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THE LIE MODULE STRUCTURE ON THE HOCHSCHILD

COHOMOLOGY GROUPS OF MONOMIAL ALGEBRAS WITH

RADICAL SQUARE ZERO

SELENE SÁNCHEZ-FLORES

Abstract. We study the Lie module structure given by the Gerstenhaber

bracket on the Hochschild cohomology groups of a monomial algebra with

radical square zero. The description of such Lie module structure will be

given in terms of the combinatorics of the quiver. The Lie module structure

will be related to the classification of finite dimensional modules over simple

Lie algebras when the quiver is given by the two loops and the ground field

is the complex numbers.

Introduction.

Let A be an associative unital k-algebra where k is a field. The nth Hochschild

cohomology group of A , denoted by HHn(A), refers to

HHn(A) := HHn(A,A) = Extn
Ae (A,A)

where Ae is the enveloping algebra Aop ⊗k A of A. Thus, for example, HH0(A)

is the center of A and the first Hochschild cohomology group HH1(A) is the

vector space of the outer derivations. Note that the first Hochschild cohomology

group has a Lie algebra structure given by the commutator bracket. In [Ger63],

Gerstenhaber introduced two operations on the Hochschild cohomology groups:

the cup product and the bracket

[ − , − ] : HHn(A) × HHm(A) −→ HHn+m−1(A).

He proved that the Hochschild cohomology of A ,

HH∗(A) :=

∞
⊕

n=0

HHn(A) ,

provided with the cup product is a graded commutative algebra. Furthermore,

he demonstrated that HH∗+1(A) endowed with the Gerstenhaber bracket has

a graded Lie algebra structure. Consequently, HH1(A) is a Lie algebra and

HHn(A) is a Lie module over HH1(A). As a matter of fact, the Gerstenhaber

bracket restricted to HH1(A) is the commutator Lie bracket of the outer deriva-

tions. Moreover, the cup product and the Gerstenhaber bracket endow HH∗(A)

with the so-called Gerstenhaber algebra structure.

Besides, it was shown that the algebra structure on HH∗(A) is invariant under

derived equivalence [Hap89, Ric91]. In addition, in [Kel04], Keller proved that

the Gerstenhaber bracket on HH∗+1(A) is preserved under derived equivalence.
1
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Therefore, the Lie module structure on HHn(A) over HH1(A) is also an invariant

under derived equivalence.

Understanding both the graded commuative algebra and the graded Lie alge-

bra structure, on the Hochschild cohomology of algebras is a difficult assigment.

Different techniques have been used in order to: (1) describe the Hochschild

cohomology algebra (or ring) for some algebras, [Hol96, CS97, Cib98, ES98,

EH99, SW00, Alv02, EHS02, GA08, Eu07b, FX06]; (2) study the Hochschild

cohomology ring modulo nilpotence, [GSS03, GSS06, GS06] and (3) compute

the Gerstenhaber bracket [Bus06, Eu07a].

On the other hand, C. Strametz studied, in [Str06], the Lie algebra structure

on the first Hochschild cohomology group of monomial algebras. She accom-

plishes to describe such Lie algebra structure in terms of the combinatorics of

the monomial algebras. Moreover, she relates such description to the algebraic

groups which appear in Guil-Asensio and Saoŕın’s study of the outer automor-

phisms [GAS99]. In [Str06], Strametz also gave criteria for simplicity of the first

Hochschild cohomology group.

In this paper we are interested in the Lie module structure on the Hochschild

cohomology groups induced by the Gerstenhaber bracket. This approach was

suggested by C. Kassel and motivated by the work of C. Strametz. The aim of

this paper is to describe the Lie module structure on the Hochschild cohomology

groups for monomial algebras of (Jacobson) radical square zero. Recall that

a monomial algebra of radical square zero is the quotient of the path algebra

of a quiver Q by the two-sided ideal generated by the set of paths of length

two. We will use the combinatorics of the quiver in order to describe the Lie

module structure. Moreover, for the case of the two loops quiver, we relate such

Lie module structure of HHn(A) to the classification of the (finite-dimensional)

irreducible Lie modules over sl2 when the ground field is the complex numbers.

The Hochschild cohomology groups of those algebras have been described in

[Cib98] using the combinatorics of the quiver. Such description enables to prove

that the cup product of elements of positive degree is zero when Q is not an

oriented cycle. In this paper, we use Cibils’ description of HHn(A) in order to

study the Lie module structure on the Hochschild cohomology groups. First, we

reformulate the Gerstenhaber bracket for the realization of the Hochschild co-

homology groups obtained through the computations in [Cib98]. In the first

section we construct two quasi-ismorphisms between the Hochschild cochain

complex and the complex induced by the reduced projective resolution. Then in

the second section, using such quasi-isomorphisms, we introduce a new bracket;

which coincides with the Gerstenhaber bracket. In the third section, we use the

combinatorics of the quiver to describe the Gerstenhaber bracket.

In the last section, we study a particular case: the monomial algebra of radical

square zero given by the two loops quiver. For this algebra, we prove that

HH1(A) is isomorphic as a Lie algebra to gl2C and then we identify a copy of

sl2C in HH1(A). In order to decribe HHn(A) as a Lie module over HH1(A), we

start studying the Lie module structure of HHn(A) over sl2C. In this article, we
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determine the decomposition of HHn(A) into direct sum of irreducible modules

over sl2C. Moreover, we show that such decomposition can be obtained by

an algorithm. In the following table we illustrate the decomposition for the

Hochschild cohomology groups of degrees between 2 and 7. We denote by V(i)

the unique irreducible Lie module of dimension i + 1 over sl2C.

n V(0) V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8)

HH2(A) 1 1

HH3(A) 1 2 1

HH4(A) 3 3 1

HH5(A) 3 6 4 1

HH6(A) 9 10 5 1

HH7(A) 9 19 15 6 1

In the above table, let us remark that the three last diagonal form a com-

ponent of the Pascal triangle. Note also that the integer sequence given by

the first and second column are the same. We will prove that these two re-

marks are in general true. This will enable to show the validity of the algorithm

and in consequence obtain the other diagonals of the table. Moreover, we have

introduced the sequence of numbers in the Encyclopedia of Integer Sequences

[http://www.research.att.com/ njas/sequences/index.html], it appears to be re-

lated with two sequences. Among these sequence, there is one that represents

the expected saturation of a binary search tree (or BST) on n nodes times the

number of binary search trees on n nodes, or alternatively, the sum of the satura-

tion of all binary search trees on n nodes. Another sequence gives the number of

standard tableaux of shapes (n+1,n-1). The two sequences are given by explicit

formulas.

