given by

Algorithm. There is an algorithm that give us the decomposition of HH n (A) described in the above proposition. We will explain it in the next paragraph.

We use the following table to write such decomposition:

q 0 q 1 q 2 q 3 q 4 q 5 q 6 q 7 • • •

In the above table, at the row HH n (A), the number that appears in the column V(t) states the number of copies of the irreducibble module V(t) that appears in the decomposition of HH n (A). We leave a blank space if no V(t) appears in the decomposition of HH n (A). We fix the first row of the table with the decomposition of HH 2 (A). Now, given the entries of the row HH n (A), we can fill out the coefficients of the next row, this is for HH n+1 (A), in the following manner:

(i) Add an imaginary column (-) just before the column V(0), consisting of zeros. (ii) Write down the coefficients of the next row by using the rule from Pascal's triangle: add the number directly above and to the left with the number directly above and to the right.

Let us remark that the number of copies of V(1) that appear in the decomposition of HH n (A) is equal to the number of copies of V(0) that appear in the decomposition of HH n+1 (A).

Lemma 4.10. We have that (i) If n is even then q(n, h(n)) = q(n + 1, h(n + 1)).

(ii) If n ≥ 2 then q(n, l) + q(n, l + 1) = q(n + 1, l + 1).

Proof. For the first equality, we verify by a direct computation for n = 2 and n = 4. For n ≥ 6, we use that if n is even then we have that n + 1 n/2 = n + 1 n/2 + 1 .

For the second equality, we verify by a direct computation for l = 0 and l = 1. For l ≥ 2, we use the Pascal triangle's rule: