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DELAY EQUATIONS DRIVEN BY ROUGH PATHS

A. NEUENKIRCH, I. NOURDIN AND S. TINDEL

Abstract. In this article, we illustrate the flexibility of the algebraic integration formal-
ism introduced in M. Gubinelli (2004), Controlling Rough Paths, J. Funct. Anal. 216,
86-140, by establishing an existence and uniqueness result for delay equations driven by
rough paths. We then apply our results to the case where the driving path is a fractional
Brownian motion with Hurst parameter H > 1

3
.

1. Introduction

In the last years, great efforts have been made to develop a stochastic calculus for
fractional Brownian motion. The first results gave a rigorous theory for the stochastic
integration with respect to fractional Brownian motion and established a corresponding
Itô formula, see e.g. [1, 2, 3, 6, 18]. Thereafter, stochastic differential equations driven
by fractional Brownian motion have been considered. Here different approaches can be
used depending on the dimension of the equation and the Hurst parameter of the driving
fractional Brownian motion. In the one-dimensional case [17], existence and uniqueness
of the solution can be derived by a regularization procedure introduced in [21]. The case
of a multi-dimensional driving fractional Brownian motion can be treated by means of
fractional calculus tools, see e.g. [19, 22] or by means of the Young integral [13], when
the Hurst coefficient satisfies H > 1

2
. However, only the rough paths theory [13, 12] and

its application to fractional Brownian motion [5] allow to solve fractional SDEs in any
dimension for a Hurst parameter H > 1

4
. The original rough paths theory developed

by T. Lyons relies on deeply involved algebraical and analytical tools. Therefore some
alternative methods [8, 9] have been developed recently, trying to catch the essential
results of [12] with less theoretical apparatus.

Since it is based on some rather simple algebraic considerations and an extension of
Young’s integral, the method given in [9], which we call algebraic integration in the sequel,
has been especially attractive to us. Indeed, we think that the basic properties of fractional
differential systems can be studied in a natural and nice way using algebraic integration.
(See also [16], where this approach is used to study the law of the solution of a fractional
SDE.) In the present article, we will illustrate the flexibility of the algebraic integration
formalism by studying fractional equations with delay. More specifically, we will consider
the following equation:
{

Xt = ξ0 +
∫ t

0
σ(Xs, Xs−r1, . . . , Xs−rk

)dBs +
∫ t

0
b(Xs, Xs−r1, . . . , Xs−rk

)ds, t ∈ [0, T ],
Xt = ξt, t ∈ [−rk, 0].

(1)
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Here the discrete delays satisfy 0 < r1 < . . . < rk < ∞, the initial condition ξ is a
function from [−rk, 0] to R

n, the functions σ : R
n,k+1 → R

n,d, b : R
n,k+1 → R

n are
regular, and B is a d-dimensional fractional Brownian motion with Hurst parameter H >
1
3
. The stochastic integral in equation (1) is a generalized Stratonovich integral, which

will be explained in detail in Section 2. Actually, in equations like (1), the drift term
∫ t

0
b(Xs, Xs−r1, . . . , Xs−rk

)ds is usually harmless, but causes some cumbersome notations.
Thus, for sake of simplicity, we will rather deal in the sequel with delay equations of the
type

{

Xt = ξ0 +
∫ t

0
σ(Xs, Xs−r1, . . . , Xs−rk

)dBs, t ∈ [0, T ],
Xt = ξt, t ∈ [−rk, 0].

(2)

Our main result will be as follows:

Theorem 1.1. Let ξ ∈ C1([−rk, 0]; Rn), σ ∈ C3
b (Rn,k+1; Rn,d), and let B be a d-dimensio-

nal fractional Brownian motion with Hurst parameter H > 1
3
. Then equation (2) admits

a unique solution on [0, T ] in the class of controlled processes (see Definition 2.5.)

Stochastic delay equations driven by standard Brownian motion have been studied
extensively (see e.g. [15] and [14] for an overview) and are used in many applications.
However, delay equations driven by fractional Brownian motion have been only considered
so far in [7], where the one-dimensional equation

{

Xt = ξ0 +
∫ t

0
σ(Xs−r)dBs +

∫ t

0
b(Xs)ds, t ∈ [0, T ],

Xt = ξt, t ∈ [−r, 0],
(3)

is studied for H > 1
2
. Observe that (3) is a particular case of equation (2).

To solve equation (2), one requires two main ingredients in the algebraic integration
setting. First of all, a natural class of paths, in which the equation can be solved. Here, this
will be the paths whose increments are controlled by the increments of B. Namely, writing
(δz)st = zt − zs for the increments of an arbitrary function z, a stochastic differential
equation driven by B should be solved in the class of paths, whose increments can be
decomposed into

zt − zs = ζs(Bt − Bs) + ρst, for 0 ≤ s < t ≤ T,

with ζ belonging to Cγ
1 and ρ belonging to C2γ

2 , for a given γ ∈ (1
3
, H). (Here, Cµ

i denotes
a space of µ-Hölder continuous functions of i variables, see Section 2.) This class of
functions will be called the class of controlled paths in the sequel.

To solve fractional differential equations without delay, the second main tool would be
to define the integral of a controlled path with respect to fractional Brownian motion and
to show that the resulting process is still a controlled path. To define the integral of a
controlled path, a double iterated integral of fractional Brownian motion, called the Lévy
area, will be required. Once the stability of the class of controlled paths under integration
is established, the differential equation is solved by an appropriate fixed point argument.

To solve fractional delay equations, we will have to modify this procedure. More specif-
ically, we need a second class of paths, the class of delayed controlled paths, whose incre-
ments can be written as

zt − zs = ζ (0)
s (Bt − Bs) +

k
∑

i=1

ζ (i)
s (Bt−ri

− Bs−ri
) + ρst, for 0 ≤ s < t ≤ T,
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where, as above, ζ (i) belongs to Cγ
1 for i = 0, . . . , k, and ρ belongs to C2γ

2 for a given
1
3
< γ < H. (Note that a classical controlled path is a delayed controlled path with

ζ (i) = 0 for i = 1, . . . , k.) For such a delayed controlled path we will then define its
integral with respect to fractional Brownian motion. We emphasize the fact that the
integral of a delayed controlled path is actually a classical controlled path and satisfies a
stability property.

To define this integral we have to introduce a delayed Lévy area B2(v) of B for v ∈
[−rk, 0]. This process, with values in the space of matrices R

d,d will also be defined as an
iterated integral: for 1 ≤ i, j ≤ d and 0 ≤ s < t ≤ T , we set

B2

st(v)(i, j) =

∫ t

s

dBi
u

∫ u+v

s+v

dBj
w =

∫ t

s

(Bj
u+v − Bj

s+v)d
◦Bi

u,

where the integral on the right hand side is a Russo-Vallois integral [21]. Finally, the
fractional delay equation (2) will be solved by a fixed point argument.

This article is structured as follows: Throughout the remainder of this article, we
consider the general delay equation

{

dyt = σ(yt, yt−r1, . . . , yt−rk
)dxt, t ∈ [0, T ],

yt = ξt, t ∈ [−rk, 0],
(4)

where x is γ-Hölder continuous function with γ > 1
3

and ξ is a 2γ-Hölder continuous
function. In Section 2 we recall some basic facts of the algebraic integration and in
particular the definition of a classical controlled path, while in Section 3 we introduce the
class of delayed controlled paths and the integral of a delayed controlled path with respect
to its controlling rough path. Using the stability of the integral, we show the existence
of a unique solution of equation (4) in the class of classical controlled paths under the
assumption of the existence of a delayed Lévy area. Finally, in Section 4 we specialize our
results to delay equations driven by a fractional Brownian motion with Hurst parameter
H > 1

3
.

2. Algebraic integration and rough paths equations

Before we consider equation (4), we recall the strategy introduced in [9] in order to
solve an equation without delay, i.e.,

dyt = σ(yt)dxt, t ∈ [0, T ], y0 = α ∈ R
n, (5)

where x is a R
d-valued γ-Hölder continuous function with γ > 1

3
.

2.1. Increments. Here we present the basic algebraic structures, which will allow us
to define a pathwise integral with respect to irregular functions. For real numbers 0 ≤
a ≤ b ≤ T < ∞, a vector space V and an integer k ≥ 1 we denote by Ck([a, b];V )
the set of functions g : [a, b]k → V such that gt1···tk = 0 whenever ti = ti+1 for some
1 ≤ i ≤ k − 1. Such a function will be called a (k − 1)-increment, and we will set
C∗([a, b];V ) = ∪k≥1Ck([a, b];V ). An important operator for our purposes is given by

δ : Ck([a, b];V ) → Ck+1([a, b];V ), (δg)t1···tk+1
=

k+1
∑

i=1

(−1)k−igt1···t̂i···tk+1
, (6)
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where t̂i means that this argument is omitted. A fundamental property of δ is that δδ = 0,
where δδ is considered as an operator from Ck([a, b];V ) to Ck+2([a, b];V ). We will denote
ZCk([a, b];V ) = Ck([a, b];V ) ∩ Kerδ and BCk([a, b];V ) = Ck([a, b];V ) ∩ Imδ.

Some simple examples of actions of δ are as follows: For g ∈ C1([a, b];V ), h ∈ C2([a, b];V )
and f ∈ C3([a, b];V ) we have

(δg)st = gt − gs, (δh)sut = hst − hsu − hut and (δf)suvt = fuvt − fsvt + fsut − fsuv

for any s, u, v, t ∈ [a, b]. Furthermore, it is easily checked that ZCk+1([a, b];V ) = BCk([a, b];
V ) for any k ≥ 1. In particular, the following property holds:

Lemma 2.1. Let k ≥ 1 and h ∈ ZCk+1([a, b];V ). Then there exists a (non unique)
f ∈ Ck([a, b];V ) such that h = δf .

Observe that Lemma 2.1 implies in particular that all elements h ∈ C2([a, b];V ) with
δh = 0 can be written as h = δf for some f ∈ C1([a, b];V ). Thus we have a heuristic
interpretation of δ|C2([a,b];V ): it measures how much a given 1-increment differs from being
an exact increment of a function, i.e., a finite difference.

Our further discussion will mainly rely on k-increments with k ≤ 2. For simplicity of
the exposition, we will assume that V = R

d in what follows, although V could be in fact
any Banach space. We measure the size of the increments by Hölder norms, which are
defined in the following way: for f ∈ C2([a, b];V ) let

‖f‖µ = sup
s,t∈[a,b]

|fst|
|t− s|µ

and
Cµ

2 ([a, b];V ) = {f ∈ C2([a, b];V ); ‖f‖µ <∞} .
Obviously, the usual Hölder spaces Cµ

1 ([a, b];V ) are determined in the following way: for
a continuous function g ∈ C1([a, b];V ) set

‖g‖µ = ‖δg‖µ,

and we will say that g ∈ Cµ
1 ([a, b];V ) iff ‖g‖µ is finite. Note that ‖ · ‖µ is only a semi-norm

on C1([a, b];V ), but we will work in general on spaces of the type

Cµ
1,α([a, b];V ) = {g : [a, b] → V ; ga = α, ‖g‖µ <∞} ,

for a given α ∈ V, on which ‖g‖µ is a norm.
For h ∈ C3([a, b];V ) we define in the same way

‖h‖γ,ρ = sup
s,u,t∈[a,b]

|hsut|
|u− s|γ|t− u|ρ (7)

‖h‖µ = inf

{

∑

i

‖hi‖ρi,µ−ρi
; (ρi, hi)i∈N with hi ∈ C3([a, b];V ),

∑

i

hi = h, 0 < ρi < µ

}

.

Then ‖ · ‖µ is a norm on C3([a, b];V ), see [9], and we define

Cµ
3 ([a, b];V ) := {h ∈ C3([a, b];V ); ‖h‖µ <∞} .

Eventually, let C1+
3 ([a, b];V ) = ∪µ>1Cµ

3 ([a, b];V ) and note that the same kind of norms
can be considered on the spaces ZC3([a; b];V ), leading to the definition of the spaces
ZCµ

3 ([a; b];V ) and ZC1+
3 ([a, b];V ).
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The crucial point in this algebraic approach to the integration of irregular paths is that
the operator δ can be inverted under mild smoothness assumptions. This inverse is called
Λ. The proof of the following proposition may be found in [9], and in a simpler form in
[10].

Proposition 2.2. There exists a unique linear map Λ : ZC1+
3 ([a, b];V ) → C1+

2 ([a, b];V )
such that

δΛ = IdZC1+
3 ([a,b];V ) and Λδ = IdC1+

2 ([a,b];V ).

In other words, for any h ∈ C1+
3 ([a, b];V ) such that δh = 0, there exists a unique g =

Λ(h) ∈ C1+
2 ([a, b];V ) such that δg = h. Furthermore, for any µ > 1, the map Λ is

continuous from ZCµ
3 ([a, b];V ) to Cµ

2 ([a, b];V ) and we have

‖Λh‖µ ≤ 1

2µ − 2
‖h‖µ, h ∈ ZCµ

3 ([a, b];V ). (8)

This mapping Λ allows to construct a generalised Young integral:

Corollary 2.3. For any 1-increment g ∈ C2([a, b];V ) such that δg ∈ C1+
3 ([a, b];V ) set

δf = (Id − Λδ)g. Then

(δf)st = lim
|Πst|→0

n
∑

i=0

gti ti+1

for a ≤ s < t ≤ b, where the limit is taken over any partition Πst = {t0 = s, . . . , tn = t}
of [s, t], whose mesh tends to zero. Thus, the 1-increment δf is the indefinite integral of
the 1-increment g.

We also need some product rules for the operator δ. For this recall the following
convention: for g ∈ Cn([a, b]; Rl,d) and h ∈ Cm([a, b]; Rd,p) let gh be the element of
Cn+m−1([a, b]; R

l,p) defined by

(gh)t1,...,tm+n−1 = gt1,...,tnhtn,...,tm+n−1 , (9)

for t1, . . . , tm+n−1 ∈ [a, b].

Proposition 2.4. It holds:

(i) Let g ∈ C1([a, b]; R
l,d) and h ∈ C1([a, b],R

d). Then gh ∈ C1(R
l) and

δ(gh) = δg h+ g δh.

(ii) Let g ∈ C1([a, b]; R
l,d) and h ∈ C2([a, b]; R

d). Then gh ∈ C2([a, b]; R
l) and

δ(gh) = −δg h+ g δh.

(iii) Let g ∈ C2([a, b]; R
l,d) and h ∈ C1([a, b]; R

d). Then gh ∈ C2([a, b]; R
l) and

δ(gh) = δg h+ g δh.

(iv) Let g ∈ C2([a, b]; R
l,d) and h ∈ C2([a, b]; R

d,p). Then gh ∈ C3([a, b]; R
l,p) and

δ(gh) = −δg h+ g δh.
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2.2. Classical controlled paths (CCP). In the remainder of this article, we will use

both the notations
∫ t

s
fdg or Jst(f dg) for the integral of a function f with respect to a

given function g on the interval [s, t]. Moreover, we also set ‖f‖∞ = supx∈Rd,l |f(x)| for a
function f : R

d,l → R
m,n. To simplify the notation we will write Cγ

k instead of Cγ
k ([a, b];V ),

if [a, b] and V are obvious from the context.

Before we consider the technical details, we will make some heuristic considerations
about the properties that the solution of equation (5) should enjoy. Set σ̂t = σ (yt), and
suppose that y is a solution of (5), which satisfies y ∈ Cκ

1 for a given 1
3
< κ < γ. Then

the integral form of our equation can be written as

yt = α +

∫ t

0

σ̂udxu, t ∈ [0, T ]. (10)

Our approach to generalised integrals induces us to work with increments of the form
(δy)st = yt − ys instead of (10). It is immediate that one can decompose the increments
of (10) into

(δy)st =

∫ t

s

σ̂udxu = σ̂s(δx)st + ρst with ρst =

∫ t

s

(σ̂u − σ̂s)dxu.

We thus have obtained a decomposition of y of the form δy = σ̂δx + ρ. Let us see, still
at a heuristic level, which regularity we can expect for σ̂ and ρ: If σ is bounded and
continuously differentiable, we have that σ̂ is bounded and

|σ̂t − σ̂s| ≤ ‖σ′‖∞‖y‖κ|t− s|κ,
where ‖y‖κ denotes the κ-Hölder norm of y. Hence σ̂ belongs to Cκ

1 and is bounded.
As far as ρ is concerned, it should inherit both the regularities of δσ̂ and x, provided
that the integral

∫ t

s
(σ̂u − σ̂s)dxu =

∫ t

s
(δσ̂)sudxu is well defined. Thus, one should expect

that ρ ∈ C2κ
2 . In summary, we have found that a solution δy of equation (10) should be

decomposable into

δy = σ̂δx+ ρ with σ̂ ∈ Cκ
1 bounded and ρ ∈ C2κ

2 . (11)

This is precisely the structure we will demand for a possible solution of equation (5)
respectively its integral form (10):

Definition 2.5. Let a ≤ b ≤ T and let z be a path in Cκ
1 ([a, b]; Rn) with κ ≤ γ and

2κ + γ > 1. We say that z is a classical controlled path based on x, if za = α ∈ R
n and

δz ∈ Cκ
2 ([a, b]; Rn) can be decomposed into

δz = ζδx+ r, i. e. (δz)st = ζs(δx)st + ρst, s, t ∈ [a, b], (12)

with ζ ∈ Cκ
1 ([a, b]; Rn,d) and ρ ∈ C2κ

2 ([a, b]; Rn).
The space of classical controlled paths on [a, b] will be denoted by Qκ,α([a, b]; Rn), and a
path z ∈ Qκ,α([a, b]; Rn) should be considered in fact as a couple (z, ζ).
The norm on Qκ,α([a, b]; Rn) is given by

N [z;Qκ,α([a, b]; Rn)] = sup
s,t∈[a,b]

|(δz)st|
|s− t|κ + sup

s,t∈[a,b]

|ρst|
|s− t|2κ

+ sup
t∈[a,b]

|ζt| + sup
s,t∈[a,b]

|(δζ)st|
|s− t|κ .
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Note that in the above definition α corresponds to a given initial condition and ρ can
be understood as a regular part. Moreover, observe that a can be negative.

Now we can sketch the strategy used in [9], in order to solve equation (5):

(a) Verify the stability of Qκ,α([a, b]; Rn) under a smooth map ϕ : R
n → R

n,d.
(b) Define rigorously the integral

∫

zudxu = J (zdx) for a classical controlled path z
and compute its decomposition (12).

(c) Solve equation (5) in the space Qκ,α([a, b]; Rn) by a fixed point argument.

Actually, for the second point we had to impose a priori the following hypothesis on the
driving rough path, which is a standard assumption in the rough paths theory:

Hypothesis 2.6. The R
d-valued γ-Hölder path x admits a Lévy area, i.e. a process

x2 = J (dxdx) ∈ C2γ
2 ([0, T ]; Rd,d), which satisfies δx2 = δx⊗ δx, that is

[

(δx2)sut

]

(i, j) = [δxi]su[δx
j ]ut, for all s, u, t ∈ [0, T ], i, j ∈ {1, . . . , d}.

Then, using the strategy sketched above, the following result is obtained in [9]:

Theorem 2.7. Let x be a process satisfying Hypothesis 2.6 and let σ ∈ C2(Rn; Rn,d) be
bounded together with its derivatives. Then we have:

(1) Equation (5) admits a unique solution y in Qκ,α([0, T ]; Rn) for any κ < γ such
that 2κ+ γ > 1.

(2) The mapping (α, x,x2) 7→ y is continuous from R
n×Cγ

1 ([0, T ]; Rd)×C2γ
2 ([0, T ]; Rd,d)

to Qκ,α([0, T ]; Rn), in a sense which is detailed in [9, Proposition 8].

3. The delay equation

In this section, we make a first step towards the solution of the delay equation
{

dyt = σ(yt, yt−r1, . . . , yt−rk
)dxt, t ∈ [0, T ],

yt = ξt, t ∈ [−rk, 0],
(13)

where x is a R
d-valued γ-Hölder continuous function with γ > 1

3
, the function σ ∈

C3(Rn,k+1; Rn,d) is bounded together with its derivatives, ξ is a R
n-valued 2γ-Hölder

continuous function, and 0 < r1 < . . . < rk < ∞. For convenience, we set r0 = 0 and,
moreover, we will use the notation

s(y)t = (yt−r1 , . . . , yt−rk
), t ∈ [0, T ]. (14)

3.1. Delayed controlled paths. As in the previous section, we will first make some
heuristic considerations about the properties of a solution: set σ̂t = σ(yt, s(y)t) and
suppose that y is a solution of (13) with y ∈ Cκ

1 for a given 1
3
< κ < γ. Then we can write

the integral form of our equation as

(δy)st =

∫ t

s

σ̂udxu = σ̂s(δx)st + ρst with ρst =

∫ t

s

(σ̂u − σ̂s)dxu.

Thus, we have again obtained a decomposition of y of the form δy = σ̂δx+ ρ. Moreover,
it follows (still at a heuristic level) that σ̂ is bounded and satisfies

|σ̂t − σ̂s| ≤ ‖σ′‖∞
k
∑

i=0

|yt−ri
− ys−ri

| ≤ (k + 1)‖σ′‖∞‖y‖γ|t− s|γ .
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Thus, with the notation of Section 2.1, we have that σ̂ belongs to Cγ
1 and is bounded. The

term ρ should again inherit both the regularities of δσ̂ and x. Thus, one should have that
ρ ∈ C2κ

2 . In conclusion, the increment δy should be decomposable into

δy = σ̂δx+ ρ with σ̂ ∈ Cγ
1 bounded and ρ ∈ C2κ

2 . (15)

This is again the structure we will ask for a possible solution to (13). However, this
decomposition does not take into account that equation (13) is actually a delay equation.

To define the integral
∫ t

s
σ̂udxu, we have to enlarge the class of functions we will work

with, and hence we will define a delayed controlled path (hereafter DCP in short).

Definition 3.1. Let 0 ≤ a ≤ b ≤ T and z ∈ Cκ
1 ([a, b]; Rn) with 1

3
< κ ≤ γ. We say that z

is a delayed controlled path based on x, if za = α belongs to R
n and if δz ∈ Cκ

2 ([a, b]; Rn)
can be decomposed into

(δz)st =

k
∑

i=0

ζ (i)
s (δx)s−ri,t−ri

+ ρst for s, t ∈ [a, b], (16)

where ρ ∈ C2κ
2 ([a, b]; Rn) and ζ (i) ∈ Cκ

1 ([a, b]; Rn,d) for i = 0, . . . , k.
The space of delayed controlled paths on [a, b] will be denoted by Dκ,α([a, b]; Rn), and a
path z ∈ Dκ,α([a, b]; Rn) should be considered in fact as a (k + 2)-tuple (z, ζ (0), . . . , ζ (k)).
The norm on Dκ,α([a, b]; Rn) is given by

N [z;Dκ,α([a, b]; Rn)] = sup
s,t∈[a,b]

|(δz)st|
|s− t|κ + sup

s,t∈[a,b]

|ρst|
|s− t|2κ

+
k
∑

i=0

sup
t∈[a,b]

|ζ (i)
t | +

k
∑

i=0

sup
s,t∈[a,b]

|(δζ (i))st|
|s− t|κ .

Now we can sketch our strategy to solve the delay equation:

(1) Consider the map Tσ defined on Qκ,α([a, b]; Rn) ×Qκ,α̃([a− rk, b− r1]; R
n) by

(Tσ(z, z̃))t = σ(zt, s(z̃)t), t ∈ [a, b], (17)

where we recall that the notation s(z̃) has been introduced at (14). We will show
that Tσ maps Qκ,α([a, b]; Rn) ×Qκ,α̃([a− rk, b− r1]; R

n) smoothly onto a space of
the form Dκ,α̂([a, b]; Rn,d).

(2) Define rigorously the integral
∫

zudxu = J (zdx) for a delayed controlled path
z ∈ Dκ,α̂([a, b]; Rn,d), show that J (zdx) belongs to Qκ,α([a, b]; Rd), and compute
its decomposition (12). Let us point out the following important fact: Tσ creates
“delay”, that is Tσ(z, z̃) ∈ Dκ,α̂([a, b]; Rn,d), while J creates “advance”, that is
J (zdx) ∈ Qκ,α([a, b]; Rn).

(3) By combining the first two points, we will solve equation (13) by a fixed point
argument on the intervals [0, r1], [r1, 2r1], . . . .

3.2. Action of the map T on controlled paths. The major part of this section will
be devoted to the following two stability results:
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Proposition 3.2. Let 0 ≤ a ≤ b ≤ T , let α, α̃ be two initial conditions in R
n and let

ϕ ∈ C3(Rn,k+1; Rl) be bounded with bounded derivatives. Define Tϕ on Qκ,α([a; b]; Rn) ×
Qκ,α̃([a− rk; b− r1]; R

n) by Tϕ(z, z̃) = ẑ, with

ẑt = ϕ(zt, s(z̃)t), t ∈ [a, b].

Then, setting α̂ = ϕ(α, s(z̃a)) = ϕ(α, z̃a−r1 , . . . , z̃a−rk−1
, α̃), we have Tϕ(z, z̃) ∈ Dκ,α̂([a; b];

R
l) and it admits a decomposition of the form

(δẑ)st = ζ̂s (δx)st +
k
∑

i=1

ζ̂ (i)
s (δx)s−ri,t−ri

+ ρ̂st, s, t ∈ [a, b], (18)

where ζ̂ , ζ̂ (i) are the R
l,d-valued paths defined by

ζ̂s =

(

∂ϕ

∂x1,0
(zs, s(z̃)s), . . . ,

∂ϕ

∂xn,0
(zs, s(z̃)s)

)

ζs, s ∈ [a, b],

and

ζ̂ (i)
s =

(

∂ϕ

∂x1,i

(zs, s(z̃)s), . . . ,
∂ϕ

∂xn,i

(zs, s(z̃)s)

)

ζ̃s−ri
, s ∈ [a, b],

for i = 1, . . . , k. Moreover, the following estimate holds:

N [ẑ;Dκ,â([a; b]; R
l)] (19)

≤ cϕ,T

(

1 + N 2[z;Qκ,α([a, b]; Rn)] + N 2[z̃;Qκ,α̃([a− rk, b− r1]; R
n)]
)

,

where the constant cϕ,T depends only ϕ and T .

Proof. Fix s, t ∈ [a, b] and set

ψ(i)
s =

(

∂ϕ

∂x1,i
(zs, s(z̃)s), . . . ,

∂ϕ

∂xn,i
(zs, s(z̃)s)

)

.

for i = 0, . . . , k. It is readily checked that

(δẑ)st = ϕ(zt−r0 , z̃t−r1 , . . . , z̃t−rk
) − ϕ(zs−r0, z̃s−r1, . . . , z̃s−rk

)

= ψ(0)
s ζs(δx)st +

k
∑

i=1

ψ(i)
s ζ̃s−ri

(δx)s−ri,t−ri
+ ρ̂1

st + ρ̂2
st,

where

ρ̂1
st = ψ(0)

s ρst +
k
∑

i=1

ψ(i)
s ρ̃s−ri,t−ri

,

ρ̂2
st = ϕ(zt−r0 , z̃t−r1 , . . . , z̃t−rk

) − ϕ(zs−r0, z̃s−r1, . . . , z̃s−rk
)

−ψ(0)(δz)st −
k
∑

i=1

ψ(i)
s (δz̃)s−ri,t−ri

.

(i) We first have to show that ρ̂1, ρ̂2 ∈ C2κ
2 ([a, b]; Rl). For the second remainder term

Taylor’s formula yields

|ρ̂2
st| ≤ 1

2
‖ϕ′′‖∞

(

|(δz)st|2 +
k
∑

i=1

|(δz̃)s−ri,t−ri
|2
)

,
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and hence clearly, thanks to some straightforward bounds in the spaces Q, we have

|ρ̂2
st|

|t− s|2κ
≤ 1

2
‖ϕ′′‖∞

(

N 2[z;Qκ,α([a, b]; Rn)] +
k
∑

i=1

N 2[z̃;Qκ,α([a− ri, b− ri]; R
n)]

)

.

(20)
The first term can also be bounded easily: it can be checked that

|ρ̂1
st|

|t− s|2κ
≤ ‖ϕ′‖∞

(

N
[

ρ; C2κ
2 ([a, b]; Rn)

]

+

k
∑

i=1

N
[

ρ̃, C2κ
2 ([a− ri, b− ri]; R

n)
]

)

(21)

Putting together the last two inequalities, we have shown that decomposition (18) holds,
that is

(δẑ)st = ψ(0)ζs(δx)s,t +
k
∑

i=1

ψ(i)
s ζ̃

(i)
s−ri

(δx)s−ri,t−ri
+ ρ̂st

with ρ̂st = ρ̂1
st + ρ̂2

st ∈ C2κ
2 ([a, b]; Rd).

(ii) Now we have to consider the “density” functions

ζ̂s = ψ(0)
s ζs, ζ̂ (i)

s = ψ(i)
s ζ̃s−ri

, s ∈ [a, b].

Clearly ζ̂ , ζ̂ (i) are bounded on [a, b], because the functions ψ(i) are bounded (due to the

boundedness of ϕ′) and because ζ , ζ̃ (i) are also bounded. In particular, it holds

sup
s∈[a,b]

|ζ̂s| ≤ ‖ϕ′‖∞ sup
s∈[a,b]

|ζs|, sup
s∈[a,b]

|ζ̂ (i)
s | ≤ ‖ϕ′‖∞ sup

s∈[a,b]

|ζ̃s−ri
| (22)

for i = 1, . . . , k. Moreover, for i = 1, . . . , k, we have

|ζ̂ (i)
s1

− ζ̂ (i)
s2
|

≤ |(ψ(i)
s1

− ψ(i)
s2

)ζ̃s1−ri
| + |(ζ̃s1−ri

− ζ̃s2−ri
)ψ(i)

s2
)|

≤ ‖ϕ′′‖∞|zs1 − zs2| sup
s∈[a,b]

|ζ̃s−ri
| + ‖ϕ′′‖∞

k
∑

j=1

|z̃s1−rj
− z̃s2−rj

| sup
s∈[a,b]

|ζ̃s−ri
|

+ ‖ψ(i)‖∞|ζ̃s1−ri
− ζ̃s2−ri

|
≤ ‖ϕ′′‖∞ N [z; Cκ

1 ([a, b]; Rn)] sup
s∈[a,b]

|ζ̃s−ri
| |s2 − s1|κ (23)

+ ‖ϕ′′‖∞
k
∑

j=1

N [z̃; Cκ
1 ([a− rj, b− rj ]; R

n)] sup
s∈[a,b]

|ζ̃s−ri
| |s2 − s1|κ

+ ‖ψ(i)‖∞N [ζ̃; Cκ
1 ([a− ri, b− ri]; R

n)] |s2 − s1|κ.
Similarly, we obtain

|ζ̂s1 − ζ̂s2| ≤ ‖ϕ′′‖∞ N [z; Cκ
1 ([a, b]; Rn)] sup

s∈[a,b]

|ζs| |s2 − s1|κ

+‖ϕ′′‖∞
k
∑

j=1

N [z̃; Cκ
1 ([a− rj , b− rj]; R

n)] sup
s∈[a,b]

|ζs| |s2 − s1|κ

+‖ψ(i)‖∞N [ζ ; Cκ
1 ([a, b]; Rn)] |s2 − s1|κ. (24)
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Hence, the densities satisfy the conditions of Definition 3.1.

(iii) Finally, combining the estimates (20), (21), (22) and (23) yields the estimate (19),
which ends the proof. �

We thus have proved that the map Tϕ is quadratically bounded in z and z̃. Moreover, for
fixed z̃ the map Tϕ(·, z̃) : Qκ,α([a; b]; Rd) → Dκ,α̂([a; b]; Rd)] is locally Lipschitz continuous:

Proposition 3.3. Let the notation of Proposition 3.2 prevail. Let 0 ≤ a ≤ b ≤ T , let
z(1), z(2) ∈ Qκ,α([a, b]; Rn) and let z̃ ∈ Qκ,α̃([a− rk, b− r1]; R

n). Then,

N [Tϕ(z(1), z̃) − Tϕ(z(2), z̃);Dκ,0([a; b]; R
d)] (25)

≤ cϕ,T

(

1 + C(z(1), z(2), z̃)
)2 N [z(1) − z(2);Qκ,α([a, b]; Rn)],

where

C(z(1), z(2), z̃) = N [z̃;Qκ,α̃([a− rk, b− r1]; R
n)]

+N [z(1);Qκ,α([a, b]; Rn)] + N [z(2);Qκ,α([a, b]; Rn)] (26)

and the constant cϕ,T depends only on ϕ and T .

Proof. Denote ẑ(j) = Tσ(z(j), z̃) for j = 1, 2. By Proposition 3.2 we have

(

δẑ(j)
)

st
= ζ̂ (j)

s (δx)st +

k
∑

i=1

ζ̂ (i,j)
s (δx)s−ri,t−ri

+ ρ̂
(j)
st , s, t ∈ [a, b]

with

ζ̂ (j)
s = ψ(0,j)

s ζ (j)
s , ζ̂ (i,j)

s = ψ(i,j)
s ζ̃s−ri

, s ∈ [a, b],

where

ψ(i,j)
s =

(

∂ϕ

∂x1,i
(z(j)

s , s(z̃)s), . . . ,
∂ϕ

∂xn,i
(z(j)

s , s(z̃)s)

)

, s ∈ [a, b],

for i = 0, . . . , k, j = 1, 2. Furthermore, it holds ρ̂
(j)
st = ρ̂

(1,j)
st + ρ̂

(2,j)
st , where

ρ̂
(1,j)
st = ψ(0,j)

s ρ
(j)
st +

k
∑

i=1

ψ(i,j)
s ρ̃s−ri,t−ri

,

ρ̂
(2,j)
st = σ(z

(j)
t−r0

, z̃t−r1 , . . . , z̃t−rk
) − σ(z

(j)
s−r0

, z̃s−r1, . . . , z̃s−rk
)

− ψ(0,j)
s (δz(j))st −

k
∑

i=1

ψ(i,j)
s (δz̃)s−ri,t−ri

.

Thus, we obtain for ẑ = ẑ(1) − ẑ(2) the decomposition

(δẑ)st =

k
∑

i=0

ζ̂ (i)
s (δx)s−ri,t−ri

+ ρ̂st

with ζ̂
(0)
s = ψ

(0,1)
s ζ

(1)
s − ψ

(0,2)
s ζ

(2)
s , the paths ζ̂ (i) are defined by ζ̂

(i)
s = (ψ

(i,1)
s − ψ

(i,2)
s )ζ̃s−ri

for i = 1, . . . , k, and ρ̂st = ρ̂
(1)
st − ρ̂

(2)
st .
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In the following we will denote constants (which depend only on T and ϕ) by c, regard-
less of their value. For convenience, we will also use the short notations N [z̃], N [z(1)],
N [z(2)] and N [z(1) − z(2)] instead of the corresponding quantities in (25)-(26).

(i) We first control the supremum of the density functions ζ (i), i = 0, . . . , k. For i = 0,
we can write

ζ̂ (0)
s = ψ(0,1)

s (ζ (1)
s − ζ (2)

s ) + (ψ(0,1)
s − ψ(0,2)

s )ζ (2)
s

and thus it follows

|ζ̂ (0)
s | ≤ ‖ϕ′‖∞|ζ (1)

s − ζ (2)
s ||ζ (2)

s | + ‖ϕ′′‖∞|z(1)
s − z(2)

s |
≤ c

(

1 + N [z(2)]
)

N [z(1) − z(2)] (27)

Similarly, we get

|ζ̂ (i)
s | ≤ cN [z̃]N [z(1) − z(2)]. (28)

(ii) Now, consider the increments of the density functions. Here, the key is to expand the

expression ψ
(i,1)
s − ψ

(i,2)
s for i = 0, . . . , k. For this define

us(r) = r(z(1)
s − z(2)

s ) + z(2)
s , r ∈ [0, 1], s ∈ [a, b].

We have

∂ϕ

∂xl,i
(z(1)

s , s(z̃)s) −
∂ϕ

∂xl,i
(z(2)

s , s(z̃)s) =
∂ϕ

∂xl,i
(us(1), s(z̃)s) −

∂ϕ

∂xl,i
(us(0), s(z̃)s)

= θ(l,i)
s (z(1)

s − z(2)
s ),

where

θ(l,i)
s =

∫ 1

0

(

∂2ϕ

∂x1,0∂xl,i
(us(r), s(z̃)s), . . . ,

∂2ϕ

∂xn,0∂xl,i
(us(r), s(z̃)s)

)

dr.

Hence it follows

ψ(i,1)
s − ψ(i,2)

s =
(

θ(1,i)
s (z(1)

s − z(2)
s ), . . . , θ(n,i)

s (z(1)
s − z(2)

s )
)

. (29)

Note that θ(l,i) is clearly bounded and, under the assumption ϕ ∈ C3
b , it moreover satisfies:

|θ(l,i)
t − θ(l,i)

s | ≤ c
(

N [z(1)] + N [z(2)] + N [z̃]
)

|t− s|κ. (30)

For i = 0 we can now write

ζ̂
(0)
t − ζ̂ (0)

s =
(

ψ
(0,1)
t − ψ(0,1)

s

)

(ζ (1)
s − ζ (2)

s ) + ψ
(0,1)
t

(

(ζ
(1)
t − ζ

(2)
t ) − (ζ (1)

s − ζ (2)
s )
)

+
(

ψ(0,1)
s − ψ(0,2)

s

)

(ζ
(2)
t − ζ (2)

s ) + ζ
(2)
t

(

(ψ
(0,1)
t − ψ

(0,2)
t ) − (ψ(0,1)

s − ψ(0,2)
s )

)

.

It follows

|ζ̂ (0)
t − ζ̂ (0)

s | ≤ c
(

N [z(1)] + N [z̃]
)

|t− s|κ N [z(1) − z(2)] + cN [z(1) − z(2)] |t− s|κ

+ cN [z(1) − z(2)]N [z(2)] |t− s|κ

+ N [z(2)]
∣

∣

∣
(ψ

(0,1)
t − ψ

(0,2)
t ) − (ψ(0,1)

s − ψ(0,2)
s )

∣

∣

∣
. (31)
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Using (29) and (30) we obtain
∣

∣

∣
(ψ

(0,1)
t − ψ

(0,2)
t ) − (ψ(0,1)

s − ψ(0,2)
s )

∣

∣

∣
(32)

≤ c
(

1 + N [z(1)] + N [z(2)] + N [z̃]
)

N [z(1) − z(2)] |t− s|κ.

Combining (31) and (32) yields

|ζ̂ (0)
t − ζ̂ (0)

s | ≤ c
(

1 + N [z(1)] + N [z(2)] + N [z̃]
)2 N [z(1) − z(2)] |t− s|κ. (33)

By similar calculations we also have

|ζ̂ (i)
t − ζ̂ (i)

s | ≤ c
(

1 + N [z(1)] + N [z(2)] + N [z̃]
)2 N [z(1) − z(2)] |t− s|κ (34)

for i = 1, . . . , k.

(iii) Now, we have to control the remainder term ρ̂. For this we decompose ρ as

ρ̂st = ρ
(1)
st + ρ

(2)
st ,

where

ρ
(1)
st = ψ(0,1)

s ρ
(1)
st − ψ(0,2)

s ρ
(2)
st +

k
∑

i=1

(

ψ(i,1)
s − ψ(i,2)

s

)

ρ̃s−ri,t−ri
,

ρ
(2)
st =

(

ϕ(z
(1)
t−r0

, z̃t−r1 , . . . , z̃t−rk
) − ϕ(z

(1)
s−r0

, z̃s−r1 , . . . , z̃s−rk
)
)

−
(

ϕ(z
(2)
t−r0

, z̃t−r1 , . . . , z̃t−rk
) − ϕ(z

(2)
s−r0

, z̃s−r1, . . . , z̃s−rk
)
)

−
(

ψ(0,1)
s (δz(1))st − ψ(0,2)

s (δz(2))st

)

−
k
∑

i=1

(

ψ(i,1)
s − ψ(i,2)

s

)

(δz̃)s−ri,t−ri
.

We consider first ρ(1): for this term, some straightforward calculations yield

|ρ(1)
st | ≤ c(1 + N [z(2)] + N [z̃])N [z(1) − z(2)] |t− s|2κ. (35)

Now consider ρ(2). The mean value theorem yields

ρ
(2)
st =

(

ψ̄(0,1)
s − ψ(0,1)

s

)

(δz(1))st −
(

ψ̄(0,2)
s − ψ(0,2)

s

)

(δz(2))st

+

k
∑

i=1

((

ψ̄(i,1)
s − ψ̄(i,2)

s

)

−
(

ψ(i,1)
s − ψ(i,2)

s

))

(δz̃)s−ri,t−ri

=
(

ψ̄(0,1)
s − ψ(0,1)

s

)

(δ(z(1) − z(2)))st

+
((

ψ̄(0,1)
s − ψ̄(0,2)

s

)

−
(

ψ(0,1)
s − ψ(0,2)

s

))

(δz(2))st

+
k
∑

i=1

((

ψ̄(i,1)
s − ψ̄(i,2)

s

)

−
(

ψ(i,1)
s − ψ(i,2)

s

))

(δz̃)s−ri,t−ri

, Q1 +Q2 +Q3,
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with

ψ̄(i,j)
s =

∫ 1

0

(

∂ϕ

∂x1,i

(v(j)
s (r)), . . . ,

∂ϕ

∂xn,i

(v(j)
s (r))

)

dr,

v(j)
s (r) =

(

z(j)
s + r(z

(j)
t − z(j)

s ), z̃s−r1 + r(z̃t−r1 − z̃s−r1), . . . , z̃s−rk
+ r(z̃t−rk

− z̃s−rk
)
)

.

We shall now bound Q1, Q2 and Q3 separately: it is readily checked that

|ψ̄(i,j)
s − ψ(i,j)

s | ≤ c
(

1 + N [z(1)] + N [z(2)] + N [z̃]
)

|t− s|κ,
and thus we obtain

Q1 ≤ c
(

1 + N [z(1)] + N [z(2)] + N [z̃]
)

N [z(1) − z(2)] |t− s|2κ. (36)

In order to estimate Q2 and Q3, recall that by (29) in part (ii) we have

ψ(i,1)
s − ψ(i,2)

s =
(

θ(1,i)
s (z(1)

s − z(2)
s ), . . . , θ(n,i)

s (z(1)
s − z(2)

s )
)

, (37)

where

θ(l,i)
s =

∫ 1

0

(

∂2ϕ

∂x1,0∂xl,i
(us(r

′), s(z̃)s), . . . ,
∂2ϕ

∂xn,0∂xl,i
(us(r

′), s(z̃)s)

)

dr′,

us(r
′) = z(1)

s + r′(z(2)
s − z(1)

s ).

Similarly, we also obtain that

ψ̄(i,1)
s − ψ̄(i,2)

s =
(

θ̄(1,i)
s (z(1)

s − z(2)
s ), . . . , θ̄(n,i)

s (z(1)
s − z(2)

s )
)

(38)

with

θ̄(l,i)
s =

∫ 1

0

∫ 1

0

(

∂2ϕ

∂x1,0∂xl,i
(ūs(r, r

′)), . . . ,
∂2ϕ

∂xn,0∂xl,i
(ūs(r, r

′))

)

dr dr′

ūs(r, r
′) = v(1)

s (r) + r′
(

v(2)
s (r) − v(1)

s (r)
)

.

Now, using (37) and (38) we can write
(

ψ̄(i,1)
s − ψ̄(i,2)

s

)

−
(

ψ(i,1)
s − ψ(i,2)

s

)

=
(

(θ̄(1,i)
s − θ(1,i)

s )(z(1) − z(2)), . . . , (θ̄(n,i)
s − θ(n,i)

s )(z(1) − z(2)
)

for any i = 0, . . . , k. Since moreover

ūs(r, r
′) − (us(r

′), s(z̃)s)

= r
(

(z
(1)
t − z(1)

s ) + r′(z
(2)
t − z(2)

s − (z
(1)
t − z(1)

s )), z̃t−r1 − z̃s−r1 , . . . , z̃t−rk
− z̃s−rk

)

,

another Taylor expansion yields

|θ̄(l,i)
s − θ(l,i)

s )| ≤ c
(

N [z(1)] + N [z(2)] + N [z̃]
)

|t− s|κ.
Hence, we obtain

∣

∣

(

ψ̄(i,1)
s − ψ̄(i,2)

s

)

−
(

ψ(i,1)
s − ψ(i,2)

s

)
∣

∣

≤ c
(

N [z(1)] + N [z(2)] + N [z̃]
)

N [z(1) − z(2)] |t− s|κ, (39)

from which suitable bounds for Q2 and Q3 are easily deduced. Thus it follows by (36)
and (39) that

|ρ(2)
st | ≤ c

(

1 + N [z(1)] + N [z(2)] + N [z̃]
)2 N [z(1) − z(2)] |t− s|2κ.
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Combining this estimate with (35) we finally have

|ρst| ≤ c
(

1 + N [z(1)] + N [z(2)] + N [z̃]
)2 N [z(1) − z(2)] |t− s|2κ. (40)

(iv) The assertion follows now from (27), (28), (33), (34) and (40).
�

3.3. Integration of delayed controlled paths (DCP). The aim of this section is to
define the integral J (m∗dx), where m is a delayed controlled path m ∈ Dκ,α([a, b]; Rd).
Here we denote by A∗ the transposition of a vector or matrix A and by A1 ·A2 the inner
product of two vectors or two matrices A1 and A2. We will also write Qκ,α (resp. Dκ,α)
instead of Qκ,α([a, b];V ) (resp. Dκ,α([a, b];V )) if there is no risk of confusion about [a, b]
and V .

Note that if the increments of m can be expressed like in (16), m∗ admits the decom-
position

(δm∗)st =

k
∑

i=0

(δx)∗s−ri,t−ri
ζ (i)∗
s + ρ∗st, (41)

where ρ∗ ∈ C2κ
2 ([a, b]; R1,d) and the densities ζ (i), i = 0, . . . , k satisfy the conditions of

Definition 3.1.
To illustrate the structure of the integral of a DCP, we first assume that the paths

x, ζ (i) and ρ are smooth, and we express J (m∗dx) in terms of the operators δ and Λ. In
this case, J (m∗dx) is well defined, and we have

∫ t

s

m∗
udxu = m∗

s(xt − xs) +

∫ t

s

(m∗
u −m∗

s)dxu

for a ≤ s ≤ t ≤ b, or in other words

J (m∗ dx) = m∗ δx+ J (δm∗ dx). (42)

Now consider the term J (δm∗ dx): Using the decomposition (41) we obtain

J (δm∗ dx) =

∫ t

s

(

k
∑

i=0

(δx)∗s−ri,u−ri
ζ (i)∗
s + ρ∗su

)

dxu = Ast + Jst(ρ
∗ dx) (43)

with

Ast =

k
∑

i=0

∫ t

s

(δx)∗s−ri,u−ri
ζ (i)∗
s dxu.

Since, for the moment, we are dealing with smooth paths, the density ζ (i) can be taken
out of the integral above, and we have

Ast =
k
∑

i=0

ζ (i)
s · x2

st(−ri),

with the d× d matrix x2

st(v) defined by

x2

st(v) =

(
∫ t

s

(
∫ u+v

s+v

dxw

)

dx(1)
u , . . . ,

∫ t

s

(
∫ u+v

s+v

dxw

)

dx(d)
u

)

, 0 ≤ s ≤ t ≤ T
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for v ∈ {−rk, . . . ,−r0}. Indeed, we can write

∫ t

s

(δx)∗s−ri,u−ri
ζ (i)∗
s dxu =

∫ t

s

ζ (i)
s · [(δx)s−ri,u−ri

⊗ dxu]

= ζ (i)
s ·

∫ t

s

(δx)s−ri,u−ri
⊗ dxu = ζ (i)

s · x2

st(−ri).

Inserting the expression of Ast into (42) and (43) we obtain

Jst(m
∗ dx) = m∗

s(δx)st +

k
∑

i=0

ζ (i)
s · x2

st(−ri) + Jst(ρ
∗ dx) (44)

for a ≤ s ≤ t ≤ b.

Let us now consider the Lévy area term x2

st(−ri). If x is a smooth path, it is readily
checked that

[δx2(−ri)]sut = x2

st(−ri) − x2

su(−ri) − x2

ut(−ri) = (δx)s−ri,u−ri
⊗ (δx)ut,

for any i = 0, . . . , k. This decomposition of δx2(−ri) into a product of increments is the
fundamental algebraic property we will use to extend the above integral to non-smooth
paths. Hence, we will need the following assumption:

Hypothesis 3.4. The path x is a R
d-valued γ-Hölder continuous function with γ > 1

3
and admits a delayed Lévy area, i.e., for all v ∈ {−rk, . . . ,−r0}, there exists a path
x2(v) ∈ C2γ

2 ([0, T ]; Rd,d), which satisfies

δx2(v) = δxv ⊗ δx, (45)

that is

[

(δx2(v))sut

]

(i, j) = [δxi]s+v,u+v[δx
j ]ut for all s, u, t ∈ [0, T ], i, j ∈ {1, . . . , d}.

In the above formulae, we have set xv for the shifted path xv
s = xs+v.

To finish the analysis of the smooth case it remains to find a suitable expression for
J (ρ∗ dx). For this, we write (44) as

Jst(ρ
∗ dx) = Jst(m

∗ dx) −m∗
s(δx)st −

k
∑

i=0

ζ (i)
s · x2

st(−ri) (46)

and we apply δ to both sides of the above equation. For smooth paths m and x we have

δ(J (m∗ dx)) = 0, δ(m∗ δx) = −δm∗ δx,
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by Proposition 2.4. Hence, applying these relations to the right hand side of (46), using
the decomposition (41) and again Proposition 2.4, we obtain

[δ(J (ρ∗ dx))]sut

= (δm∗)su(δx)ut +

k
∑

i=0

(δζ (i))su · x2

st(−ri) −
k
∑

i=0

ζ (i)
s · (δx2(−ri))sut

=

k
∑

i=0

(δx)∗s−ri,u−ri
ζ (i)∗
s (δx)ut + ρ∗su(δx)ut

+
k
∑

i=0

(δζ (i))su · x2

st(−ri) −
k
∑

i=0

ζ (i)
s · [(δx)s−ri,t−ri

⊗ (δx)ut]

= ρ∗su(δx)ut +
k
∑

i=0

(δζ (i))su · x2

st(−ri).

In summary, we have derived the representation

δ[J (ρ∗ dx)] = ρ∗ δx+

k
∑

i=0

δζ (i) · x2(−ri),

for two regular paths m and x.
If m, x, ζ (i), i = 0, . . . , k and x2 are smooth enough, we have δ[J (ρ∗ dx)] ∈ ZC1+

3 and
thus belongs to the domain of Λ due to Proposition 2.2. (Recall that δδ = 0.) Hence, it
follows

J (ρ∗ dx) = Λ

(

ρ∗ δx+

k
∑

i=0

δζ (i) · x2(−ri)

)

,

and inserting this identity into (44), we end up with

J (m∗ dx) = m∗δx+

k
∑

i=0

ζ (i) · x2(−ri) + Λ

(

ρ∗δx+

k
∑

i=0

δζ (i) · x2(−ri)

)

. (47)

The expression above can be generalised to the non-smooth case, since J (m∗ dx) has
been expressed only in terms of increments of m and x. Consequently, we will use (47) as
the definition for our extended integral.

Proposition 3.5. For fixed 1
3
< κ < γ, let x be a path satisfying Hypothesis 3.4. Fur-

thermore, let m ∈ Dκ,α̂([a, b]; Rd) such that the increments of m are given by (16). Define
z by za = α with α ∈ R and

(δz)st = m∗
s(δx)st +

k
∑

i=0

ζ (i)
s · x2

st(−ri) + Λst

(

ρ∗δx+
k
∑

i=0

δζ (i) · x2(−ri)

)

(48)

for a ≤ s ≤ t ≤ b. Finally, set
J (m∗ dx) = δz. (49)

Then:

(1) J (m∗ dx) coincides with the usual Riemann integral, whenever m and x are smooth
functions.
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(2) z is well-defined as an element of Qκ,α([a, b]; R) with decomposition δz = m∗δx+ ρ̂,
where ρ̂ ∈ C2κ

2 ([a, b]; R) is given by

ρ̂ =

k
∑

i=0

ζ (i) · x2(−ri) + Λ

(

ρ∗δx+

k
∑

i=0

δζ (i) · x2(−ri)

)

.

(3) The semi-norm of z can be estimated as

N [z;Qκ,α([a, b]; R)] ≤ ‖m‖∞ + cint(b− a)γ−κN [m;Dκ,α̂([a, b]; Rd)] (50)

where

cint = cκ,γ,ϕ,T

(

‖x‖γ +
k
∑

i=0

‖x2(−ri)‖2γ

)

with the constant cκ,γ,ϕ,T depending only on κ, γ, ϕ and T . Moreover,

‖z‖γ ≤ cint(b− a)γ−κN [m;Dκ,α̂([a, b]; Rd)]. (51)

(4) It holds

Jst(m
∗ dx) = lim

|Πst|→0

N
∑

i=0

[

m∗
ti
(δx)ti,ti+1

+

k
∑

j=0

ζ
(j)
ti · x2

ti,ti+1
(−rj)

]

(52)

for any a ≤ s < t ≤ b, where the limit is taken over all partitions Πst = {s =
t0, . . . , tN = t} of [s, t], as the mesh of the partition goes to zero.

Proof. (1) The first of our claims is a direct consequence of the derivation of equation
(47).

(2) Set cx = ‖x‖γ +
∑k

i=0 ‖x2(−ri)‖2γ . Now we show that equation (48) defines a classical
controlled path. Actually, the term m∗ δx is trivially of the desired form for an element

of Qκ,α. So consider the term h
(1)
st =

∑k
i=0 ζ

(i)
s · x2

st(−ri) for a ≤ s ≤ t ≤ b. We have

|h(1)
st | ≤

k
∑

i=0

‖ζ (i)‖∞|x2

st(−ri)| ≤
(

k
∑

i=0

‖ζ (i)‖∞
)

cx|t− s|2γ

≤
(

k
∑

i=0

‖ζ (i)‖∞
)

cx(b− a)2(γ−κ)|t− s|2κ.

Thus

‖h(1)‖2κ ≤ cx(b− a)2(γ−κ)N [m;Dκ,α̂([a, b]; Rd)].

The term

h(2) = ρ∗δx+
k
∑

i=0

δζ (i) · x2(−ri)

satisfies δh(2) = 0. Indeed, we can write

δh(2) = δρ∗δx+
k
∑

i=0

δζ (i) · δx2(−ri)
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by Proposition 2.4 and because δδ = 0. Applying (45) to the right hand side of the above
equation it follows that

δh(2) = δρ∗δx+

k
∑

i=0

δζ (i) · (δx−ri ⊗ δx) = δρ∗δx+

k
∑

i=0

δx−ri
∗
δζ (i)∗δx

=
(

δρ∗ +

k
∑

i=0

δx−ri
∗
δζ (i)∗

)

δx.

However, due to Proposition 2.4, it holds

δh(2) =
(

δρ∗ +

k
∑

i=0

δx−ri
∗
δζ (i)∗

)

δx = δ
(

ρ∗ +

k
∑

i=0

δx−ri
∗
ζ (i)∗

)

δx.

Since the increments of m are given by (16) we finally obtain that

δh(2) = δ(δm∗)δx = 0.

Moreover, recalling the notation (7), it holds

‖ρ∗δx‖2κ,κ ≤ cx(b− a)γ−κ‖ρ‖2κ

and

‖
k
∑

i=0

δζ (i) · x2(−ri)‖κ,2κ ≤ cx(b− a)2(γ−κ)
k
∑

i=0

‖ζ (i)‖κ.

Since γ > κ > 1
3

and δh(2) = 0, we have h(2) ∈ Dom(Λ) and

‖h(2)‖3κ ≤ cx(1 + T γ−κ)(b− a)γ−κN [m;Dκ,α̂([a, b]; Rd)].

By Proposition 2.2 it follows

‖Λ(h(2))‖3κ ≤ 1

23κ − 2
‖h(2)‖3κ

and we finally obtain

‖h(1) − Λ(h(2))‖2κ ≤ cx
23κ − 1

23κ − 2
(1 + T γ−κ)(b− a)γ−κN [m;Dκ,α]. (53)

Thus we have proved that ρ̂ ∈ C2κ
2 ([a, b]; R) and hence that z ∈ Qκ,α([a, b]; R).

(3) Because of (δz)st = m∗
s(δx)st + ρ̂st and m ∈ Dκ,α̂([a, b]; Rd) the estimates (50) and (51)

now follow from (53).

(4) By Proposition 2.4 (ii) and the decomposition (16) we have that

δ(m∗δx)sut = −(δm∗)su(δx)ut = −ρ∗su(δx)ut −
k
∑

i=0

(δx)∗s−ri,u−ri
ζ (i)∗
u (δx)ut.

Thus, applying again Proposition 2.4 (ii), and recalling Hypothesis 3.4 for the Lévy area,
we obtain that

δ

(

m∗ δx+
k
∑

i=0

ζ (i) · x2(−ri)

)

= −
[

ρ∗ δx+
k
∑

i=0

δζ (i) · x2(−ri)

]

.
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Hence, equation (48) can also be written as

J (m∗ dx) = [Id − Λδ]

(

m∗ δx+

k
∑

i=0

ζ (i) · x2(−ri)

)

,

and a direct application of Corollary 2.3 yields (52), which ends our proof.
�

Recall that the notation A∗ stands for the transpose of a matrix A. Moreover, in the
sequel, we will denote by cnorm a constant, which depends only on the chosen norm of
R

n,d. Then, for a matrix-valued delayed controlled path m ∈ Dκ,α̂([a, b]; Rn,d), the integral
J (mdx) will be defined by

J (mdx) =
(

J (m(1)∗dx), . . . ,J (m(n)∗dx)
)∗
,

where m(i) ∈ Dκ,α̂([a, b]; Rd) for i = 1, . . . , n and we have set m = (m(1), . . . , m(n))∗. Then
we have by (50) that

N [J (mdx);Qκ,α([a, b]; Rn)] (54)

≤ cnorm

(

‖m‖∞ + cint(b− a)γ−κN [m;Dκ,α̂([a, b]; Rn,d)]
)

.

For two paths m(1), m(2) ∈ Dκ,α̂([a, b]; Rn,d) we obtain the following estimate for the
difference of z(1) = J (m(1) dx) and z(2) = J (m(2) dx): As above, we have clearly

N [z(1) − z(2);Qκ,0([a, b]; R
n)] ≤ cnorm‖m(1) −m(2)‖∞

+ cnorm cint(b− a)γ−κN
[

m(1) −m(2);Dκ,0([a, b]; R
n,d)
]

.

However, since m
(1)
a = m

(2)
a it follows

N [z(1) − z(2);Qκ,0([a, b]; R
n)] ≤ 2cnorm cint(b− a)γ−κN

[

m(1) −m(2);Dκ,0([a, b]; R
n,d)
]

.
(55)

4. Solution to the delay equation

With the preparations of the last section, we can now solve the equation
{

dyt = σ(yt, yt−r1, . . . , yt−rk
) dxt, t ∈ [0, T ],

yt = ξt, t ∈ [−r, 0],
(56)

in the class of classical controlled paths. For this, it will be crucial to use mappings of
the type

Γ : Qκ,α([a, b]; Rn) ×Qκ,α̃([a− rk, b− r1]; R
d) → Qκ,α([a, b]; Rn)

for 0 ≤ a ≤ b ≤ T , which are defined by (z, z̃) 7→ ẑ, where ẑ0 = α and δẑ given by
δẑ = J (Tσ(z, z̃)), with Tσ defined in Proposition 3.2. ¿From now on, we will use the
convention that zt = z̃t = ẑt = ξt for t ∈ [−r, 0]. Note that this convention is consistent
with the definition of a classical controlled path, see Definition 2.5: since ξ is 2γ-Hölder
continuous, it can be considered as a part of the remainder term ρ.
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The first part of the current section will be devoted to the study of the map T . By (54)
we have that

N [J (Tσ(z, z̃));Qκ,α([a, b]; Rn)]

≤ cnorm

(

‖σ‖∞ + cint(b− a)γ−κN [Tσ(z, z̃);Dκ,α̂([a, b]; Rn,d)]
)

.

Since
Tσ(z, z̃) = (Tσ(1)(z, z̃), . . . , Tσ(n)(z, z̃))

∗ ,

where σ(i) ∈ C3
b (R

n,d; R1,d) for i = 1, . . . , n and σ = (σ(1), . . . , σ(n))∗, it follows by (19)
that

N [Tσ(z, z̃);Dκ,α̂([a; b]; Rn)]

≤ cσ,T

(

1 + N 2[z;Qκ,α([a, b]; Rn)] + N 2[z̃;Qκ,α̃([a− rk, b− r1]; R
n)]
)

.

Combining these two estimates we obtain

N [Γ(z, z̃);Qκ,α([a; b]; Rn)] (57)

≤ cgrowth

(

1 + N 2[z̃;Qκ,α̃([a− rk, b− r1]; R
n)]
) (

1 + (b− a)γ−κN 2[z;Qκ,α([a, b]; Rn)]
)

,

where the constant cgrowth depends only on cint, cnorm, σ, κ, γ and T . Thus the semi-norm
of the mapping Γ is quadratically bounded in terms of the semi-norm of z and z̃.

Now let z(1), z(2) ∈ Qκ,α([a, b]; Rn) and z̃ ∈ Qκ,α̃([a− rk, b− r1]; R
d). Then, by (55) we

have

N [Γ(z(1), z̃) − Γ(z(2), z̃);Qκ,0([a, b]; R
n)] (58)

≤ 2cnorm cint(b− a)γ−κN [Tσ(z(1), z̃) − Tσ(z(2), z̃);Dκ,0([a, b]; R
n,d)].

Applying Proposition 3.3, i.e. inequality (25), to the right hand side of the above equation
we obtain that

N [Γ(z(1), z̃) − Γ(z(2), z̃);Qκ,0([a, b]; R
n)] (59)

≤ clip
(

1 + C(z(1), z(2), z̃)
)2 N [z(1) − z(2);Qκ,0([a, b]; R

n,d)] (b− a)γ−κ,

with a constant clip depending only on cint, cnorm, σ, κ, γ and T , and moreover

C(z(1), z(2), z̃) = N [z̃;Qκ,α̃([a− rk, b− r1]; R
n)]

+ N [z(1);Qκ,α([a, b]; Rn)] + N [z(2);Qκ,α([a, b]; Rn)].

Thus, for fixed z̃ the mappings Γ(·, z̃) are locally Lipschitz continuous with respect to the
semi-norm N [·;Qκ,0([a, b]; R

n)].

We also need the following Lemma, which can be shown by straightforward calculations:

Lemma 4.1. Let c, α ≥ 0, τ ∈ [0, T ] and define the set

Ac,α
τ = {u ∈ R

∗
+ : c(1 + ταu2) ≤ u}.

Set also τ ∗ = (8c2)−1/α. Then we have Ac,α
τ∗ 6= ∅ and sup{u ; u ∈ Ac,α

τ∗ } ≤ (4 + 2
√

2)c.

Now we can state and prove our main result:

Theorem 4.2. Let x be a path satisfying Hypothesis 3.4, let ξ ∈ C2κ
1 ([−r, 0]; Rn) and let

σ ∈ C3
b (R

n,k+1; Rn,d). Then we have:
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(1) Equation (56) admits a unique solution y in Qκ,ξ0([0, T ]; Rn) for any 1
3
< κ < γ

and any T > 0.

(2) Let F : C2γ
1 ([−r, 0]; Rn)×Cγ

1 ([0, T ]; Rd)×
(

C2γ
2 ([0, T ]; Rd×d)

)k+1 → Cκ
1 ([0, T ]; Rn) be

the mapping defined by

F
(

ξ, x,x2(0),x2(−r1), . . . ,x2(−rk)
)

= y,

where y is the unique solution of equation (56). This mapping is locally Lipschitz
continuous in the following sense: Let x̃ be another driving rough path with cor-
responding delayed Lévy area x̃2(−v), v ∈ {−rk, . . . ,−r0}, and ξ̃ another initial
condition. Moreover denote by ỹ the unique solution of the corresponding delay
equation. Then, for every N > 0, there exists a constant KN > 0 such that

‖y − ỹ‖κ,∞

≤ KN

(

‖x− x̃‖γ,∞ +
k
∑

i=0

N [x2(−ri) − x̃2(−ri); C2γ
2 ([0, T ]; Rd)] + ‖ξ − ξ̃‖2γ,∞

)

holds for all tuples (ξ, x,x2,x2(−r1), . . . ,x2(−rk)), (ξ̃, x̃, x̃
2, x̃2(−r1), . . . , x̃2(−rk))

with

k
∑

i=0

N [x2(−ri); C2γ
2 ([0, T ]; Rd)] +

k
∑

i=0

N [x̃2(−ri); C2γ
2 ([0, T ]; Rd)]

+ ‖x‖γ,∞ + ‖x̃‖γ,∞ + ‖ξ‖2γ,∞ + ‖ξ̃‖2γ,∞ ≤ N,

where ‖f‖µ,∞ = ‖f‖∞ + |δf |µ denotes the usual Hölder norm of a path f .

Proof. The proof of Theorem 4.2 is obtained by means of a fixed point argument, based
on the map Γ defined above.

1) Existence and uniqueness. Without loss of generality assume that T = Nr1. We will
construct the solution of equation (56) by induction over the intervals [0, r1], [0, 2r1], . . .,
[0, Nr1], where we recall that r1 is the smallest delay in (56).

(i) We will first show that equation (56) has a solution on the interval [0, r1]. For this
define

τ̃1 = (8c21)
−1/(γ−κ) ∧ r1,

where

c1 = cgrowth

(

1 + N 2[ξ; C2γ
2 ([−rk, 0]; Rn)]

)

.

Moreover, choose τ1 ∈ [0, τ̃1] and N1 ∈ N such that N1τ1 = r1, and define

Ii,1 = [(i− 1)τ1, iτ1], i = 1, . . . , N1.

Finally, consider the following mapping: Let Γ1,1 : Qκ,ξ0(I1,1; R
n) → Qκ,ξ0(I1,1; R

n) given
by ẑ = Γ1,1(z), where

(δẑ)st = Jst(Tσ(z, ξ) dx)

for 0 ≤ s ≤ t ≤ τ1 .
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Clearly, if z(1,1) is a fixed point of the map Γ(1,1), then z(1,1) solves equation (56) on the
interval I1,1. We shall thus prove that such a fixed point exists. First, due to (57) we have
the estimate

N [Γ1,1(z);Qκ,ξ0(I1,1; R
n)] ≤ c1

(

1 + τ1
γ−κN 2[z;Qκ,ξ0(I1,1; R

n)]
)

. (60)

Thanks to our choice of τ1 and Lemma 4.1 we can now choose M1 ∈ Ac1,γ−κ
τ∗ accordingly

and obtain that the ball

BM1 = {z ∈ Qκ,ξ0(I1,1; R
n); N [z;Qκ,ξ0(I1,1; R

n)] ≤ M1} (61)

is left invariant under Γ1,1. Now, by changing τ1 to a smaller value (and then N1 accord-
ingly) if necessary, observe that Γ1,1 also is a contraction on BM1 , see (59). Thus, the
Banach theorem implies that the mapping Γ1,1 has a fixed point, which leads to a unique
solution z(1,1) of equation (56) on the interval I1,1.

If τ1 = r1, the first step of the proof is finished. Otherwise, define the mapping Γ2,1 :
Q

κ,z
(1,1)
τ1

(I2,1; R
n) → Q

κ,z
(1,1)
τ1

(I2,1; R
n) by ẑ = Γ2,1(z) where

(δẑ)st = Jst(Tσ(z, ξ) dx)

for τ1 ≤ s ≤ t ≤ 2τ1 . Since τ1 < r1, it still holds

N [Γ2,1(z);Qκ,z
(1,1)
τ1

(I2,1; R
n)] ≤ c1(1 + τ1

γ−κN 2[z;Q
κ,z

(1,1)
τ1

(I2,1; R
n)]) (62)

and we obtain by the same fixed point argument as above, the existence of a unique
solution z(2,1) of equation (56) on the interval I2,1.

Repeating this step as often as necessary, which is possible since the estimates on the
norms of the mappings Γj,1, j = 1, . . . , N1 are of the same type as (57), i.e. the constant c1
does not change, we obtain that z =

∑N1

j=1 z
(j,1) 1Ij,1

is the unique solution to the equation

(56) on the interval [0, r1].

Now, it remains to verify that z given as above is in fact a CCP. First note that by
construction z is continuous on [0, r1] and moreover that z is a CCP on the subintervals
Ij,1 with decomposition

(δz)st = ζ (j,1)
s (δx)st + ρ

(j,1)
st , s, t ∈ Ij,1,

for s ≤ t. Clearly, we have

(δz)st =

jt
∑

j=js

(δz(j,1))s∨tj ,t∧tj+1
, s, t ∈ [0, r1],

for s ≤ t, where tj = (j − 1)τ1 and js, jt ∈ {1, . . . , N − 1} are such that

tjs
≤ s < tjs+1 < . . . < tjt

< t ≤ tjt+1.

Setting

ζs =
N1
∑

j=1

ζ (j,1)
s 1Ij,1

(s), s ∈ [0, r1]

and

ρst =

jt
∑

j=js

(ζ
(j,1)
s∨tj − ζ (js,1)

s )(δx)s∨tj ,t∧tj+1
+

jt
∑

j=js

ρ
(j,1)
s∨tj ,t∧tj+1
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we obtain

(δz)st = ζs(δx)st + ρst, s, t ∈ [0, r1]

for s ≤ t.
Now, it follows easily by the subadditivity of the Hölder norms that

sup
s,t∈[0,τ1]

|(δz)st|
|s− t|κ ≤

N1
∑

j=1

sup
s,t∈Ij,1

|(δz(j,1))st|
|s− t|κ

and

sup
t∈[0,τ1]

|ζt| = sup
j=1,...,N−1

sup
t∈Ij,1

|ζ (j,1)
t |, sup

s,t∈[0,τ1]

|(δζ)st|
|s− t|κ ≤

N1
∑

j=1

sup
s,t∈Ij,1

|(δζ (j,1))st|
|s− t|κ .

Furthermore, we obtain

sup
s,t∈[0,τ1]

|ρst|
|s− t|2κ

≤
N1
∑

j=1

sup
s,t∈Ij,1

|(ρ(j,1))st|
|s− t|2κ

+ sup
s,t∈[0,τ1]

|(δx)st|
|s− t|κ

N1
∑

j=1

sup
s,t∈Ij,1

|(δζ (j,1))st|
|s− t|κ .

Thus, we have in fact that z ∈ Qκ,ξ0([0, τ1]; R
n).

(ii) Let l = 1, . . . , N − 1 assume that z̃ ∈ Qκ,ξ0([0, lr1]; R
n) is the solution of the delay

equation (56) on the interval [0, lr1]. Now we will construct the solution on the interval
[lr1, (l + 1)r1]. Set

cl+1 = cgrowth (1 + N 2[z̃;Qκ,z̃lr1−rk
([lr1 − rk, lr1]; R

n])

and define
τ̃l+1 = (8c2l+1)

−1/(γ−κ) ∧ r1.
Furthermore, choose τl+1 ∈ [0, τ̃l+1] and Nl+1 ∈ N such that Nl+1τl+1 = r1, and define

Ii,l+1 = [lr1 + (i− 1)τl+1, lr1 + iτl+1], i = 1, . . . , Nl+1.

Consider the mapping Γ1,l+1 : Qκ,z̃lr1
(I1,l+1; R

n) → Qκ,z̃lr1
(I1,l+1; R

n) by ẑ = Γ1,l+1(z)
where

(δẑ)st = Jst(Tσ(z, z̃) dx)

for lr1 ≤ s ≤ t ≤ lr1 + τl+1 . Again z(1,l+1) is a fixed point of the map Γ1,l+1 if and only if
z(1,l+1) solves equation (56) on the interval I1,l+1. However, by (57) we have the estimate

N [Γ1,l+1(z);Qκ,z̃lr1
(I1,l+1; R

n)] ≤ cl+1 (1 + τl+1
γ−κN 2[z;Qκ,z̃lr1

(I1,l+1; R
n)]).

Now we can apply the same fixed point argument as in step (i), which leads to a unique
solution z(1,l+1) of (56) on the interval I1,l+1.

If τl+1 6= r1, define for the next interval I2,l+1 the mapping

Γ2,l+1 : Q
κ,z

(1,l+1)
lr1+τl

(I2,l+1; R
n) → Q

κ,z
(1,l+1)
lr1+τl

(I2,l+1; R
n)

by ẑ = Γ2,l+1(z), where (δẑ)st = Jst(Tσ(z, z̃) dx) for lr1 + τl+1 ≤ s ≤ t ≤ lr1 + 2τl+1 .
Since lr1 + τl+1 ≤ (l + 1)r1, we still have the estimate

N [Γ2,l+1(z);Qκ,z
(1,l+1)
lr1+τl

(I2,l+1; R
n)] ≤ cl+1 (1 + τγ−κ

l+1 N 2[z;Q
κ,z

(1,l+1)
lr1+τl

(I2,l+1; R
n)]).

Now the existence of a unique solution z(2,l+1) of (56) on the interval I2,l+1 follows again
by the same fixed point argument.
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Proceeding completely analogous to step (i) we obtain the existence of a unique path z ∈
Qκ,z̃lr1

([lr1, (l+1)r1]; R
n), which solves the delay equation (56) on the interval [lr1, (l+1)r1]

for a given “initial path” z̃ ∈ Qκ,ξ0([0, lr1]; R
n). Patching these two paths together, we

obtain (using the same arguments as at the end of step (i)) a path z ∈ Qκ,ξ0([0, (l +
1)r1]; R

n), which solves equation (56) on the interval [0, (l + 1)r1].
Thus we have shown that there exists a unique path z ∈ Qκ,ξ0([0, T ]; Rn), which is a

solution of the equation (56). Moreover, by the above construction we obtain the following
bound on the norm of this path:

N [z;Qκ,ξ0([0, T ]; Rn)] (63)

≤ f

(

N [x; Cγ
1 ([0, T ]; Rn)] +

k
∑

i=0

N [x2(−ri); C2γ
2 ([0, T ]; Rn)] + N [ξ; C2γ

1 ([0, T ]; Rn)]

)

,

where f : [0,∞) → (0,∞) is a continuous non-decreasing function, which depends only
on κ, γ, n, d, σ, T and r1, . . . , rk.

2) Continuity of the Itô map. Let y = F (ξ, x,x2(0),x2(−r1), . . . ,x2(−rk)) . Since y solves
equation (56), we have (δy)st = Jst(σ(ys, s(y)) dxs). It follows by the Propositions 3.2 and
3.5 that

(δy)st = ms(δx)st +

k
∑

i=0

ζ (i)
s · x2

st(−ri) + Λst

(

ρδx+

k
∑

i=0

δζ (i) · x2(−ri)

)

(64)

for 0 ≤ s ≤ t ≤ T , with

ms = σ(ys, s(y)s), ζ (i)
s = ψ(i)

s ms−ri
, ψ(i)

s =

(

∂ϕ

∂x1,i

(ys, s(y)s), . . . ,
∂ϕ

∂xn,i

(ys, s(y)s)

)

(65)
for i = 0, . . . , k. Moreover, note that the remainder term ρ of the decomposition of y
satisfies the relation

ρst =

k
∑

i=0

ζ (i)
s · x2

st(−ri) + Λst

(

ρδx+

k
∑

i=0

δζ (i) · x2(−ri)

)

. (66)

Now consider (56) with a different initial path ξ̃, driving rough path x̃ and corresponding
delayed Lévy area x̃2(v), for v ∈ {−rk, . . . ,−r0}. If the assumptions of the theorem are
satisfied, then also the equation

{

dỹt = σ(ỹt, ỹt−r1, . . . , ỹt−rk
) dx̃t, t ∈ [0, T ],

ỹt = ξ̃t, t ∈ [−r, 0]

admits a unique solution ỹ = F (ξ̃, x̃(0), x̃2, x̃2(−r1), . . . , x̃2(−rk)). Clearly we also have
in this case

(δỹ)st = m̃s(δx̃)st +

k
∑

i=0

ζ̃ (i)
s · (x̃2(−ri))st + Λst

(

ρ̃δx̃+

k
∑

i=0

δζ̃ (i) · x̃2(−ri)

)

(67)

for 0 ≤ s ≤ t ≤ T , with m̃, ζ̃ (i) and ψ̃(i) defined according to (65) and (66).

(i) We first analyse the difference between ρ and ρ̃. Here we have

ρst − ρ̃st = e
(1)
st + Λst(e

(2)), (68)
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with

e
(1)
st =

k
∑

i=0

ζ (i)
s · (x2(−ri))st −

k
∑

i=0

ζ̃ (i)
s · (x̃2(−ri))st

e(2) = ρ δx− ρ̃ δx̃+

k
∑

i=0

δζ (i) · x2(−ri) −
k
∑

i=0

δζ̃ (i) · x̃2(−ri).

Now set

C(y) = ‖x‖∞ + ‖x‖γ +

k
∑

i=0

‖x2(−ri)‖2γ + N [y;Qκ,α([0, T ]; Rn)] + ‖ξ‖∞ + ‖ξ‖2γ,

define C(ỹ) accordingly for ỹ, and let R be the quantity

R = ‖x − x̃‖∞ + ‖x − x̃‖γ +
k
∑

i=0

‖x2(−ri) − x̃2(−ri)‖2γ + ‖ξ − ξ̃‖∞ + ‖ξ − ξ̃‖2γ .

In the following we will denote constants, which depend only on κ, γ, n, d, σ and T , by c
regardless of their value.

Fix an interval [a, b] ⊂ [0, T ]. By straightforward calculations we have

|e(1)st | ≤ c (1 + C(y))|t− s|2γ R + c C(y)|t− s|2γ sup
τ∈[(s−rk)+,t]

|yτ − ỹτ | (69)

for s, t ∈ [a, b]. Now, consider the term e(2). We have

e
(2)
sut = ρsu(δx)ut − ρ̃su(δx̃)ut +

k
∑

i=0

(δζ (i))su · x2

ut(−ri) −
k
∑

i=0

(δζ̃ (i))su · x̃2

ut(−ri)

= (ρ− ρ̃)su(δx)ut + ρ̃su(δ(x− x̃))ut

+

k
∑

i=0

(δ(ζ (i) − ζ̃ (i)))su · x2

ut(−ri) −
k
∑

i=0

(δζ̃ (i))su · (x2

ut(−ri) − x̃2

ut(−ri))

for s, u, t ∈ [a, b]. Clearly, it holds

|(ρ− ρ̃)su(δx)ut| ≤ C(y)|t− u|γ|s− u|2κ N [ρ− ρ̃; C2κ
2 ([a, b]; Rn)],

|ρ̃su(δ(x− x̃))ut| ≤ |t− u|γ|s− u|2κ N [ρ̃; C2κ
2 ([a, b]; Rn)]R

and
∣

∣

∣

∣

∣

k
∑

i=0

(δ(ζ (i) − ζ̃ (i)))su · x2

ut(−ri)

∣

∣

∣

∣

∣

≤ c C(y)|t− u|2γ

k
∑

i=0

∣

∣

∣
(δ(ζ (i) − ζ̃ (i)))su

∣

∣

∣
,

∣

∣

∣

∣

∣

k
∑

i=0

(δζ̃ (i))su · (x2

ut(−ri) − x̃2

ut(−ri))

∣

∣

∣

∣

∣

≤ |t− u|2γ R

k
∑

i=0

∣

∣

∣
(δζ̃ (i))su

∣

∣

∣
.

Furthermore, we also have, for any i = 0, . . . , k that
∣

∣

∣
δ(ζ (i) − ζ̃ (i))su

∣

∣

∣
≤ c sup

τ1,τ2∈[s−ri,t−ri]

|(yτ1 − ỹτ1) − (yτ2 − ỹτ2)|,
∣

∣

∣
(δζ̃ (i))su

∣

∣

∣
≤ C(ỹ)|s− u|κ.
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Recall that the Hölder norm of a path f is defined by

‖f‖µ,∞,[s,t] = sup
τ∈[s,t]

|fτ | + sup
τ1,τ2∈[s,t]

|fτ1 − fτ2 |
|τ2 − τ1|µ

.

Set also C = c(1 + C(y) + C(ỹ)), where c is again an arbitrary constant depending only
on κ, γ, n, d, σ and T . Using these notations and combining the previous estimates, we
end up with:

∣

∣

∣
e
(2)
sut

∣

∣

∣
≤ C|t− u|γ|s− u|2κR + C|t− u|2γ|s− u|κ

k
∑

i=0

‖y − ỹ‖κ,∞,[a−ri,b−ri]

+ C|t− u|γ|s− u|2κ N [ρ− ρ̃; C2κ
2 ([a, b]; Rn)]. (70)

Hence e(2) belongs to Dom(Λ) and we obtain by Proposition 2.2 that

‖Λ(e(2))‖3κ ≤ C R+ C
k
∑

i=0

‖y − ỹ‖κ,∞,[a−ri,b−ri] + CN [ρ− ρ̃; C2κ
2 ([a, b]; Rn)]. (71)

Inserting the estimates for e(1) and Λ(e(2)), i.e. (69) and (71), into the definition (68) of
ρ− ρ̃ gives finally

N [ρ− ρ̃; C2κ
2 ([a, b]; Rn)] ≤ C|b− a|γ−κ

k
∑

i=0

‖y − ỹ‖κ,∞,[a−ri,b−ri]R

+C|b− a|γ−κR + C|b− a|γ−κ N [ρ− ρ̃; C2κ
2 ([a, b]; Rn)],

and due to the subadditivity of the Hölder norms, we get

N [ρ−ρ̃; C2κ
2 ([a, b]; Rn)] ≤ C|b−a|γ−κ N [ρ−ρ̃; C2κ

2 ([a, b]; Rn)]+C|b−a|γ−κ ‖y−ỹ‖κ,∞,[a,b]R

+ C|b− a|γ−κ ‖y − ỹ‖κ,∞,[a−rk,a]R + C|b− a|γ−κR. (72)

(ii) Now consider the difference between y and ỹ. Completely analogous to step (i) we
also obtain that

N [y−ỹ; Cκ
1 ([a, b]; Rn)] ≤ C|b−a|γ−κ N [ρ−ρ̃; C2κ

2 ([a, b]; Rn)]+C|b−a|γ−κ ‖y−ỹ‖κ,∞,[a,b]R

+ C|b− a|γ−κ ‖y − ỹ‖κ,∞,[a−rk,a]R + C|b− a|γ−κR.

Moreover, since

sup
τ∈[a,b]

|yτ − ỹτ | ≤ |ya − ỹa| + (b− a)κ N [y − ỹ; Cκ
1 ([a, b]; Rn)],

we also have

‖y − ỹ‖κ;[a,b] ≤ C|b− a|γ−κ N [ρ− ρ̃; C2κ
2 ([a, b]; Rn)] + C|b− a|γ−κ ‖y − ỹ‖κ,∞,[a,b]R

+ C|b− a|γ−κ ‖y − ỹ‖κ,∞,[a−rk,a]R + |ya − ỹa| + C|b− a|γ−κR. (73)

(iii) Now set

∆(a, b) = N [ρ− ρ̃; C2κ
2 ([a, b]; Rn)] + ‖y − ỹ‖κ,∞,[a,b].
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By combining (72) and (73) we finally have that

∆(a, b) ≤ C(1 +R)|b− a|γ−κ ∆(a, b) + C(1 +R)|b− a|γ−κ ∆((a− rk)
+, a)

+ |ya − ỹa| + C(1 +R)|b− a|γ−κR. (74)

Now choose a = 0 and b1 =
(

1
2C(1+R)

)1/(γ−κ)

. In this case, we obtain from (74) that

∆(0, b1) ≤
1

2
∆(0, b1) + |ξ0 − ξ̃0| +

1

2
R,

which yields

∆(0, b1) ≤ R + 2|ξ0 − ξ̃0| ≤ 3R. (75)

For the next interval [b1, 2b1], we obtain in turn that

∆(b1, 2b1) ≤
1

2
∆(b1, 2b1) +

1

2
∆(0, b1) + |yb1 − ỹb1 | +

1

2
R,

and hence

∆(b1, 2b1) ≤ ∆(0, b1) + 2|yb1 − ỹb1 | +R ≤ 10R,

by (75).
Repeating this step ⌊T/b1⌋-times we obtain that there exists a continuous non-decrea-

sing function g : (0,∞) → (0,∞) such that

∆(ib1, (i+ 1)b1) ≤ g(T/b1)R

for all i = 0, . . . , ⌊T/b1⌋. Using the subadditivity of the Hölder norms, we obtain the
estimate

∆(0, T ) ≤ (1 + T/b1)g(T/b1)R. (76)

Now recall that C = c(1+C(y)+C(ỹ)) and note that R ≤ c(C(y)+C(ỹ)). Thus we have

T/b1 = T (2C(1 +R))1/(γ−κ) ≤ c(C(y) + C(ỹ)))1/(γ−κ),

where

C(y) = ‖x‖∞ + ‖x‖γ +

k
∑

i=0

‖x2(−ri)‖2γ + N [y;Qκ,α([0, T ]; Rn)] + ‖ξ‖∞ + ‖ξ‖2γ,

and C(ỹ) is defined accordingly. However, by (63) it follows that

C(y) + C(ỹ) ≤ D + f(D) + D̃ + f(D̃),

where

D = ‖x‖∞ + ‖x‖γ +

k
∑

i=0

‖x2(−ri)‖2γ + ‖ξ‖∞ + ‖ξ‖2γ,

and D̃ is again defined accordingly. Thus, we obtain now from (76) that there exists
a continuous function ḡ : [0,∞) → [0,∞), which depends only on κ, γ, σ, n, d, T and
r1, . . . , rk, such that

∆(0, T ) ≤ ḡ(D + D̃)R.

Hence, the assertion follows.
�
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5. Application to the fractional Brownian motion

All the previous constructions rely on the specific assumptions we have made on the
path x. In this section, we will show how our results can be applied to the fractional
Brownian motion.