In a future paper, we will apply the same techniques, as those we use in this

article, to prove that the first Hochschild cohomology group of the monomial

algebra of radical square zero is the Lie algebra glnC when the quiver is given

by n loops. Moreover, we will determine, as we did for the two loops case, the

decomposition into direct sum of irreducible modules over slnC but only for the

second Hochschild cohomology group. We will also be dealing with the case

when the quiver has no loops and no cycles.

Acknowledgment. This work will be part of my PhD thesis at the University

of Montpellier 2. I am indebted to my advisor, Professor Claude Cibils, not only

for valuable discussions about the subject and his helpful remarks on this paper,

but also for his encouragement. I would like to thank the referee for helpful

suggestions in improving this paper.
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1. A comparison map beetween the bar projective resolution and

the reduced bar projective resolution.

In this section, we deal with finite dimensional k-algebras whose semisimple

part (i.e the quotient by its radical) is isomorphic to a finite number of copies

of the field. Monomial algebras of radical square are a particular case of these

algebras.

Two projective resolutions. The usual Ae-projective resolution of A used to

calculate the Hochschild cohomology groups is the standard bar resolution. The

standard bar resolution, that we will denote by S, is given by the following exact

sequence:

S := · · · → A⊗
n+1
k

δ
→ A⊗

n
k

δ
→ · · ·

δ
→ A⊗

3
k

δ
→ A ⊗

k
A

µ
→ A → 0

where µ is the multplication and the Ae-morphisms δ are given by

δ(x1 ⊗ · · · ⊗ xn+1) =

n∑

i=1

(−1)i+1x1 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn+1

where xi ∈ A and ⊗ means ⊗
k
.

Now, the Ae-projective resolution of A used in [Cib98] to compute the Hochschild

cohomology groups of a monomial radical square zero is the reduced bar resolu-

tion. It is defined for a finite dimensional k-algebra A whose Wedderburn-Malcev

decomposition is given by the direct sum A = E⊕ r where r is the Jacobson rad-

ical of A and E ∼= A/r ∼= k × k · · · × k. In the sequel A denotes an algebra

verifying those conditions. Let us denote by R the reduced bar resolution. It is

given by the following exact sequence:

R := · · · → A⊗
E

r⊗
n+1
E ⊗

E
A

δ
→ A⊗

E
r⊗

n
E ⊗

E
A

δ
→ · · ·

δ
→ A⊗

E
r⊗

E
A

δ
→ A⊗

E
A

µ
→ A → 0

where µ is the multplication and the Ae-morphisms δ are given by

δ(a ⊗ x1 ⊗ · · · ⊗ xn+1 ⊗ b) = ax1 ⊗ x2 ⊗ · · · ⊗ xn+1 ⊗ b

+
∑n

i=1 (−1)ia ⊗ x1 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ b

+ (−1)n+1 a ⊗ x1 ⊗ · · · ⊗ xn ⊗ xn+1b

where a, b ∈ A, xi ∈ r and ⊗ means ⊗
E
. The proof that this sequence is a

projective resolution can be found in [Cib90].

Comparison maps. Theorically, a comparison map exists between these two

projective resolutions. The objective of this section is to give an explicit compar-

ison map between the projective resolutions S and R in both directions. Such

comparison map will induce some quasi-isomorphisms between the Hochschild

cochain complex and the complex induced by the reduced bar resolution. The

explicit calculations of these quasi-isomorphisms, enables to reformulate the Ger-

stenhaber bracket.

In this paragraph, we are going to give two maps of complexes:

p : S → R and s : R → S.
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This means we will define maps (pn) and (sn) such that the next diagram

(1) · · · A ⊗
k

A⊗
n+1
k ⊗

k
A

pn+1

δ A ⊗
k

A⊗n
k ⊗

k
A · · ·

pn

A ⊗
k

A

p0

µ
A

id

0

· · · A ⊗
E

r⊗
n+1
E ⊗

E
A δ

sn+1

A ⊗
E

r⊗
n
E ⊗

E
A · · ·

sn

A ⊗
E

A

s0

µ
A

id

0

· · · A ⊗
k

A⊗
n+1
k ⊗

k
A δ A ⊗

k
A⊗

n
k ⊗

k
A · · · A ⊗

k
A µ

A 0

commutes.

Map (pn). We define p0 as the linear map given by

p0 : A ⊗
k

A → A ⊗
E

A

a ⊗
k

b 7→ a ⊗
E

b .

Now, let n ≥ 1. Define

pn : A ⊗
k

A⊗n
k ⊗

k
A → A ⊗

E
r⊗

n
E ⊗

E
A

as the linear map given by

a ⊗
k

x1 ⊗
k
· · · ⊗

k
xi ⊗

k
· · · ⊗

k
xn+1 ⊗

k
b 7→ a ⊗

E
π(x1) ⊗

E
· · · ⊗

E
π(xi) ⊗

E
· · · ⊗

E
π(xn+1) ⊗

E
b.

where π denotes the projection map from A to the Jacobson radical square zero.

Notice that pn is an Ae-morphism for all n.

In order to define the maps (sn) we introduce some notation. In the sequel,

let E0 denote a complete system of idempotents and orthogonal elements of E.

Note that the set E0 is finite.

Remark. Now, consider elements of A ⊗
E

r⊗
n
E ⊗

E
A of the form

aej1 ⊗
E
· · · ⊗

E
eji−1

xi−1eji ⊗
E

ejixieji+1
⊗
E

eji+1
xi+1eji+2

⊗
E
· · · ⊗

E
ejn+1

b

where each eji is in E0, a, b are in A and xi in r. It is not difficult to see that

those elements generate the vector space A ⊗
E

r⊗
n
E ⊗

E
A. Indeed, we have that

a ⊗
E

x1 ⊗
E
· · · ⊗

E
xi ⊗

E
· · · ⊗

E
xn ⊗

E
b =

∑

j1,...,jn+1

aej1 ⊗
E
· · · ⊗

E
eji−1

xi−1eji ⊗
E

ejixieji+1
⊗
E

eji+1
xi+1eji+2

⊗
E
· · · ⊗

E
ejn+1

b

where the sum is over all (n+1)-tuples (ej1 , . . . , eji , . . . , ejn+1
) of elements of E0.

Map (sn). Define s0 as the linear map given by

s0 : A ⊗
E

A → A ⊗
k

A

ae ⊗
E

eb 7→ ae ⊗
k

eb .
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So we have that

s0(a ⊗
E

b) =
∑

e∈E0

ae ⊗
k

eb .

It is well defined because s0(ae⊗
E

b) = ae⊗
k

eb = s0(a⊗
E

eb) for all e ∈ E. Now,

let n ≥ 1. Define

sn : A ⊗
E

r⊗
n
E ⊗

E
A → A ⊗

k
A⊗n

k ⊗
k

A

as the linear map given by

aej1 ⊗
E
· · · ⊗

E
eji−1

xi−1eji ⊗
E

ejixieji+1
⊗
E

eji+1
xi+1eji+2

⊗
E
· · · ⊗

E
ejn+1

b 7→

aej1 ⊗
k
· · · ⊗

k
eji−1

xi−1eji ⊗
k

ejixieji+1
⊗
k

eji+1
xi+1eji+2

⊗
k
· · · ⊗

k
ejn+1

b

where each eji is in E0. So we have that

sn(a ⊗
E

x1 ⊗
E
· · · ⊗

E
xi ⊗

E
· · · ⊗

E
xn ⊗

E
b) =

∑

j1,...,jn+1

aej1 ⊗
k
· · · ⊗

k
eji−1

xi−1eji ⊗
k

ejixieji+1
⊗
k

eji+1
xi+1eji+2

⊗
k
· · · ⊗

k
ejn+1

b

where the sum is over all (n + 1)-tuples (ej1 , . . . , eji , . . . , ejn+1
) of elements of

E0. Notice that sn is an Ae-morphism.

Remark. It is clear that pnsn = id
A⊗

E
r
⊗n

E ⊗

E
A
.

Lemma 1.1. The maps

p : S → R and s : R → S

defined above are maps of complexes.

Proof. A straightforward verification shows that the diagram (1) is commutative.

�

Two complexes. We will denote the Hochschild cochain complex by C•(A,A).

Recall that it is defined by the complex,

0 → A
δ
→ Homk(A,A)

δ
−→ · · ·

· · · −→ Homk(A⊗n
k , A)

δ
−→ Homk(A⊗

n+1
k , A) · · ·

where δ(a)(x) = xa − ax for a in A and

δf(x1 ⊗ · · · ⊗ xn ⊗ xn+1) = x1f(x2 ⊗ · · · ⊗ xn+1)+
∑n

i=1(−1)if(x1 ⊗ · · · ⊗ xixi+1 ⊗ · · · ⊗ xn+1)+

(−1)n+1f(x1 ⊗ · · · ⊗ xn)xn+1

for f in Homk(A⊗n
k , A). Notice that after applying the functor HomAe (−, A)

to the standard bar resolution, the Hochschild cochain complex is obtained by

identifying HomAe (A⊗k A⊗
n
k ⊗kA,A) to Homk(A⊗

n
k , A). The reduced complex

is obtained from the reduced bar resolution in a similar way. First we apply

HomAe (−, A) to the reduced bar resolution, then we identify the vector space
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HomAe (A⊗E r⊗
n
E ⊗EA,A) to HomEe (r⊗

n
E , A). Therefore, the reduced bar com-

plex that we denote by R•(A,A) is given by

0 → AE δ
→ HomEe (r,A)

δ
−→ · · ·

· · · −→ HomEe (r⊗
n
E , A)

δ
−→ HomEe (r⊗

n+1
E , A) · · ·

where AE is the subalgebra of A defined as follows:

AE := {a ∈ A |ae = ea for all e ∈ E}.

The differentials in the reduced complex are given as the above formulas.

Induced quasi-isomorphism. In this paragraph, we will compute the quasi-

ismorphisms between the Hochschild cochain complex and the reduced complex,

induced by the comparison maps p and s. We will denote them by

p• : R•(A,A) → C•(A,A) and s• : C•(A,A) → R•(A,A).

Map (p•). In degree zero, we have that p0 : AE → A is the inclusion map. For

n ≥ 1,

pn : HomEe (r⊗
n
E , A) −→ Homk(A⊗n

k , A)

is given by

pnf(x1 ⊗
k
· · · ⊗

k
xn) = f(π(x1) ⊗

E
· · · ⊗

E
π(xn))

where f is in HomEe (r⊗
n
E , A) and xi ∈ r.

Map (s•). In degree zero, we have that s0 : A → AE is given by

s0(x) =
∑

e∈E0

exe

where x ∈ A. For n ≥ 1, we have that

sn : Homk(A⊗
n
k , A) −→ HomEe (r⊗

n
E , A)

is given by

snf(x1⊗
E
· · · ⊗

E
xn) =

∑

j0,...,jn

ej0f(ej0 x1ej1 ⊗
k
· · · ⊗

k
eji−1

xieji ⊗
k
· · · ⊗

k
ejn−1

xnejn )ejn

where the sum is over all (n + 1)-tuples (ej0 , . . . , eji , . . . , ejn ) of elements of E0,

f is in Homk(A⊗
n
k , A) and xi is in r.

Remark. Let us remark that s• p• = idR•(A,A).

2. Gerstenhaber bracket and reduced bracket.

The Gerstenhaber bracket is defined on the Hochschild cohomology groups

using the Hochschild complex. In this section we will define the reduced bracket

using the reduced complex. We show that the Gerstenhaber bracket and the

reduced bracket provides the same graded Lie algebra structure on HH∗+1(A).

We begin by recalling the Gerstenhaber bracket in order to fix notation.
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Gerstenhaber bracket. Set C0(A,A) := A and for n ≥ 1, we will denote the

space of Hochschild cochains by

Cn(A,A) := Homk(A⊗
n
k , A).

In [Ger63], Gerstenhaber defined a right pre-Lie system {Cn(A,A), ◦i} where

elements of Cn(A,A) are declared to have degree n − 1. The operation ◦i is

given as follows. Given n ≥ 1, let us fix i = 1, . . . , n. The bilinear map

◦i : Cn(A,A) × Cm(A,A) −→ Cn+m−1(A,A)

is given by the following formula:

fn ◦i gm(x1 ⊗ · · · ⊗ xn+m−1) := fn(x1 ⊗ · · · ⊗ gm(xi ⊗ · · · ⊗ xi+m−1) ⊗ · · · ⊗ xn+m−1)

where fn is in Cn(A,A) and gm is in Cm(A,A). Then he proved that such

pre-Lie system induces a graded pre-Lie algebra structure on

C∗+1(A,A) :=

∞
⊕

n=1

Cn(A,A)

by defining an operation ◦ as follows:

fn ◦ gm :=

n∑

i=1

(−1)(i−1)(m−1)fn ◦i gm.

Finally, C∗+1(A,A) becomes a graded Lie algebra by defining the bracket as the

graded commutator of ◦. So we have that

[fn , gm] := fn ◦ gm − (−1)(n−1)(m−1)gm ◦ fn.

Remark. The Gerstenhaber restricted to C1(A,A) is the usual Lie commutator

bracket.

Moreover, Gerstenhaber proved that

δ[fn , gm] = [fn , δgm] + (−1)m−1[δfn , gm]

where δ is the differential of Hochschild cochain complex. This formula implies

that the following bilinear map:

[ − , − ] : HHn(A) × HHm(A) −→ HHn+m−1(A)

is well defined. Therefore, HH∗+1(A) endowed with the induced Gerstenhaber

bracket is also a graded Lie algebra.

Reduced Bracket. In order to define the reduced bracket, we proceed in the

same way as Gerstenhaber did. We will define the reduced bracket as the graded

commutator of an operation ◦
R
. Such operation will be given by ◦

i
. Denote by

Cn
E(r,A) the cochain space of the reduced complex, this is

Cn
E(r,A) := HomEe (r⊗

n
E , A).
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Definition. Let n ≥ 1 and fix i = 1, . . . , n. The bilinear map

◦
i

: Cn
E(r,A) × Cm

E (r,A) → Cn+m−1
E (r,A)

is given by the following formula:

fn◦
i
gm(x1⊗

E
· · ·⊗

E
xn+m−1) := fn(x1⊗

E
· · ·⊗

E
πgm(xi⊗

E
· · ·⊗

E
xi+m−1)⊗

E
· · ·⊗

E
xn+m−1)

where fn is in Cn
E(r,A) and gm is in Cm

E (r,A) and x1, . . . , xn+m−1 are in r. Let

us remark that the image of gm does not necessarily belong to the radical but

the image of πgm clearly does. Therefore fn ◦
i
gm is well defined.

Then we can define ◦
R

on

C∗+1
E (r,A) :=

∞
⊕

n=1

Cn
E(r,A)

as above but replacing ◦
i

instead of ◦i. This means that

fn ◦
R

gm :=

n∑

i=1

(−1)(i−1)(m−1)fn ◦
i
gm

Let us remark ◦
R

is a graded operation on C∗+1
E (r,A) by declaring elements of

Cn
E(r,A) to have degree n − 1.

Definition. We call the reduced bracket, denoted by [ − , − ]R, to the graded

commutator bracket of ◦
R
. This is,

[ − , − ]R : Cn
E(r,A) × Cm

E (r,A) −→ Cn+m−1
E (r,A)

is given by

[fn , gm]R := fn ◦
R

gm − (−1)(n−1)(m−1)gm ◦
R

fn.

The following lemmas will relate the Gerstenhaber bracket and the reduced

bracket.

Lemma 2.1. We have the following formula:

[fn , gm]R = sn+m−1[pnfn , pmgm ].

Proof. A straightforward verification shows that

fn ◦
i
gm = sn+m−1(pnfn ◦i pmgm ).

Since sn+m−1 is a linear application we have the formula wanted. �

Lemma 2.2. We have the following formula:

pn+m−1[ fn , gm ]R = [pnfn , pmgm ]

Proof. Since pn+m−1 is a complex morphism, we prove that

pn+m−1(fn ◦
i
gm) = pnfn ◦i pmgm

by a direct computation. �
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We will write p∗ for the morphism

p∗ : C∗+1
E (r,A) −→ C∗+1(A,A)

induced by p•. We have the following proposition due to the above lemmas that

relate both brackets.

Proposition 2.3. The graded product [ − , − ]R endows C∗

E(r,A) with the struc-

ture of graded Lie algebra. We also have that p∗ is a morphism of graded Lie

algebras.

Proof. Using the lemma 2.1, it is easy to see that the reduced bracket satisfies

the graded antisymmetric property as a consequence of the fact that the Ger-

stenhaber bracket satisfies the same condition. For the graded Jacobi identity,

we proceed in the same way. First, let us write a formula that relates both

brackets, using the lemma 2.1 and the lemma 2.2 we have that

[ [ fn , gm ]R , hl ]R = sn+m+p−2[pn+m−1[ fn , gm ]R , plhl ]

= sn+m+p−2[ [pnfn , pmgm ] , plhl ]

Then, using the linearity of sn+m+p−2 and the fact that the Gerstenhaber bracket

satisfies the graded Jacobi identity we have proved that [ − , − ]R satisfies the

two conditions of the definition of graded Lie algebra. Finally, p∗ becomes a Lie

graded morphism because of lemma 2.2. �

Now, the reduced bracket induce a bracket in Hochschild cohomology groups

because of the following lemma.

Lemma 2.4. Let δ be the differential of the Hochschild cocomplex then we have

δ[ fn , gm ]R = [ fn , δgm ]R + (−1)m−1[ δfn , gm ]R.

Hence we have a well defined bracket in the Hochschild cohomology groups:

[ − , − ]R : HHn(A) × HHm(A) −→ HHn+m−1(A) .

Proof. We have that

δ[ fn , gm ]R = δsn+m−1[pnfn , pmgm ]

= sn+m−1δ[pnfn , pmgm ]

= sn+m−1[pnfn , δpmgm ] + (−1)m−1sn+m−1[ δpnfn , pmgm ]

= sn+m−1[pnfn , pmδgm ] + (−1)m−1sn+m−1[pnδfn , pmgm ]

= [ fn , δgm ]R + (−1)m−1[ δfn , gm ]R

�

We have equipped HH∗+1(A) with a graded Lie algebra structure induced by

the reduced bracket. We know that HH∗+1(A) is already a graded Lie algebra

and this structure is given by the Gerstenhaber bracket. We have then the

following proposition.

Proposition 2.5. The graded Lie algebra HH∗+1(A) endowed with the Gersten-

haber bracket is isomorphic to HH∗+1(A) endowed with the reduced bracket.
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Proof. By abuse of notation we continue to write p∗ for the automorphism of

HH∗+1(A) given by the family of morphisms (pn). Thus, a direct consequence of

the above proposition is that p∗ becomes an isomorphism of graded Lie algebras.

�

3. Reduced bracket for monomial algebras

with radical square zero.

Let Q be a quiver. The path algebra kQ is the k-linear span of the set of paths

of Q where multiplication is provided by concatenation or zero. We denote by

Q0 the set of vertices and Q1 the set of arrows. The trivial paths are denoted

by ei where i is a vertex. The set of all paths of length n is denoted by Qn.

In the sequel, let A be a monomial algebra with radical square zero, this is

A :=
kQ

< Q2 >
.

The Jacobson radical of A is given by r = kQ1. Moreover, the Wedderburn-

Malcev decomposition of these algebras is A = kQ0⊕kQ1 where E = kQ0. In this

section we are going to describe the reduced bracket on HH∗+1(A). Such bracket

is given in terms of the combinatorics of the quiver. We will use computations of

the Hochschild cohomology groups of these algebras given by Cibils in [Cib98].

The reduced complex. Notice that in the case of monomial algebras with

radical square zero, the middle-sum terms of the coboundary morphism of the

reduced projective resolution R vanishes because the multiplication of two ar-

rows is always zero. Therefore, we have that the coboundary morphism is given

by the following formula:

δ(a ⊗ x1 ⊗ · · · ⊗ xn+1 ⊗ b) = ax1 ⊗ x2 ⊗ · · · ⊗ xn+1 ⊗ b

+ (−1)n+1 a ⊗ x1 ⊗ · · · ⊗ xn ⊗ xn+1b.

In [Cib98] an isomorphic complex to R•(A,A) is given. This new complex

is obtained in terms of the combinatorics of the quiver. To describe it we will

need to introduce some notation. We say that two paths α and β are parallels if

and only if they have the same source and the same end. If α and β are parallel

paths we write α ‖ β. Let X and Y be sets consisting of paths of Q, the set of

parallel paths X ‖ Y is given by :

X ‖ Y : = { (γ, γ ′) ∈ X × Y | γ ‖ γ ′ }.

For example:

• Qn ‖ Q0 is the set of pointed oriented cycles, this is the set of pairs

(γn, e) where γn is an oriented cycle of length n.

• Qn ‖ Q1 is the set of pairs (γn, a) where the arrow a is a shortcut of

the path γn of length n.

We denote by k(X ‖ Y) the k-vector space generated by the set X ‖ Y.

For each natural number n, Cibils defines

Dn : k(Qn ‖ Q0) → k(Qn+1 ‖ Q1)
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as follows:

(2) Dn(γn, e) =
∑

a∈Q1e

(aγn, a) + (−1)n+1
∑

a∈eQ1

(γna, a)

where the path γn is parallel to the vertex e.

In [Cib98], the Hochschild cohomology groups of a radical square zero algebra

are obtained from the following complex, denoted by C•(Q) :

0 → k(Q0 ‖ Q0) ⊕ k(Q0 ‖ Q1)

(

0 0

D0 0

)

−→ k(Q1 ‖ Q0) ⊕ k(Q1 ‖ Q1)

(

0 0

D1 0

)

−→ · · ·

· · · k(Qn ‖ Q0) ⊕ k(Qn ‖ Q1)

(

0 0

Dn 0

)

−→ k(Qn+1 ‖ Q0) ⊕ k(Qn+1 ‖ Q1).

Cibils proved that C•(Q) is isomorphic to the reduced complex R•(A,A) using

the following lemma.

Lemma 3.1 ([Cib98]). Let A := kQ/ < Q2 > where Q is a finite quiver. The

vector space Cn
E(r,A) = HomEe (r⊗

n
E , A) is isomorphic to

k(Qn ‖ Q0 ∪ Q1) = k(Qn ‖ Q0) ⊕ k(Qn ‖ Q1).

