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Abstract

Adaptation to alternating periods of desiccation and hydration is one of the lichen’s requirements 

for survival in high mountain environment. In the dehydrated state, respiration and 

photosynthesis of the foliaceous lichen Xanthoria elegans were below the threshold of CO2-

detection by infrared gas analysis. Following hydration, respiration totally recovered within 

seconds and photosynthesis within minutes. In order to identify metabolic processes that may 

contribute to restart so quickly and efficiently lichen physiological activity, we analysed the 

metabolite profile of lichen thalli step by step during hydration/dehydration cycles, using 31P- 

and 13C-NMR. It appeared that the recovery of respiration was anticipated during dehydration by 

the accumulation of important stores of gluconate 6-P (glcn-6-P) and by the preservation of the 

nucleotide pools, whereas glycolysis and photosynthesis intermediates like glucose 6-P and 

ribulose 1,5-diphosphate disappeared. The important pools of polyols present in both X. elegans

photo- and mycobiont likely contributed to protect cells constituents like nucleotides, proteins, 

and membrane lipids, and to preserve the intactness of intracellular structures during desiccation.

Our data indicate that glcn-6-P accumulated due to the activation of the oxidative pentose 

phosphate pathway, in response to cell need for reducing power (NADPH) during the 

dehydration-triggered down regulation of metabolism. On the contrary, glcn-6-P was 

metabolised immediately after hydration, supplying respiration with substrates during the 

recovery of the pools of glycolysis and photosynthesis intermediates. Finally, the high net 

photosynthetic activity of wet X. elegans thalli at low temperature may help this alpine lichen to 

take advantage of short hydration opportunities such as ice melting, thus favouring its growth in

the harsh high mountain climate.
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Introduction

Lichens are living organisms among the most resistant to extreme environments including the 

deserts and frigid areas of the five continents. In the alpine environment, these symbiotic 

organisms are exposed to harsh fluctuations of water supply, light intensity, and temperature 

(Kappen 1988; Körner, 2003). This is typically the case for Xanthoria elegans (Link) used in this 

study, whose growth on rocky surfaces mainly depends on atmospheric water input. X. elegans is 

a saxicolous desiccation-tolerant lichen of the Teloschistaceae family (Helms, 2003), containing

an ascomycetous fungus and a unicellular green alga belonging to the Teloschistes and

Trebouxia genus, respectively (Helms, 2003). In the place where they were harvested, thalli 

naturally undergo hydration/dehydration cycles, growing when they are hydrated by snow 

melting, rain, or dew.

Metabolic activity of lichen thalli appreciated via gas exchanges becomes almost 

undetectable when their water content decreases below 10-15% of their dry weight (Lange 1980; 

Schroeter et al. 1991). Nevertheless, lichens may take up sufficient amounts of water from the 

vapour in the atmosphere (Lange 1980) and thus maintain a significant metabolic activity above 

this rather low hydration threshold. Hydration is facilitated by high concentrations of polyols in 

both photo- and mycobiont (Rundel 1988) that lower water potential (Lange et al. 1990), thus

allowing photosynthetic activity even under increasing degrees of desiccation (Nash et al. 1990).

Immersion in water or rewetting in moist air triggers a process of reviviscence in dry 

desiccation-tolerant lichen s (Smith and Molesworth 1973; Bewley 1979). Respiration and 

photosynthesis shortly resume normal activities upon hydration, indicating that cell damages

induced by drying are rapidly repaired (Farrar and Smith, 1976). Indeed, according to different 

authors (Dudley and Lechowicz 1987; Longton 1988), desiccated membranes are leaky, 

exposing cell contents to surrounding solution during rewetting, which leads to losses of organic 

and inorganic solutes. Thus, cell survival requires a rapid resealing of plasma membrane 

disruptions (McNeil and Steinhardt 1997; McNeil et al. 2003). Nevertheless, a delay for repairs 

and synthesis of lost metabolites could be expected. 

Intense solar radiation is another environmental parameter that threatens lichens with the 

potential damaging effects of reactive oxygen species (ROS) production (Fridovich, 1999), in 

particular when photosynthetic water oxidation stops due to dehydration. In the plant kingdom, 
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the ability to withstand light stress and desiccation of vegetative organs involves various

mechanisms recently reviewed by Hoekstra et al. (2001), Rascio and La Rocca (2005), and 

Heber et al. (2005). In hydrated organs, these include increased energy dissipation by

fluorescence at the PSII level and cyclic electron transport around PSI (Heber and Walker 1992;

Manuel et al. 1999; Cornic et al. 2000). On the contrary, when they are dry, poikilohydric 

organisms do not emit light-induced fluorescence, revealing an inactivation of PSII function 

(Lange et al. 1989). These organisms minimise damage by activating exciton transfer to 

quenchers and converting excess energy to heat (Bilger et al. 1989; Heber et al. 2000).

Interestingly, following hydration, a burst of intracellular production of ROS was reported in 

photo- and mycobiont of Ramalina lacera, and this burst modifies superoxyde dismutase, 

catalase, glutathione reductase, and glucose 6-P dehydrogenase activities (Weissman et al. 2005).

In desiccation-tolerant plants, the recovery of cell damages upon hydration, and the 

subsequent restoration of cell functions, involves various and complex inductive mechanisms 

including gene transcriptions and an increased need for protein turnover (Oliver et al. 2004). 

Therefore it requires a rather lengthy time ranging from a few hours to several days (Gaff, 1997).

In contrast, we observed that the respiration and the photosynthetic activity of different high 

mountain lichens restarted almost immediately after rewetting. Therefore, we hypothesised that

the rapid recovery of these organisms relies on the preservation/accumulation of key pools of 

metabolites during dehydration. We supposed, for example, that intermediates of energy 

metabolism like respiratory substrates, nucleosides, and pyridine nucleotides did not massively 

leak out photo- and mycobiont during hydration/desiccation cycles in lichens. To substantiate 

this hypothesis, we assessed in parallel the respiration and photosynthetic activities and the 

metabolite profiles of X. elegans thalli during hydration and dehydration. The main pools of 

metabolites were characterized in vitro and in vivo using 31P- and 13C-NMR as a convenient 

technique giving a precise overview of the soluble organic compounds present in plant materials

(Bligny and Douce 2001; Streb et al. 2003). 
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Materials and methods

Lichens sampling and measurement of their dry and wet weight

X. elegans thalli were collected at 2800 m on limestone rocks situated above the Galibier pass

(Hautes-Alpes),  an area characterised by a relatively continental and dry climate. The so-called 

“dry thalli” were taken under the sun, during the hottest hours of the day (rocks surface

temperature, 30-35°C; relative air humidity, 20%). They still contained ca 8% water by 

comparison with oven-desiccated thalli (2 h at 110°C). The so-called “wet thalli” correspond to 

lichens colle cted in the same area either at dawn, in the dark, or just after a rain, in the light, as 

stated in text. The weight of wet thalli was measured in situ after removing interstitial water by 

straining between two layers of absorbent paper. The wet wt versus dry wt ratio was usually ca 

2.5. Thalli were stored frozen until needed.

Measurements of respiration and photosynthesis activities

These activities were measured either via O2 or CO2 exchanges as stated in results section. CO2

exchanges were measured with an infrared gas analyser (IRGA) equipped with a 1,200 ml 

chamber (LI-COR 6200, Lincoln USA). The temperature inside the closed chamber was 

maintained by a thermostat between ∼2.5°C and 30°C. Thalli (ca 0.5 g dry weight) were let 

attached to their support. O2 was monitored polarographically at 20°C in a 1-ml water chamber 

equipped with a Clark-type oxygen-electrode purchased from Hansatech Ltd (King's Lynn, 

Norfolk, UK). The O2 concentration in air-saturated medium was taken as 210 µM at 20°C and 

780 hPa in the alpine lab (2100 m) where measurements were done. In order to facilitate the

sample stirring in the measurement chamber, thalli were fragmented into pieces of 1-2 mm2 by 

gentle grinding with mortar and pestle in liquid nitrogen. 50 mg of dry thalli was used for O2-

electrode measurements. Controls were done to ensure that the lichen fragmentation at liquid 

nitrogen temperature did not modify the rates of respiration and photosynthesis after unfreezing 

and hydration. When utilised, illumination was maintained above saturation at a 

photosynthetically active photon flux density (PPFD) of 500 µmol m-2 s-1, using a Shott KL 1500 
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(Amilabo, France) light generator. The incubation medium contained 0.1 mM potassium 

bicarbonate, pH 6.8. 

PCA extract preparation

Thalli (4 g dry weight) were quickly frozen in liquid nitrogen and ground to a fine powder with a 

mortar and pestle with 1 ml of 70% (vol/vol) PCA. The frozen powder was then placed at -10°C 

and thawed. The thick suspension thus obtained was centrifuged at 15,000 g for 10 min to 

remove particulate matter and the supernatant was neutralised with 2 M KHCO3 to about pH 5.2. 

The supernatant was then centrifuged at 10,000 g for 10 min to remove KClO4; the resulting 

supernatant was lyophilised and stored in liquid nitrogen. This freeze-dried material was 

dissolved in 2.5 ml water containing 10% D2O, and stored frozen.

31P- and 13C-NMR analyses of PCA extracts

Spectra were recorded on a Bruker NMR spectrometer (AMX 400, wide bore; Bruker 

Instruments, Inc., Billerica, MA) equipped with a 10-mm multinuclear probe tuned at 162 MHz 

or 100.6 MHz for 31P- or 13C-NMR studies respectively. The deuterium resonance of D2O was 

used as a lock signal.
31P-NMR acquisition conditions: 70° radio frequency pulses (15 µs) at 3.6 s intervals; 

spectral width 8200 Hz; 4096 scans; Waltz-16 1H decoupling sequence (with two levels of 

decoupling: 1 W during acquisition time, 0.5 W during delay). Free induction decays were 

collected as 8K data points, zero filled to 16K and processed with a 0.2 Hz exponential line 

broadening. 31P-NMR spectra are referenced to methylenediphosphonic acid (pH 8.9) at 16.38 

ppm. Before 31P-NMR analyses, divalent cations were chelated by the addition of sufficient 

amounts of CDTA ranging from 100 to 150 µmol. The pH was buffered by the addition of 75 

µmol Hepes and adjusted to 7.5.
13C-NMR acquisition conditions: 90° radio frequency pulses (19 µs) at 6 s intervals; 

spectral width 20,000 Hz; 3600 scans; Waltz-16 1H decoupling sequence (with two levels of 

decoupling: 2.5 W during acquisition time, 0.5 W during delay). Free induction decays were 
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collected as 16K data points, zero filled to 32K, and processed with a 0.2-Hz exponential line 

broadening. 13C-NMR spectra are referenced to hexamethyldisiloxane at 2.7 ppm. Mn2+ was 

chelated by the addition of 2 µmol CDTA and the pH was adjusted to 7.5.

The assignments were made after running a series of standard solutions of known 

compounds at pH 7.5 and adding aliquots of these compounds to the PCA extracts as described 

previously (Roby et al. 1987). Identified compounds were quantified by comparison of the 

surface of their resonance peaks to the surface of resonance peaks of standards added to samples 

before grinding according to Aubert et al. (1996); NADP+ and NADPH were quantified as 

described by Pugin et al. (1997). Fully relaxed conditions during spectra acquisition (pulses at 

20-s intervals) were used for quantification. The standards utilized were methylphosphonate and 

maleate for 31P- and 13C-NMR analyses, respectively.

In vivo 31P-NMR measurements

A perfusion system was utilized to optimize the signal-to-noise ratio as described earlier (Gout et 

al. 2001). Spectra were recorded on a Bruker spectrometer (AMX 400, wide bore) equipped with 

a 25-mm probe tuned at 162 MHz. 31P-NMR acquisition conditions: 50° radio frequency pulses 

(70 µs) at 0.6 s intervals; spectral width 9800 Hz; 6000 scans; Waltz-16 1H decoupling sequence 

(with two levels of decoupling: 2.5 W during acquisition time, 0.5 W during delay). Free 

induction decays were collected as 4K data points, zero filled to 8K and processed with a 2-Hz 

exponential line broadening. Spectra were referenced to a solution of 50 mM 

methylenediphosphonic acid (pH 8.9 in 30 mM Tris) contained in a 0.8 mm capillary itself 

inserted inside the inlet tube along the symmetry axis of the cell sample (Roby et al. 1987). The 

assignment of inorganic phosphate (Pi), phosphate esters, phosphate diesters, and nucleotides to 

specific peaks was carried out according to Roberts and Jardetzky (1981), Roby et al. (1987), 

Aubert et al. (1996), and from spectra of the PCA-extracts that contained the soluble low 

molecular weight constituents.
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Results

As frequently observed with lichens (Smith and Molesworth 1973; Farrar and Smith 1976; 

Larson 1981), X. elegans can lose most of its constitutive water in dry atmosphere and become 

wet again as soon as it receives water. The dehydration of this lichen takes about 30 min when it 

is exposed to the summer sun. In a spectacular manner, we first observed that respiration, which 

was undetectable in dry thalli, started at full speed within the seconds following its rewetting.

In situ measurement of gas exchanges in X. elegans thalli

No gas exchanges were detected using the IRGA apparatus (detection threshold, ca 10 nmol CO2

min-1) in thalli containing less than 10% H2O, whatever the temperature and the light conditions

i.e. dark or light (photon flux exceeding 1500 µmol m-2 s-1). This indicated that photosynthesis 

and respiration activities were negligible. On the contrary, CO2 uptake or loss, depending on 

light or dark conditions, was easily measured at different temperatures in wet thalli (Fig. 1). 

Interestingly, chlorophyll fluorescence measured according to Heber et al. (2000) was largely 

quenched in dry lichens, whereas it was detected under the light from the first min of hydration, 

increasing fast and reaching a steady state after 5-6 min (data not shown), thus confirming that e-

transport was negligible in dry thalli.

Not surprisingly, the CO2 exchanges of wet thalli were temperature-dependent. In the 

dark, the respiration of wet thalli increased exponentially with temperature (Fig. 1), like that of

higher plants (Bligny et al. 1985). For example, at 5°C, the emission  of CO2 was 25 ± 5 nmol O2

min-1 g-1 lichen dry wt, whereas it was 600 ± 90 at 20°C. Under the light, the uptake of CO2 first

increased with temperature, reaching a maximum of 800 ± 80 nmol O2 min-1 g-1 lichen dry wt at 

10-15°C, and then decreased continuously above 15 °C. Indeed, the CO2 uptake, called here net 

photosynthesis, was the resultant of the gross CO2 uptake due to photosynthetic activity of alga 

and the emission of CO2 mainly due to fungal respiration if we admit that algal respiration was

negligible in the light (Gans and Rébeillé, 1988; Tcherkez et al 2005). In illuminated wet thalli,

the CO2 emitted by respiration compensated for the CO2 assimilated by photosynthesis at 28-

29°C.
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Recovery of respiration and photosynthesis activities of dry X. elegans thalli after hydration

In the following experiments, gas exchanges were measured on immersed thalli fragments with a 

Clark-type O2-electrode, at 20 °C, as indicated in Materials and methods. We preferred this 

technique because it was very difficult to stabilise in situ the temperature and relative humidity 

in the IRGA measurement chamber during dark/light cycles. The oxygraphic traces (Fig. 2)

showed that: (i) the O2 uptake in the O2-electrode chamber started at a full speed in the dark, 

immediately after thalli fragments were introduced, and whatever their initial dry or wet status

(traces A1 and B1). Oxygen was consumed at a rate comprised between 580 and 620 nmol min-1 

g-1 lichen dry wt. These values were comparable with the rates of CO2 production measured in 

situ with the IRGA. (ii) A 1-min delay was first observed with initially wet thalli before O2

production stabilised under the light (Fig 2, trace B2). This delay was shorter when the duration 

of the preceding dark period was reduced (trace B2) and longer (2-3 min) when thalli were 

initially dry (trace A2). In all cases, the stabilised O2 emission was comparable (comprised

between 520 and 640 nmol min-1 g-1 lichen dry wt); (iii) when s amples were then alternatively 

illuminated and darkened in successive dark/light sequences, respiration and net photosynthesis 

rates remained remarkably stable over several hours; (iv) assays done with lyophilised thalli 

containing less than 4% water or with thalli kept dry in the laboratory over one year gave similar 

results (not shown), thus showing the remarkable adaptation of this lichen to strong and 

prolonged desiccation.

Taken together, these data indicated that the cell structures of the fungal and algal 

partners did not suffer irreversible desiccation-induced damages. Moreover, the fact that 

respiration recovered instantly suggested that key energy metabolism substrates, nucleotides, and

pyridine nucleotides were not lost during a hydration/desiccation cycle. On the contrary, the 

delay for photosynthesis to recover suggested that key BBC cycle intermediates decreased 

strongly in the chloroplasts of photobiont during thalli dehydration. In order to verify these 

hypotheses, we analysed the metabolite profiles of X. elegans thalli taken dry or wet, and during 

rewetting and drying sequences. 
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Metabolite profiling of X. elegans thalli

Perchloric acid extracts of X. elegans thalli were analyzed using 31P- and 13C-NMR spectroscopy

as described in ″Materials and methods″. Representative spectra are shown in figures 3 and 5, and

comparative data are given in Table 1.

In dry thalli, the two most abundant metabolites measured by 31P-NMR (Fig. 3A) were

inorganic phosphate (1.7 µmol g-1 dry wt) and gluconate 6-P (0.91 µmol g-1 dry wt). Other

identified P-compounds were, from downfield to upfield: mannitol 1-P, glycerate 3-P, AMP, 

NADP+, P-choline, the two phosphodiesters glycerylphosphoryl-glycerol and -choline (GPG 

and GPC), nucleosides (mainly ATP and ADP), and nucleoside diphosphate sugars, UDP-glc

and UDP-g lcNAc. Polyphosphates were also detected in PCA extracts. However, since they

largely precipitate during PCA extraction, we quantified these compounds from in vivo NMR 

analyses. Spectra like the one shown on Fig. 4 indicate that thalli contained a 6.5 µmol g-1 dry 

wt Pi equivalent of polyphosphates, which constitutes by far the largest phosphate pool in this 

lichen. In vivo assays also indicated that the distribution of Pi between alkaline (pH 7.5, 

cytoplasm) and acidic (pH 5.0-5.5, vacuoles) compartments was roughly 1 versus 2.

The metabolite profile of wet thalli harvested in the dark (at dawn) is strikingly

different from that of dry ones (Fig. 3B). First, wet thalli contained important pools of various 

sugar phosphates including glucose 6-P, trehalose 6-P, and fructose 6-P. Glyceraldehyde 3-P 

and phosphoenolpyruvate were also detected. Second, on the opposite, gluconate 6-P was 

much less abundant (0.18 µmol g-1 dry wt). Third, they contained NADPH (NADP+ was not 

detected), P-Cho, GPC, and ATP (but less ADP and AMP), and their UDP-glc pool was 

multiplied by ca 3. PGA, GPG, and UDP-g lcNAc pools were similar in both dry and wet thalli.

The metabolite profiles of wet thalli harvested in the light (Fig. 3C) resemble those of wet 

thalli harvested in the dark, except an important double peak corresponding to the BBC cycle

intermediate ribulose 1,5-diphosphate (ru-1,5-DP) located in the chloroplasts of the algal 

partner. The fluctuations of Pi between samples may originate from partial hydrolyses of 

polyphosphates during PCA extraction.
13C-NMR spectra show much less differences in relation to the water status of thalli. 

Typically, dry thalli spectra (Fig. 5A) exhibit major resonance peaks corresponding to polyols, 

namely arabitol, mannitol, and ribitol (360, 240, and 110 µmol g-1 dry wt, respectively). The 
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other detected compounds included two sugars, sucrose and trehalose, two amin o acids, 

glutamine and glutamate, choline and its oxidation product betaine. The spectra of wet thalli 

collected under the light did not significantly differ from that of dry ones (not shown). In 

contrast, wet thalli collected at dawn contained more mannitol (290 µmol g-1 dry wt) but less

arabitol and ribitol (240 and 90 µmol g-1 dry wt) (figure 5B), and nearly the same amounts of 

sucrose, choline, and betaine. Interestingly, arabitol disappeared completely in wet thalli stored 

several days at 20°C in the dark, in contrast with mannitol and ribitol (not shown). Wet thalli 

collected at dawn also contained less glutamine and glutamate, suggesting that a portion of these

amino acids was utilised during the night to sustain the synthesis of nitrogen-containing 

compounds in wet tissues.

Time course changes of the metabolite profile of X. elegans thalli following hydration and 

during desiccation

Thalli fragments were immersed  into deionised water at 20°C, in the light, and withdrawn with 

time for PCA extraction and 31P-NMR analysis. Figure 6 shows that the ATP pool was the first 

to fully recover, reaching a plateau during the first min. AMP and ADP decreased 

symmetrically. Glc-6-P (and also tre-6-P, gly-3-P, and fru-6-P), which was not detected in dry 

lichen, reached the value measured in wet lichens during the two following min. Interestingly, 

ru-1,5-DP started to accumulate after a 2-3 min delay corresponding to the time taken by 

photosynthesis to recover (Fig. 2, trace A2), and reached the level shown in Fig. 3C ca 5 min 

later. At the opposite, glcn-6-P decreased to ca one fifth of its initial value during the first 3 

min before stabilising. NADP+ was reduced to NADPH from the first min (not shown on the 

graph). The pool of intermediates involved in membrane lipid syntheses, P-choline and GPC, 

significantly increased during the 5 first min following rewetting (not shown on the graph). 

Conversely, when hydrated lichens were let drying under natural conditions, which 

took ca 30 min, their metabolic profile met that of initially dry thalli. In particular, Glcn-6-P 

started to accumulate and glc-6-P to decrease as soon as the water content of lichens was 

dropping below 30-35% (results not shown). In parallel, NADPH decreased and NADP+

accumulated symmetrically, indicating that the cell need for redox power during dehydration 

was not met. Nevertheless, the accumulation of glcn-6-P suggested that the pentose phosphate 
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pathway activity was stimulated by the accumulation of NADP+. In order to test this

hypothesis, we decided to block the pentose phosphate pathway functioning prior to thalli 

dehydration. To this purpose, glc-6-P dehydrogenase, which converts glc-6-P into glcn-6-P,

was inhibited using glucosamine 6-P (N-glc-6-P), a competitive inhibitor of the enzyme 

(Glaser and Brown, 1955). For this, wet thalli were incubated for 1 h in the dark in the 

presence of 5 mM glucosamine (N-glc) which was taken up by lichen cells and phosphorylated 

to N-glc-6-P (Table 2). As previously observed with tobacco cells (Pugin et al. 1997), glcn-6-P 

and NADPH decreased strongly, and NADP+ increased, whereas glc-6-P remained constant. 

When these thalli were subsequently dehydrated, NADPH was no more detected, like in the 

dry lichen (Table 1). However, in contrast to lichen dehydrated in the absence of N-glc, glcn-

6-P did not increase (Table 2), showing that the accumulation of glcn-6-P was boosted by the 

cell dehydration-linked need for redox power.
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Discussion

In this study, we present novel findings on the time course changes of the different pools of 

soluble metabolites of the foliaceous lichen X. elegans during hydration/dehydration cycles. The 

respiration, net photosynthesis, and metabolite profile of this lichen were analysed 

simultaneously, from the first minutes following hydration. The purpose of this approach was to 

look for the presence, in dry lichens, of preserved pools of metabolites playing key roles in the

energetic metabolism, with the aim to determine how they contribute to sustain the instantaneous

restart of respiration and the very efficient recovery of photosynthesis.

The first surprise was that dry thalli did not contain hexose phosphates, triose phosphates, 

and other intermediates of glycolysis, except PGA, which could contribute to fuel respiration

during the first seconds following hydration (Fig. 3) in the absence of tricarboxylic cycle 

intermediates like pyruvate, malate, succinate, or citrate (Fig. 5). However, in contrast with wet 

thalli and with most living material examined so far, they contained a very important pool of 

gluconate 6-P (Fig. 3) that can be converted into fructose 6-P and glyceraldehyde 3-P in the 

pentose phosphate pathway and subsequently contribute to fuel respiration. As a matter of fact, 

only one half of the glcn-6-P pool consumed during the first three minutes following hydration 

(ca 620 nmol g-1 lichen dry wt,  Fig. 6), was sufficient to sustain respiration (580 nmol O2 min-1 

g-1 lichen dry wt). The rest of metabolised glcn-6-P may contribute, via the pentose phosphate 

pathway, to the recovery of glc-6-P and ru-1,5-DP which increased symmetrically to the 

decrease of glcn-6-P. Finally, the recovery of the ATP pool after hydration was a clear indicator 

of the recovery of the energetic metabolism. ATP, which decreased by nearly 30% during 

dehydration, recovered totally at the expense of AMP and ADP during the first minute following 

hydration, indicating that adenylate kinase and ATP synthase activities restarted very rapidly

(Roberts et al. 1997). Taken together these results suggest that the stores of glcn-6-P 

accumulated during dehydration contributed to sustain the rapid recovery of respiratory and 

photosynthetic activities in X. elegans thalli after rehydration. 

The accumulation of glcn-6-P in X. elegans during dehydration, when the relative water 

content of thalli was decreasing below ca 30%, could originate from an increase of glucose-6-

phosphate dehydrogenase activity, in relation with the production of ROS, as observed in other 

lichens (Weissman et al. 2005, Kranner and Grill 1994). Indeed, reducing power (NADPH) is 

required to limit the potential damaging effect of the ROS burst due to the impaired electron 
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transport chains in water-stressed cells (Rascio and La Rocca, 2005). For example, the reduction 

of glutathione for the avoidance of reactive-oxygen production in chloroplasts, via the ascorbate-

glutathione cycle (Asada 1994; Foyer et al.1994), requires NADPH. This was also observed in 

the alpine plant Soldanella alpina and in Pisum sativum exposed to cold-induced photoinhibition

which accumulate glcn-6-P (Streb et al. 2003). On the opposite, when the pentose phosphate 

pathway was blocked after incubating wet thalli in the presence of glucosamine, NADP+ was no 

more reduced to NADPH and glcn-6-P did not accumulate during dehydration (Table 2), thus 

confirming the role of pentose phosphate pathway in the adaptation of X. elegans to 

hydration/dehydration cycles. Finally the fact that no other metabolite of the pentose phosphate 

pathway was detected in dry thalli, in particular ribulose 5-P, suggests that the functioning of 6-

phosphogluconate dehydrogenase was blocked before that of glucose-6-phosphate 

dehydrogenase during cell dehydration.