5.1. Definition. We consider in this section a d-dimensional fBm with Hurst parameter
H defined on the real line, that is a centered Gaussian process

B =
{

Bt = (B1
t , . . . , B

d
t ); t ∈ R

}

,

where B1, . . . , Bd are d independent one-dimensional fBm, i.e., each Bi is a centered
Gaussian process with continuous sample paths and covariance function

RH(t, s) =
1

2

(

|s|2H + |t|2H − |t− s|2H
)

(77)

for i = 1, . . . , d. The fBm verifies the following two important properties:

(scaling) For any c > 0, B(c) = cHB·/c is a fBm, (78)

(stationarity) For any h ∈ R, B·+h − Bh is a fBm. (79)

Notice that, for Malliavin calculus purposes, we shall assume in the sequel that B is
defined a complete probability space (Ω,F , P ), and that F = σ(Bs; s ∈ R). Observe also
that we work with a fBm indexed by R for sake of simplicity, since this allows some more
elegant calculations for the definition of the delayed Lévy area.

5.2. Malliavin calculus with respect to fBm. Let us give a few facts about the
Gaussian structure of fractional Brownian motion and its Malliavin derivative process,
following Section 2 of [18]. Let E be the set of step-functions on R with values in R

d.
Consider the Hilbert space H defined as the closure of E with respect to the scalar product
induced by

〈

(1[t1,t1], . . . , 1[td,td]), (1[s1,s1], . . . , 1[sd,sd])
〉

H

=

d
∑

i=1

(

RH(ti, si) − RH(ti, si) −RH(ti, s
i) +RH(ti, si)

)

,

for any −∞ < si < si < +∞ and −∞ < ti < ti < +∞, and where RH(t, s) is given by
(77). The mapping

(1[t1,t1], . . . , 1[td,td]) 7→
d
∑

i=1

(

Bi
ti − Bi

ti

)

can be extended to an isometry between H and the Gaussian space H1(B) associated with
B = (B1, . . . , Bd). We denote this isometry by ϕ 7→ B(ϕ). Let S be the set of smooth
cylindrical random variables of the form

F = f(B(ϕ1), . . . , B(ϕk)), ϕi ∈ H, i = 1, . . . , k,

where f ∈ C∞(Rd,k,R) is bounded with bounded derivatives. The derivative operator
D of a smooth cylindrical random variable of the above form is defined as the H-valued
random variable

DF =
k
∑

i=1

∂f

∂xi

(B(ϕ1), . . . , B(ϕk))ϕi.
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This operator is closable from Lp(Ω) into Lp(Ω;H). As usual, D
1,2 denotes the closure of

the set of smooth random variables with respect to the norm

‖F‖2
1,2 = E|F |2 + E‖DF‖2

H.

In particular, if DiF denotes the Malliavin derivative of F ∈ D
1,2 with respect to Bi, we

have DiBj
t = δi,j1[0,t] for i, j = 1, . . . , d.

The divergence operator I is the adjoint of the derivative operator. If a random variable
u ∈ L2(Ω;H) belongs to dom(I), the domain of the divergence operator, then I(u) is
defined by the duality relationship

E(F I(u)) = E〈DF, u〉H, (80)

for every F ∈ D
1,2. Moreover, let us recall two useful properties verified by D and I:

• If u ∈ dom(I) and F ∈ D
1,2 such that Fu ∈ L2(Ω;H), then we have the following

integration by parts formula:

I(Fu) = FI(u) − 〈DF, u〉H. (81)

• If u verifies E‖u‖2
H+E‖Du‖2

H⊗H <∞,Dru ∈ dom(I) for all r ∈ R and (I(Dru))r∈R

is an element of L2(Ω;H), then

DrI(u) = ur + I(Dru). (82)

5.3. Delayed Lévy area and fractional Brownian motion. The stochastic integrals
we shall use in order to define our delayed Lévy area are defined, in a natural way, by
Russo-Vallois symmetric approximations, that is, for a given process φ:

∫ t

s

φw d
◦Bi

w = L2 − lim
ε→0

(2ε)−1

∫ t

s

φw

(

Bi
w+ε − Bi

w−ε

)

dw,

provided the limit exists. This pathwise type notion of integral can then be related to
some stochastic analysis criterions in the following way (for a proof, see [1]):

Theorem 5.1. Fix t ≥ 0 and let φ ∈ D
1,2(H) be a process such that

Tr[0,t]D
Bi

φ := L2 − lim
ε→0

(2ε)−1

∫ t

0

〈DBi

φu, 1[u−ε,u+ε]〉Hdu

exists, and such that, setting ℓ(t, u) , u2H−1 + (t− u)2H−1 for 0 ≤ u < t,
∫ t

0

E[φ2
u] ℓ(t, u)du+

∫

[0,t]2
E
[

(DBi

r φu)
2
]

ℓ(t, u)dudr <∞.

Then
∫ t

0
φd◦Bi exists, and verifies

∫ t

0

φd◦Bi = IBi

(φ1[0,t]) + Tr[0,t]D
Bi

φ.

With these notations in mind, the main result of this section is the following:

Proposition 5.2. Let B be a d-dimensional fractional Brownian motion and suppose
H > 1

3
. For v ∈ [−r, 0], let B2(v) be the delayed Lévy area given by:

B2

st(v) =

∫ t

s

dBu ⊗
∫ u+v

s+v

dBr, i. e. B2

st(v)(i, j) =

∫ t

s

dBi
u

∫ u+v

s+v

dBj
r , i, j ∈ {1, . . . , d},

Then almost all sample paths of B satisfy Hypothesis 3.4.
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Proof. When H = 1
2
, the desired conclusion is easily obtained, because the Russo-Vallois

symmetric integral coincides with the Stratonovich integral. Moreover, for H > 1
2

the
Russo-Vallois symmetric integral coincides with the Young integral, which is well defined
in this case, and the assertion still follows easily from the properties of Young integrals.

Now, fix 1
3
< H < 1

2
. It is a classical fact that B ∈ Cγ

1 ([0, T ]; Rd) for any 1
3
< γ < H.

Due to the stationarity property (79) we will work without loss of generality on the interval
[0, t− s] instead of [s, t] in the sequel.

1) Case i = j. When v = 0, it is easily checked that

E|B2

st(0)(i, i)|2 =
1

4
E|Bt − Bs|4 =

3

4
|t− s|4H .

Let us now consider the case where v < 0. For φ = (Bi
·+v −Bi

v)1[0,t−s](·), the conditions of

Theorem 5.1 are easily verified, hence
∫ t−s

0
φud

◦Bi
u exists. Notice moreover that we have

DBi

r φu = 1[v,u+v](r)1[0,t−s](u) and, for u ∈ [0, t − s] and ε ∈ [0,−v] (which is always the
case, for a fixed v < 0 and ε small enough) it holds

〈1[v,u+v], 1[u−ε,u+ε]〉H =
1

2

(

|v + ε|2H − |v − ε|2H + |v − u− ε|2H − |v − u+ ε|2H
)

=
1

2

(

(−v − ε)2H − (−v + ε)2H + (−v + u+ ε)2H − (−v + u− ε)2H
)

.

Thus, we obtain

Tr[0,t−s]D
Bi

φ = −H(−v)2H−1(t− s) +
1

2

(

(t− s− v)2H − (−v)2H
)

.

For x ≥ 0, it is well-known that 0 ≤ ((−v) + x)2H − (−v)2H ≤ 2H(−v)2H−1x. Applying

this inequality to the second term of the right hand side of Tr[0,t−s]D
Bi

φ, we get

∣

∣

∣
Tr[0,t−s]D

Bi

φ
∣

∣

∣
≤ H(−v)2H−1(t− s). (83)

On the other hand, we have by (82)

DBi

r IBi(φ) = φr + IBi(DBi

r φ) =
(

φr + IBi(1[r−v,+∞)∩[0,t−s])
)

1[0,t−s](r). (84)

When −v ≥ t− s, then [r− v,+∞)∩ [0, t− s] = ∅ for any r ∈ [0, t− s]. By using (80)
we deduce

E|IBi

(φ)|2 = E‖φ‖2
H = E‖Bi

·+v −Bi
v‖2

H([0,t−s]) = E‖Bi‖2
H([0,t−s])

= (t− s)4HE‖Bi‖2
H([0,1]), (85)

where the two last equalities are due to the stationarity (79) and scaling (78) properties
of fractional Brownian motion.

When −v < t− s, then

IBi(1[r−v,+∞)∩[0,t−s]) = (Bi
t−s −Bi

r−v)1[0,t−s+v](r). (86)
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We deduce

E|IBi

(φ)|2

= E〈DIBi

(φ), φ〉H by (80)

= E‖φ‖2
H([0,t−s]) + E〈IBi

(1[r−v,∞)∩[0,t−s]), φ〉H([0,t−s]) by (84)

= E‖φ‖2
H([0,t−s]) + E〈(Bi

t−s − Bi
·−v)1[0,t−s+v], φ〉H([0,t−s]) by (86)

≤ E‖φ‖2
H([0,t−s]) + E

(

‖(Bi
t−s −Bi

·−v)1[0,t−s+v]‖H([0,t−s]) ‖φ‖H([0,t−s])

)

≤ 3

2
E‖φ‖2

H([0,t−s]) +
1

2
E‖(Bi

t−s − Bi
·−v)1[0,t−s+v]‖2

H([0,t−s]) because ab ≤ 1
2
(a2 + b2)

=
3

2
(t− s)4HE‖Bi‖2

H([0,1]) +
1

2
E‖(Bi

t−s+v −Bi)1[0,t−s+v]‖2
H([0,t−s]) by (78) and (79)

=
3

2
(t− s)4HE‖Bi‖2

H([0,1]) +
1

2
(t− s+ v)2HE‖(Bi

t−s+v − Bi
(t+s−v)·)‖2

H([0,1])

=
3

2
(t− s)4HE‖Bi‖2

H([0,1]) +
1

2
(t− s+ v)4HE‖(Bi

1 −Bi)‖2
H([0,1]) by (78)

≤ 1

2
(t− s)4H

(

3E‖Bi‖2
H([0,1]) + E‖(Bi

1 −Bi)‖2
H([0,1])

)

. (87)

Finally, we can summarize (85) and (87) in

E|IBi

(φ)|2 ≤ cH |t− s|4H ,

with a constant cH > 0, in particular independent of v. Putting together this last estimate
with inequality (83), we end up with:

E|B2

st(v)(i, i)|2 ≤ cH(1 + |v|2H−1)|t− s|4H ,

for any v ∈ [−r, 0].

2) Case where i 6= j. By stationarity (79), we have for any v ∈ [−r, 0] that
(

Bj
u+v −Bj

v, B
i
u

)

u∈[0,t−s]

L
=
(

Bj
u, B

i
u

)

u∈[0,t−s]
.

Thus, the delayed Lévy area B2

0,t−s(v)(i, j) =
∫ t−s

0
(Bj

u+v−Bj
v)d

◦Bi
u for v < 0 behaves as in

the case where v = 0. But it is a classical result that B2

0,t−s(0) is well-defined for H > 1/3
(see, e.g., [20]). Moreover, it follows again by the stationarity (79) and the scaling (78)
properties that

E|B2

0,t−s(v)(i, j)|2 = E|B2

0,t−s(0)(i, j)|2 = |t− s|4HE|B2

01(0)(i, j)|2 ≤ cH |t− s|4H .

Immediately, we deduce that

E|B2

st(v)(i, j)|2 ≤ cH |t− s|4H

for any v ∈ [−r, 0].

Both in the cases i = j and i 6= j, the substitution formula for Russo-Vallois integrals
easily yields that δB2(v) = δBv ⊗ δB. Furthermore, since B2(v) is a process belonging
to the second chaos of the fractional Brownian motion B, on which all Lp norms are
equivalent for p > 1, we get that

E|B2

st(v)(i, j)|p ≤ cp|t− s|2pH (88)
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for i 6= j and

E|IBi(φ)|p ≤ cp|t− s|2pH (89)

when i = j. In order to conclude that B2(v) ∈ C2γ
2 (Rd×d) for any 1

3
< γ < H and

v ∈ [−r, 0), let us recall the following inequality from [9]: let g ∈ C2(V ) for a given
Banach space V ; then, for any κ > 0 and p ≥ 1 we have

‖g‖κ ≤ c
(

Uκ+2/p;p(g) + ‖δg‖κ

)

with Uγ;p(g) =

(
∫ T

0

∫ T

0

|gst|p
|t− s|γp

dsdt

)1/p

. (90)

By plugging inequality (88)-(89) into (90), by recalling that δB2(v) = δBv ⊗ δB and (83)
hold, we obtain that B2(v)(i, j) ∈ C2γ

2 (Rd×d) for any 1
3
< γ < H and i, j = 1, . . . , d. �
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