The reduced bracket. Once we have the combinatorial description of Cn
E(r,A),

we are going to compute the reduced bracket in the same terms. To do so we

use the above lemma. We begin by introducing some notation.

Notation. Given two paths: αn in Qn and βm in Qm, we will suppose that

αn = a1a2 . . . an

βm = b1b2 . . . bm

where ai and bj are in Q1. Under this assumption, we say that ai and bj are

arrows in the decomposition of αn and βm, respectively. Let i = 1, . . . , n, if

ai ‖ βm, we denote by αn ⋄
i
βm the path in Qn+m−1 obtained by replacing the

arrow ai with the path βm. This means

αn ⋄
i
βm := a1 · · ·ai−1b1 · · · bmai+1 · · ·an

If ai is not parallel to βm then αn ⋄
i
βm has no sense. Clearly, ⋄

i
is not commu-

tative. For example, let a in Q1. If a ‖ βm then we have that

a ⋄
1

βm = βm

Now, if bi ‖ a we have that

βm ⋄
i
a = b1 . . . bi−1abi+1 . . . bm.

Definition. Let Q be a finite quiver and n ≥ 1. Fix i = 1, . . . , n. The bilinear

map

◦
i

: k(Qn ‖ Q0 ∪ Q1) × k(Qm ‖ Q0 ∪ Q1) −→ k(Qn+m−1 ‖ Q0 ∪ Q1)

is given by

(αn, x) ◦
i
(βm, y) = δai,y · (αn ⋄

i
βm, x)
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where

δai,y =

{
1 if ai = y

0 otherwise

and αn = a1 · · ·ai · · ·an.

Denote by C∗+1(Q) the following vector space

C∗+1(Q) :=

∞
⊕

n=1

k(Qn ‖ Q0) ⊕ k(Qn ‖ Q1) .

Definition. Let Q be a finite quiver. The biliner map

[ − , − ]Q : k(Qn ‖ Q0 ∪ Q1) × k(Qm ‖ Q0 ∪ Q1) −→ k(Qn+m−1 ‖ Q0 ∪ Q1)

is defined as follows

[ (αn, x) , (βm, y) ]Q =

n∑

i=1

(−1)(i−1)(m−1)(αn, x) ◦
i
(βm, y)

−(−1)(n−1)(m−1)

m∑

i=1

(−1)(i−1)(n−1)(βm, y) ◦
i
(αn, x).

Theorem 3.2. Let Q be a finite quiver. The vector space C∗+1(Q) together with

the bracket [ − , − ]Q is a graded Lie algebra. Moreover, if A := kQ/ < Q2 > then

the graded Lie algebra C∗+1
E (r,A) endowed with the reduced bracket is isomorphic

to C∗+1(Q) endowed with the bracket [ − , − ]Q.

Proof. Let Q be a finite quiver and A := kQ/ < Q2 >. Let us remark that

C∗+1(Q) is isomorphic as a vector space to C∗+1(r,A) because of lemma 3.1.

Using the same isomorphism defined by Cibils to prove lemma (3.1), a straight-

foward verification shows that the bracket [ − , − ]Q is the combinatorial trans-

lation of the reduced bracket. �

Corollary 3.3. Let A := kQ/ < Q2 > where Q is a finite quiver. The graded

Lie algebra structure on HH∗+1(A) given by the Gerstenhaber bracket is induced

by the graded Lie algebra structure on C∗+1(Q) given by [ − , − ]Q.

4. Lie module structure of HHn(A) over HH1(A).

In this section, we are going to study the Lie module structure of HHn(A)

over HH1(A) when A := kQ/Q2 in two cases. The first case is when Q is a loop

and the second case is when Q is a two loops quiver.

The one loop case. It is shown in [Cib98] that if char k = 0 and Q is the

one loop quiver then the function Dn, given by the equation (2), is zero when

n is even and Dn is injective when n is odd. In fact we have the following

proposition:
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Proposition ([Cib98]). Assume that Q is the one loop quiver. Let k be a field

of characteritic zero and A := kQ/ < Q2 >. Then we have that HH0(A) ∼= A

and for n > 0 we have that

HHn(A) ∼=






k(Qn ‖ Q0) if n is even

k(Qn ‖ Q1) if n is odd

Therefore, for n ≥ 0 the Hochschild cohomology group HHn(A) is one dimen-

sional.

Proposition 4.1. Assume that Q is the one loop quiver, where e is the vertex

and a is the loop. Let k be a field of characteritic zero and A := kQ/ < Q2 >.

Then HH1(A) is the one dimensional (abelian) Lie algebra and the Lie module

structure on the Hochschild cohomology groups given by the Gerstenhaber bracket

HH1(A) × HHn(A) −→ HHn(A)

is induced by the following morphisms:

If n is even, we have that

k(Q1 ‖ Q1) × k(Qn ‖ Q0) −→ k(Qn ‖ Q0)

is given as follows

(a, a).(an, e) = − n (an, e).

If n is odd, we have that

k(Q1 ‖ Q1) × k(Qn ‖ Q1) −→ k(Qn ‖ Q1)

is given as follows

(a, a).(an, a) = − (n − 1) (an, a).

So, the Lie module HHn(A) over HH1(A) corresponds to the one dimensional

standard module over k.

Proof. It is an immediate consequence of the definition of the bracket [ − , − ]Q
and the corollary 3.3. �

Moreover, we have that

Proposition 4.2. Let k be a field of characteritic zero, Q the one loop quiver

and A := kQ/ < Q2 >. The Lie algebra HHodd is the infinite dimensional Witt

algebra.

Proof. If n and m are odd then, using the formula for the bracket, we have

[ (an, a) , (am, a) ]Q = (n − m) (an+m−1, a) .

�
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The two loops case. In [Cib98], Cibils proved that the function Dn, given by

the equation (2), is injective for n ≥ 1 when Q is neither a loop nor an oriented

cycle. Hence we have the following result:

Theorem ([Cib98]). Let A := kQ/ < Q2 > where Q is the two loops quiver.