The protection of many fungi and vascular plants against reactive oxygen species can also 

involve polyols which constitute alternative metabolic reserves, behave as osmoprotectants, and, 

like mannitol, are potent quenchers of ROS (Jennings et al. 1998). In this context, we observed 

that mannitol, when added to a solution of ATP, protected ATP from oxidation during 

desiccation when exposed to sun light (result not shown). More generally, polyols, sugars, and 

other compounds like glutamate, glycine-betaine, etc. stabilize proteins and protect intimate 

cellular structures against the potentially deleterious effect of dehydration (Hoekstra et al. 2001). 

Like many other lichens (Vincente and Legaz 1988; Honneger 1991), X. elegans contained high 

amounts of polyols in both photobiont (ribitol) and mycobiont (mannitol and arabitol). These 

polyol pools did not rapidly change after rehydration. Nevertheless, in accordance with previous 

results obtained by Farrar (1988), wet thalli collected at dawn contained more mannitol and less 

arabitol and ribitol (Fig. 5). Arabitol and mannitol originate from ribitol, a sugar alcohol 

synthesized by the photobiont, which moves from alga to fungus as demonstrated in X. aureola

and X. calcicola (Richardson and Smith 1967; Lines et al. 1989). Table 1 showed that wet 

lichens under dark conditions contained lower levels of arabitol. Interestingly, under very long 

dark periods, arabitol was even completely metabolised in wet lichens suggesting that it 

contributed to sustain fungal respiration, whili mannitol remained nearly constant.

The mechanisms of lichen tolerance to dehydration/rehydration cycles include an 

adaptive response of algal and fungal cells to ROS-induced peroxidation and de-esterification of 
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glycerolipids that permeate membranes, and to mechanical constraints which lead to cell

membrane disruptions. Hence, the capacity to rapidly reseal disrupted membranes plays a central 

role (McNeil and Steinhardt, 1997; McNeil et al 2003). In this context, our results have shown 

that, during rehydration, P-cho was multiplied by a factor 3 and GPC nearly doubled (Fig. 5; 

Table1). P-cho and GPC are two precursors of phosphatidylcholine synthesis (van der Rest et al.

2002). Their increase may reflect the synthesis of phosphatidylcholine-rich membrane systems 

like plasma membrane or tonoplast, thus participating in the maintenance of cell structural

integrity. On the contrary, the stability of GPG suggests that thylakoid membranes which contain 

most of the cell phosphatidylglycerol (Joyard et al. 1993) remained intact in the chloroplasts of 

photobiont during dehydration/rehydration cycles.

In summary, our data suggest that the very rapid recovery of X. elegans respiration and 

photosynthesis activities following rehydration was anticipated during dehydration by the 

accumulation of important stores of gluconate 6-P and by coordinated events associated with 

preventing oxidative damages and protecting cell components and structures. Glcn-6-P appeared 

to accumulate in response to different factors including the cell need for reducing power 

necessary to limit desiccation-generated ROS and the blockade of glcn-6-P metabolisation. The 

important pools of polyols present in both phyco- and mycobionts contributed to protect cells 

constituents like nucleotides and proteins and to preserve the intactness of intracellular 

structures. In lichen thalli, like in other poikilohydric organisms such as seeds, progressive 

dehydration modifies and finally stops metabolic activities. But, contrarily to seeds where

dormancy is advantageous to avoid undesirable germination during momentarily good conditions

(Bewley, 1997), the ability of lichen thalli to restart respiration and photosynthesis without delay

permits to take advantage of all reviviscence opportunities offered by the presence of both water 

and light, particularly at low temperature (Fig. 1). This is the case, for example, when ice is 

melting under the first rays of the sun. In such situations, the high net photosynthetic activities

observed at low temperatures will favour the synthesis of carbohydrates within the minutes 

following rehydration. Finally, this work shows how the synthesis and preservation of sensitive 

components during dehydration-triggered down regulation of metabolism may contribute to the 

adaptation of lichens to the anhydrobiosis cycles imposed by high mountain climate. 
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Figure legends

Fig. 1 Respiration (●) and net photosynthesis (○) of wet X. elegans thalli in dark and light at 

different temperatures. Respiration and net photosynthesis were determined in situ via CO2

exchanges measured by IRGA, as described in Materials and methods. Values are referred to the 

dry weight of thalli dried at 110°C. Values are means ± SD (n=5)

Fig. 2 O2 exchanges in X. elegans thalli successively incubated in dark and saturating light. 

Theses traces were obtained with thalli fragments incubated in an oxygen-electrode chamber.

Numbers on the traces refer to nmol of O2 consumed or produced min-1 g-1 lichen dry weight. 

