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, by establishing an existence and uniqueness result for delay equations driven by rough paths. We then apply our results to the case where the driving path is a fractional Brownian motion with Hurst parameter H > 1 3 .

Introduction

In the last years, great efforts have been made to develop a stochastic calculus for fractional Brownian motion. The first results gave a rigorous theory for the stochastic integration with respect to fractional Brownian motion and established a corresponding Itô formula, see e.g. [START_REF] Alòs | Stratonovich stochastic calculus for fractional Brownian motion with Hurst parameter lesser that 1 2[END_REF][START_REF] Alós | Stochastic integration with respect to the fractional Brownian motion[END_REF][START_REF] Carmona | Stochastic integration with respect to fractional Brownian motion[END_REF][START_REF] Decreusefond | Stochastic integration with respect to fractional Brownian motion[END_REF][START_REF] Nualart | Stochastic calculus with respect to the fractional Brownian motion and applications[END_REF]. Thereafter, stochastic differential equations driven by fractional Brownian motion have been considered. Here different approaches can be used depending on the dimension of the equation and the Hurst parameter of the driving fractional Brownian motion. In the one-dimensional case [START_REF] Nourdin | Correcting Newton-Cotes integrals corrected by Lévy areas[END_REF], existence and uniqueness of the solution can be derived by a regularization procedure introduced in [START_REF] Russo | Forward, backward and symmetric stochastic integration[END_REF]. The case of a multi-dimensional driving fractional Brownian motion can be treated by means of fractional calculus tools, see e.g. [START_REF] Nualart | Differential equations driven by fractional Brownian motion[END_REF][START_REF] Zähle | Integration with respect to fractal functions and stochastic calculus I[END_REF] or by means of the Young integral [START_REF] Lyons | Differential equations driven by rough signals[END_REF], when the Hurst coefficient satisfies H > 1 2 . However, only the rough paths theory [START_REF] Lyons | Differential equations driven by rough signals[END_REF][START_REF] Lyons | System control and rough paths[END_REF] and its application to fractional Brownian motion [START_REF] Coutin | Stochastic rough path analysis and fractional Brownian motion[END_REF] allow to solve fractional SDEs in any dimension for a Hurst parameter H > 1 4 . The original rough paths theory developed by T. Lyons relies on deeply involved algebraical and analytical tools. Therefore some alternative methods [START_REF] Feyel | Curvilinear integrals along enriched paths[END_REF][START_REF] Gubinelli | Controlling rough paths[END_REF] have been developed recently, trying to catch the essential results of [START_REF] Lyons | System control and rough paths[END_REF] with less theoretical apparatus.

Since it is based on some rather simple algebraic considerations and an extension of Young's integral, the method given in [START_REF] Gubinelli | Controlling rough paths[END_REF], which we call algebraic integration in the sequel, has been especially attractive to us. Indeed, we think that the basic properties of fractional differential systems can be studied in a natural and nice way using algebraic integration. (See also [START_REF] Neuenkirch | Trees and asymptotic developments for fractional diffusion processes[END_REF], where this approach is used to study the law of the solution of a fractional SDE.) In the present article, we will illustrate the flexibility of the algebraic integration formalism by studying fractional equations with delay. More specifically, we will consider the following equation:

X t = ξ 0 + t 0 σ(X s , X s-r 1 , . . . , X s-r k )dB s + t 0 b(X s , X s-r 1 , . . . , X s-r k )ds, t ∈ [0, T ], X t = ξ t , t ∈ [-r k , 0]. (1) 
Here the discrete delays satisfy 0 < r 1 < . . . < r k < ∞, the initial condition ξ is a function from [-r k , 0] to R n , the functions σ : R n,k+1 → R n,d , b : R n,k+1 → R n are regular, and B is a d-dimensional fractional Brownian motion with Hurst parameter H > 1 [START_REF] Carmona | Stochastic integration with respect to fractional Brownian motion[END_REF] . The stochastic integral in equation ( 1) is a generalized Stratonovich integral, which will be explained in detail in Section 2. Actually, in equations like [START_REF] Alòs | Stratonovich stochastic calculus for fractional Brownian motion with Hurst parameter lesser that 1 2[END_REF], the drift term t 0 b(X s , X s-r 1 , . . . , X s-r k )ds is usually harmless, but causes some cumbersome notations. Thus, for sake of simplicity, we will rather deal in the sequel with delay equations of the type X t = ξ 0 + t 0 σ(X s , X s-r 1 , . . . , X s-r k )dB s , t ∈ [0, T ],

X t = ξ t , t ∈ [-r k , 0]. (2) 
Our main result will be as follows:

Theorem 1.1. Let ξ ∈ C 1 ([-r k , 0]; R n ), σ ∈ C 3 b (R n,k+1 ; R n,d
), and let B be a d-dimensional fractional Brownian motion with Hurst parameter H > 1 3 . Then equation ( 2) admits a unique solution on [0, T ] in the class of controlled processes (see Definition 2.5.)