Then, HH0(A) = A and for n ≥ 1

HHn(A) ∼=
k(Qn ‖ Q1)

ImDn−1

where

Dn−1 : k(Qn−1 ‖ Q0) −→ k(Qn ‖ Q1)

is given by the formula (2). Moreover, we have that for n > 1,

dimkHHn(A) = 2n+1 − 2n−1 .

Theorem 4.3. Let A := kQ/ < Q2 > where Q is a finite quiver. If Q is not

an oriented cycle then the Lie module structure on the Hochschild cohomology

groups given by the Gerstenhaber bracket

HH1(A) × HHn(A) −→ HHn(A)

is induced by the following bilinear map:

k(Q1 ‖ Q1) × k(Qn ‖ Q1) −→ k(Qn ‖ Q1)

given as follows

(a, x).(αn, y) = δy,a · (αn, a) −

n∑

i=1

δx,ai
· (αn ⋄

i
x, y)

where a ‖ x and y is a shortcut of the path αn whose decomposition into arrows

is given by αn = a1 · · · ai · · ·an. The path αn⋄
i
x is obtained by replacing ai with

x if ai = y

Proof. It is an immediate consequence of the definition of the bracket [ − , − ]Q
and the corollary 3.3. �

In [Str06], Strametz studies the Lie algebra structure on the first Hochschild

cohomology group for monomial algebras. She formulates the Lie bracket on

HH1(A) using the combinatorics of the quiver. Let us remark that the formula

given by the above theorem gives the Lie bracket on HH1(A) when we set n = 1.

Such formula coincides with the one given in [Str06]. Let us describe the Lie

algebra HH1(A).

Proposition 4.4. Assume that Q is the two loops quiver where e is the vertex

and the loops are denoted by a and b. Let A := CQ/ < Q2 > where C is the

complex number field. Then the elements

H := (b, b) − (a, a)

E := (a, b)

F := (b, a)
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generate a copy of the Lie algebra sl2(C) in HH1(A). Moreover, the Lie algebra

HH1(A) is isomorphic to sl2(C) × C.

Proof. First notice that HH1(A) ∼= k(Q1 ‖ Q1) and that the elements H, E, F

and I := (a, a) + (b, b) form a basis of HH1(A). A straightforward verification

of the following relations:

[H , E ]Q = 2E, [H , F ]Q = −2F, [E , F ]Q = H

proves that HH1(A) contains a copy of sl2C. Finally, it is easy to see that

[ I , H ]Q = 0, [ I , E ]Q = 0, [ I , F ]Q = 0,

�

In order to study the Lie module HHn(A) over HH1(A), we will study HHn(A)

as a sl2(C)-module. Now, let us recall two classical Lie theory results, see

[EW06, FH91] for more detail.

(i) Every (finite dimensional) sl2C-module has a decomposition into direct

sum of irreducible modules

(ii) Classification of irreducible sl2C-modules: there exists an unique irre-

ducible module for each dimension. We denote by V(t) the irreducible

sl2C module of dimension t + 1.

Using the above notation, this means that HHn(A) has a decomposition into

direct sum of irreducible modules over sl2C as follows:

HHn(A) =

∞
⊕

t=0

V(t)qt

We will determine each qt and to do so we will use the usual tools of the classical

Lie theory. We begin by calculating the eigenvector spaces of H as endomorphism

of k(Qn ‖ Q0) and ImDn−1.

Given a path γn in Qn we denote by a(γn) the number of times that the

arrow ”a” appears in the decomposition of γn. We also denote by b(γn) the

number of times that the arrow ”b” appears in the decomposition of γn.

Map (v). Define v as the function given by:

vn : Qn → Z

γn 7→ a(γn) − b(γn)

Lemma 4.5. For all γn in Qn we have that

H.(γn, a) = (vn(γn) − 1) (γn, a)

H.(γn, b) = (vn(γn) + 1) (γn, b)

and for all γn−1 in Qn−1 we have that

H.Dn−1(γ
n−1, e) = vn−1(γ

n−1)Dn−1(γ
n−1, e) .

Proof. Use the formula given in proposition (4.3). �

Proposition 4.6. Assume that char k = 0.
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(i) Consider H as an endomorphism of k(Qn ‖ Q1). The eigenvalues of H

are n + 1 − 2l where l = 0, . . . n + 1. Denote by W(λ) the eigenspace of

H of the eigenvalue λ. We have that

dimkW(n + 1 − 2l) =

(

n + 1

l

)

.

(ii) Consider H as an endomorphism of ImDn−1 The eigenvalues of H re-

stricted to ImDn−1 are n − 1 − 2l where l = 0, . . . n − 1. As above,

denote by W(λ) the eigenspace of H of the eigenvalue λ. We have that

dimkW(n − 1 − 2l) =

(

n − 1

l

)

.

Proof. (i) From the above lemma, it is clear that the set

{(γn, a) | γn ∈ Qn} ∪ {(γn, b) | γn ∈ Qn}

is a basis of k(Qn ‖ Q1) consisting of eigenvectors. We also have that (γn, a)

and (γn, b) are eigenvectors of eigenvalue v(γn) + 1 and v(γn) − 1 respectively.

Since a(γn) + b(γn) = n for all paths γn, we have that v(γn) = n − 2b(γn)

where b(γn) varies from 0 to n. Then we have that v(γn) ± 1 is of the form

n + 1 − 2l(γn) where l = 0 . . . , n + 1. Let us remark the following:

− (an, b) is the only eigenvector of value n + 1

− (bn, a) is the only eigenvector of value −(n + 1)

− If 0 < l < n + 1, we have that

• (γn, a) is an eigenvector of eigenvalue n + 1 − 2l iff l = b(γn)

• (γn, b) is an eigenvector of eigenvalue n + 1 − 2l iff l − 1 = b(γn)

On the other hand, if 0 < l < n+ 1, we know that there are
(

n

l

)

paths γn such

that b(γn) = l and
(

n

l − 1

)

paths γn such that b(γn) = l − 1. Therefore, there

are
(

n

l

)

+

(

n

l − 1

)

=

(

n + 1

l

)

eigenvectors (γn, x) of eigenvalue n + 1 − 2l.