Thalli (th) were introduced in the chamber as dry fragments in dark (A1) or light (A2), or as wet 

fragments in dark (B1) or light (B2). The incubation medium contained 0.1 mM bicarbonate at 

pH 6.8. Open arrows, light on; solid arrows, light off.

Fig. 3 Proton-decoupled 31P-NMR spectra (161.93 MHz) of perchloric acid extracts of X. 

elegans thalli. Extracts were prepared from 4 g of thalli (on a dry weight basis) and analyzed by 
31P-NMR. Thalli were collected as follows: A dry, in the light; B wet, in the dark; C wet, in the 

light. Peak assignments (from downfield to upfield): mnt-1-P, mannitol 1-P; glcn-6-P, gluconate 

6-P; glc-6-P, glucose 6-P; tre-6-P trehalose 6-P; gly-3-P, glycerol 3-P; PGA, phosphoglycerate; 

fru-6-P, fructose 6-P; ru-1,5-DP, ribulose 1,5-diphosphate; AMP, adenosine monophosphate; P-

cho, P-choline; GPG, glycerophosphoglycerol; GPC, glycerophosphocholine; PEP, 

phosphoenolpyruvate; UDP-glc, uridine 5'-diphosphate-α-D-glucose; UDP-glcNAc, uridine 5’-

diphospho-N-acetylglucosamine; poly-P, polyphosphates. Spectra are representative of five

independent experiments

Fig. 4 Proton-decoupled in vivo 31P- NMR spectrum of X. elegans thalli. Lichen fragments (4 g 

dry wt) were hydrated, packed in a 25 mm NMR tube as described in Gout et al. (2001), 

continuously perfused at a flow rate of 50 mL min-1 with a well oxygenated medium containing 

0.2 mM Mops buffer (pH 6.2), at 20°C, and analyzed by 31P-NMR. Peak assignments as in Fig. 

2; cyt-Pi, cytoplasmic phosphate; vac-Pi, vacuolar phosphate; ref, reference. 
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Fig. 5 Proton-decoupled 13C-NMR spectra (100.6 MHz) of perchloric acid extracts of X. elegans 

thalli. PCA extracts were prepared from 4 g of thalli (on a dry weight basis) and analysed by 13C-

NMR. Thalli were collected as follows: A dry, in the light; B wet, in the dark. Peak assignments 

(from downfield to upfield): suc, sucrose; tre, trehalose; Glu, glutamate; Gln, glutamine. Spectra 

are representative of five independent experiments.

Fig. 6 Time course evolution of gluconate 6-P, glucose 6-P, ribulose 1,5-diphosphate, ATP, 

ADP, and AMP in X. elegans thalli following hydration in the light. At time zero, thalli 

fragments were incubated in a well aerated liquid medium containing 0.2 mM Mops buffer (pH 

6.2), at 20°C. Metabolites were quantified as indicated in Material and methods. Values are 

means ± SD (n=5)
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Table 1 Metabolic profiles of dry and wet X. elegans thalli. Dry thalli were collected in the 

light and wet thalli either in the dark (at dawn) or in the light. Metabolites were identified and 

quantified from PCA extracts, using maleate and methylphosphonate as internal standards for 
13C- and 31P-NMR analyses, respectively, as described in Materials and methods. Values are 

given as µmol g-1 lichen dry wt. Abbreviations as indicated in the legends of figures 3 and 5; 

nd, not detected (ዊ�0.05 µmol). Values were obtained from a series of independent 

experiments and are given as mean ± SD (n=5).  

 

metabolite Dry lichens (light) Wet lichens (dark) Wet lichen (light) 
sucrose 27 ± 3 29 ± 3 27 ± 3 
trehalose 9 ± 2 5 ± 2 8 ± 2 
ribitol 110 ± 10 90 ± 9 105 ± 10 
arabitol 360 ± 30 240 ± 20 340 ± 30 
mannitol 240 ± 20 290 ± 30 250 ± 20 
glutamate 45 ± 5 40 ± 4 43 ± 5 
glutamine 120 ± 12 71 ± 7 125 ± 12 
choline 85 ± 9 80 ± 8 88 ± 9 
betaine 170 ± 15 150 ± 14 160 ± 15 
polyphosphates 6.5 ± 1 6.4 ± 1 6.2 ± 1 
Pi 2.5 ± 0.4 2.7 ± 0.4 3.6 ± 0.5 
mannitol 1-P 0.06 ± 0.01 0.02 ± 0.01 0.5 ± 0.01 
gluconate 6-P 0.91 ± 0.09 0. 18 ± 0.02 0.20 ± 0.02 
glucose 6-P nd 0.52 ± 0.05 0.81 ± 0.08 
trehalose 6-P nd 0.22 ± 0.02 0.22 ± 0.02 
glycerol 3-P nd 0.15 ± 0.02 0.17 ± 0.02 
ru-1,5-DP nd nd 0.27 ± 0.03 
PGA 0.27 ± 0.03 0.25 ± 0.03 0.27 ± 0.03 
fructose 6-P nd 0.8 ± 0.01 0.13 ± 0.02 
AMP 0.12 ± 0.02 0.04 ± 0.01 nd 
NADPH 0.02 ± 0.01 0.08 ± 0.01 0.08 ± 0.01 
NADP+ 0.05 ± 0.01 nd nd 
P-choline 0.15 ± 0.02 0.40 ± 0.04 0.33 ± 0.03 
GPG 0.30 ± 0.03 0.25 ± 0.02 0.25 ± 0.02 
GPC 0.28 ± 0.03 0.47 ± 0.05 0.47 ± 0.05 
PEP nd 0.07 ± 0.01 0.06 ± 0.01 
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ATP 0.38 ± 0.04 0.48 ± 0.05 0.53 ± 0.05 
ADP 0.14 ± 0.02 0.08 ± 0.01 0.05 ± 0.01 
UDP-glc 0.13 ± 0.02 0.33 ± 0.04 0.33 ± 0.04 
UDP-glcNAc 0.39 ± 0.04 0.43 ± 0.04 0.46 ± 0.05 
 