Stochastic delay equations driven by standard Brownian motion have been studied extensively (see e.g. [START_REF] Mohammed | Stochastic differential systems with memory: theory, examples and applications[END_REF] and [START_REF] Mohammed | Stochastic functional differential equations[END_REF] for an overview) and are used in many applications. However, delay equations driven by fractional Brownian motion have been only considered so far in [START_REF] Ferrante | Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H > 1 2[END_REF], where the one-dimensional equation

X t = ξ 0 + t 0 σ(X s-r )dB s + t 0 b(X s )ds, t ∈ [0, T ], X t = ξ t , t ∈ [-r, 0], (3) 
is studied for H > 1 2 . Observe that (3) is a particular case of equation [START_REF] Alós | Stochastic integration with respect to the fractional Brownian motion[END_REF]. To solve equation [START_REF] Alós | Stochastic integration with respect to the fractional Brownian motion[END_REF], one requires two main ingredients in the algebraic integration setting. First of all, a natural class of paths, in which the equation can be solved. Here, this will be the paths whose increments are controlled by the increments of B. Namely, writing (δz) st = z tz s for the increments of an arbitrary function z, a stochastic differential equation driven by B should be solved in the class of paths, whose increments can be decomposed into z tz s = ζ s (B t -B s ) + ρ st , for 0 ≤ s < t ≤ T, with ζ belonging to C γ 1 and ρ belonging to C 2γ 2 , for a given γ ∈ ( 1 3 , H). (Here, C µ i denotes a space of µ-Hölder continuous functions of i variables, see Section 2.) This class of functions will be called the class of controlled paths in the sequel.

To solve fractional differential equations without delay, the second main tool would be to define the integral of a controlled path with respect to fractional Brownian motion and to show that the resulting process is still a controlled path. To define the integral of a controlled path, a double iterated integral of fractional Brownian motion, called the Lévy area, will be required. Once the stability of the class of controlled paths under integration is established, the differential equation is solved by an appropriate fixed point argument.

To solve fractional delay equations, we will have to modify this procedure. More specifically, we need a second class of paths, the class of delayed controlled paths, whose increments can be written as

z t -z s = ζ (0) s (B t -B s ) + k i=1 ζ (i) s (B t-r i -B s-r i ) + ρ st , for 0 ≤ s < t ≤ T,
where, as above, ζ (i) belongs to C γ 1 for i = 0, . . . , k, and ρ belongs to C 2γ 2 for a given 1 3 < γ < H. (Note that a classical controlled path is a delayed controlled path with ζ (i) = 0 for i = 1, . . . , k.) For such a delayed controlled path we will then define its integral with respect to fractional Brownian motion. We emphasize the fact that the integral of a delayed controlled path is actually a classical controlled path and satisfies a stability property.

To define this integral we have to introduce a delayed Lévy area B 2 (v) of B for v ∈ [-r k , 0]. This process, with values in the space of matrices R d,d will also be defined as an iterated integral: for 1 ≤ i, j ≤ d and 0 ≤ s < t ≤ T , we set

B 2 st (v)(i, j) = t s dB i u u+v s+v dB j w = t s (B j u+v -B j s+v )d • B i u ,
where the integral on the right hand side is a Russo-Vallois integral [START_REF] Russo | Forward, backward and symmetric stochastic integration[END_REF]. Finally, the fractional delay equation ( 2) will be solved by a fixed point argument.

This article is structured as follows: Throughout the remainder of this article, we consider the general delay equation

dy t = σ(y t , y t-r 1 , . . . , y t-r k )dx t , t ∈ [0, T ], y t = ξ t , t ∈ [-r k , 0], (4) 
where x is γ-Hölder continuous function with γ > 1 3 and ξ is a 2γ-Hölder continuous function. In Section 2 we recall some basic facts of the algebraic integration and in particular the definition of a classical controlled path, while in Section 3 we introduce the class of delayed controlled paths and the integral of a delayed controlled path with respect to its controlling rough path. Using the stability of the integral, we show the existence of a unique solution of equation ( 4) in the class of classical controlled paths under the assumption of the existence of a delayed Lévy area. Finally, in Section 4 we specialize our results to delay equations driven by a fractional Brownian motion with Hurst parameter H > 1 3 .

Algebraic integration and rough paths equations

Before we consider equation (4), we recall the strategy introduced in [START_REF] Gubinelli | Controlling rough paths[END_REF] in order to solve an equation without delay, i.e.,

dy t = σ(y t )dx t , t ∈ [0, T ], y 0 = α ∈ R n , (5) 
where x is a R d -valued γ-Hölder continuous function with γ > 1 3 .

2.1.