(ii) From the above lemma, it is clear that the set

{Dn−1(γ
n−1, e) | γn−1 ∈ Qn−1}

is a basis of ImDn−1 consisting of eigenvectors. We also have that Dn−1(γ
n−1, e)

is an eigenvector of eigenvalue v(γn−1). Since a(γn−1) + b(γn−1) = n − 1 for all

paths γn−1, we have that v(γn−1) = n − 1 − 2b(γn−1) where b(γn) varies from

0 to n − 1. Therefore the eignevalues are of the form n − 1 − 2l where l varies

from 0 to n − 1 and there are
(

n − 1

l

)

eigenvectors of eignevalue n + 1 − 2l. �

Recall the following result from Lie theory:

Lemma 4.7 (General Multiplicty Formula [BH06]). Let V a finite dimensional

sl2C-module. For every integer t, let Vt be the eigenspace of H of eigenvalue n.

Then for any nonnegative integer t, the indecomposable module the number of
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copies of V(t) that appear in the decomposition into direct sum of indecomposable

is dimVt − dimVt−2.

A consequence of the above lemma is the following result:

Lemma 4.8. Let C be the field of complex numbers, Q the quiver given by two

loops and A := CQ/ < Q2 >. For n ≥ 1, we denote by h(n) the following:

h(n) := max { l | n + 1 − 2l ≥ 0 }

and for l = 0, . . . , h(n) we denote by p(n, l) the following:

p(n, l) :=






(

n

l

)

if l = 0

(

n

l

)

−

(

n

l − 1

)

if l ≥ 1

Then we have that

(i) the decomposition into direct sum of irreducibles of C(Qn ‖ Q1) as

sl2(C) Lie module is given by

C(Qn ‖ Q1) ∼=

h(n)
⊕

l=0

V(n + 1 − 2l)p(n+1,l) ,

(ii) the decomposition into direct sum of irreducibles of ImDn−1 as sl2(C)

Lie module is given by

ImDn−1
∼=

h(n)−1
⊕

l=0

V(n − 1 − 2k)p(n−1,l) .

Proposition 4.9. Let C be the field of complex numbers, Q the quiver given by

two loops and A := CQ/ < Q2 >. For n ≥ 1 and l = 0, . . . , h(n) we denote by

q(n, l) the following:

q(n, l) :=






(

n − 1

l

)

if l = 0, 1

(

n + 1

l

)

−

(

n + 1

l − 1

)

−

(

n − 1

l − 1

)

+

(

n − 1

l − 2

)

if l ≥ 2

Then, the decomposition of HHn(A) into a direct sum of irreducible Lie modules

over sl2(C) is given by

HHn(A) ∼=

h(n)
⊕

l=0

V(n + 1 − 2l)q(n,l).
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Algorithm. There is an algorithm that give us the decomposition of HHn(A)

described in the above proposition. We will explain it in the next paragraph.

We use the following table to write such decomposition:

n V(0) V(1) V(2) V(3) V(4) V(5) V(6) V(7) · · ·

HH2(A) 1 1

··
·

HHn(A) q0 q1 q2 q3 q4 q5 q6 q7 · · ·

In the above table, at the row HHn(A), the number that appears in the column

V(t) states the number of copies of the irreducibble module V(t) that appears

in the decomposition of HHn(A). We leave a blank space if no V(t) appears

in the decomposition of HHn(A). We fix the first row of the table with the

decomposition of HH2(A). Now, given the entries of the row HHn(A), we can

fill out the coefficients of the next row, this is for HHn+1(A), in the following

manner:

(i) Add an imaginary column (−) just before the column V(0), consisting

of zeros.

(ii) Write down the coefficients of the next row by using the rule from Pas-

cal’s triangle: add the number directly above and to the left with the

number directly above and to the right.

(−) V(0) V(1) · · · V(t − 1) V(t) V(t + 1) · · ·

HHn(A) 0 q0 q1 · · · qt−1 qt qt+1 · · ·

HHn+1(A) 0 q1 · · · · · · · · · qt−1 + qt+1 · · · · · ·

Let us remark that the number of copies of V(1) that appear in the decompo-

sition of HHn(A) is equal to the number of copies of V(0) that appear in the

decomposition of HHn+1(A).

Lemma 4.10. We have that

(i) If n is even then q(n,h(n)) = q(n + 1, h(n + 1)).

(ii) If n ≥ 2 then q(n, l) + q(n, l + 1) = q(n + 1, l + 1).

Proof. For the first equality, we verify by a direct computation for n = 2 and

n = 4. For n ≥ 6, we use that if n is even then we have that
(

n + 1

n/2

)

=

(

n + 1

n/2 + 1

)

.

For the second equality, we verify by a direct computation for l = 0 and l = 1.

For l ≥ 2, we use the Pascal triangle’s rule:
(

n

l

)

+

(

n

l + 1

)

=

(

n + 1

l + 1

)

.
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�

Remark. The algorithm is justify by the above lemma. Moreover, we have that

q(n, 2) =

(

n − 1

2

)

.

This is the reason why we have a section of the Pascal triangle in the above

table.

Finally, once we have the decompostion of HHn(A) into direct sum of irre-

ducible modules over sl2C, we return to study HHn(A) as a HH1(A)-module.

Corollary 4.11. We have that

HHn(A) ∼=

h(n)
⊕

l=0

V(n + 1 − 2l)q(n,l) ⊗ C

as Lie modules over HH1(A).

Proof. Notice that

I.(γn, x) = (1 − a(γn) − b(γn))(γn, x) = (1 − n)(γn, x).

�
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