Table 2 Modifications of gluconate 6-P, NADPH, and NADP+ induced in X. elegans thalli by 

glucosamine treatment. Lichens were incubated for 1 h in the dark in the presence of 5 mM 

N-glc (wet thalli) and a fraction of them was subsequently let drying under natural conditions 

(dry thalli), prior to PCA extraction. Metabolites were identified and quantified as indicated 

in Table 1. Values are given as µmol g-1 lichen dry wt. Abbreviations as indicated in the 

legends of figure 3; nd, not detected (ዊ�0.05 µmol). Values were obtained from a series of 

independent experiments and are given as mean ± SD (n=5).  

 

metabolite Wet thalli Dry thalli 

N-glucosamine 6-P 0.38 ± 0.04 0.37 ± 0.04 

glucose 6-P 0.62 ± 0.06 nd 

gluconate 6-P 0.04 ± 0.01 0.03 ± 0.01 

NADPH 0.02 ± 0.01 nd 

NADP+ 0.07 ± 0.01 0.08 ± 0.01 
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Fig. 1 Respiration (●) and net photosynthesis (○) of wet X. elegans thalli in dark and light 
at different temperatures. Respiration and net photosynthesis were determined in situ via 

CO2 exchanges measured by IRGA, as described in Materials and methods. Values are 
referred to the dry weight of thalli dried at 110°C. Values are means ± SD (n=5) 
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For Peer ReviewFig. 2 O2 exchanges in X. elegans thalli successively incubated in dark and saturating 
light. Theses traces were obtained with thalli fragments incubated in an oxygen-electrode 

chamber. Numbers on the traces refer to nmol of O2 consumed or produced min-1 g-1 
lichen dry weight. Thalli (th) were introduced in the chamber as dry fragments in dark 

(A1) or light (A2), or as wet fragments in dark (B1) or light (B2). The incubation medium 
contained 0.1 mM bicarbonate at pH 6.8. Open arrows, light on; solid arrows, light off. 
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. 3 Proton-decoupled 31P-NMR spectra (161.93 MHz) of perchloric acid extracts of X. 
elegans thalli. Extracts were prepared from 4 g of thalli (on a dry weight basis) and 

analyzed by 31P-NMR. Thalli were collected as follows: A dry, in the light; B wet, in the 
dark; C wet, in the light. Peak assignments (from downfield to upfield): mnt-1-P, 

mannitol 1-P; glcn-6-P, gluconate 6-P; glc-6-P, glucose 6-P; tre-6-P trehalose 6-P; gly-3-
P, glycerol 3-P; PGA, phosphoglycerate; fru-6-P, fructose 6-P; ru-1,5-DP, ribulose 1,5-

diphosphate; AMP, adenosine monophosphate; P-cho, P-choline; GPG, 
glycerophosphoglycerol; GPC, glycerophosphocholine; PEP, phosphoenolpyruvate; UDP-

glc, uridine 5'-diphosphate-α-D-glucose; UDP-glcNAc, uridine 5'-diphospho-N-
acetylglucosamine; poly-P, polyphosphates. Spectra are representative of five 

independent experiments 
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Fig. 4 Proton-decoupled in vivo 31P- NMR spectrum of X. elegans thalli. Lichen fragments 
(4 g dry wt) were hydrated, packed in a 25 mm NMR tube as described in Gout et al. 
(2001), continuously perfused at a flow rate of 50 mL min-1 with a well oxygenated 

medium containing 0.2 mM Mops buffer (pH 6.2), at 20°C, and analyzed by 31P-NMR. 
Peak assignments as in Fig. 2; cyt-Pi, cytoplasmic phosphate; vac-Pi, vacuolar phosphate; 

ref, reference.  
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Fig. 5 Proton-decoupled 13C-NMR spectra (100.6 MHz) of perchloric acid extracts of X. 
elegans thalli. PCA extracts were prepared from 4 g of thalli (on a dry weight basis) and 
analysed by 13C-NMR. Thalli were collected as follows: A dry, in the light; B wet, in the 
dark. Peak assignments (from downfield to upfield): suc, sucrose; tre, trehalose; Glu, 

glutamate; Gln, glutamine. Spectra are representative of five independent experiments. 
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Fig. 6 Time course evolution of gluconate 6-P, glucose 6-P, ribulose 1,5-diphosphate, ATP, 
ADP, and AMP in X. elegans thalli following hydration in the light. At time zero, thalli 

fragments were incubated in a well aerated liquid medium containing 0.2 mM Mops buffer 
(pH 6.2), at 20°C. Metabolites were quantified as indicated in Material and methods. 

Values are means ± SD (n=5) 
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