Increments. Here we present the basic algebraic structures, which will allow us to define a pathwise integral with respect to irregular functions. For real numbers 0 ≤ a ≤ b ≤ T < ∞, a vector space V and an integer k ≥ 1 we denote by

C k ([a, b]; V ) the set of functions g : [a, b] k → V such that g t 1 •••t k = 0 whenever t i = t i+1 for some 1 ≤ i ≤ k -1.
Such a function will be called a (k -1)-increment, and we will set

C * ([a, b]; V ) = ∪ k≥1 C k ([a, b]; V
). An important operator for our purposes is given by

δ : C k ([a, b]; V ) → C k+1 ([a, b]; V ), (δg) t 1 •••t k+1 = k+1 i=1 (-1) k-i g t 1 ••• ti •••t k+1 , (6) 
where ti means that this argument is omitted. A fundamental property of δ is that δδ = 0, where δδ is considered as an operator from

C k ([a, b]; V ) to C k+2 ([a, b]; V ). We will denote ZC k ([a, b]; V ) = C k ([a, b]; V ) ∩ Kerδ and BC k ([a, b]; V ) = C k ([a, b]; V ) ∩ Imδ.
Some simple examples of actions of δ are as follows:

For g ∈ C 1 ([a, b]; V ), h ∈ C 2 ([a, b]; V ) and f ∈ C 3 ([a, b]; V ) we have (δg) st = g t -g s , (δh) sut = h st -h su -h ut and (δf ) suvt = f uvt -f svt + f sut -f suv for any s, u, v, t ∈ [a, b]. Furthermore, it is easily checked that ZC k+1 ([a, b]; V ) = BC k ([a, b]; V ) for any k ≥ 1.
In particular, the following property holds:

Lemma 2.1. Let k ≥ 1 and h ∈ ZC k+1 ([a, b]; V ). Then there exists a (non unique) f ∈ C k ([a, b]; V ) such that h = δf .
Observe that Lemma 2.1 implies in particular that all elements h ∈ C 2 ([a, b]; V ) with δh = 0 can be written as h = δf for some f ∈ C 1 ([a, b]; V ). Thus we have a heuristic interpretation of δ| C 2 ([a,b];V ) : it measures how much a given 1-increment differs from being an exact increment of a function, i.e., a finite difference.

Our further discussion will mainly rely on k-increments with k ≤ 2. For simplicity of the exposition, we will assume that V = R d in what follows, although V could be in fact any Banach space. We measure the size of the increments by Hölder norms, which are defined in the following way: 

for f ∈ C 2 ([a, b]; V ) let f µ = sup s,t∈[a,b] |f st | |t -s| µ
∈ C µ 1 ([a, b]; V ) iff g µ is finite. Note that • µ is only a semi-norm on C 1 ([a, b]; V
), but we will work in general on spaces of the type

C µ 1,α ([a, b]; V ) = {g : [a, b] → V ; g a = α, g µ < ∞} , for a given α ∈ V, on which g µ is a norm. For h ∈ C 3 ([a, b]; V ) we define in the same way h γ,ρ = sup s,u,t∈[a,b] |h sut | |u -s| γ |t -u| ρ (7) 
h µ = inf i h i ρ i ,µ-ρ i ; (ρ i , h i ) i∈N with h i ∈ C 3 ([a, b]; V ), i h i = h, 0 < ρ i < µ .
Then • µ is a norm on C 3 ([a, b]; V ), see [START_REF] Gubinelli | Controlling rough paths[END_REF], and we define The crucial point in this algebraic approach to the integration of irregular paths is that the operator δ can be inverted under mild smoothness assumptions. This inverse is called Λ. The proof of the following proposition may be found in [START_REF] Gubinelli | Controlling rough paths[END_REF], and in a simpler form in [START_REF] Gubinelli | Rough evolution equation[END_REF]. Proposition 2.2. There exists a unique linear map Λ :

C µ 3 ([a, b]; V ) := {h ∈ C 3 ([a, b]; V ); h µ < ∞} . Eventually, let C 1+ 3 ([a, b]; V ) = ∪ µ>1 C µ 3 ([a
ZC 1+ 3 ([a, b]; V ) → C 1+ 2 ([a, b]; V ) such that δΛ = Id ZC 1+ 3 ([a,b];V ) and Λδ = Id C 1+ 2 ([a,b];V ) . In other words, for any h ∈ C 1+ 3 ([a, b]; V ) such that δh = 0, there exists a unique g = Λ(h) ∈ C 1+ 2 ([a, b]; V ) such that δg = h. Furthermore, for any µ > 1, the map Λ is continuous from ZC µ 3 ([a, b]; V ) to C µ 2 ([a, b]; V ) and we have Λh µ ≤ 1 2 µ -2 h µ , h ∈ ZC µ 3 ([a, b]; V ). ( 8 
)
This mapping Λ allows to construct a generalised Young integral:

Corollary 2.3. For any 1-increment g ∈ C 2 ([a, b]; V ) such that δg ∈ C 1+ 3 ([a, b]; V ) set δf = (Id -Λδ)g. Then (δf ) st = lim |Πst|→0 n i=0 g t i t i+1
for a ≤ s < t ≤ b, where the limit is taken over any partition Π st = {t 0 = s, . . . , t n = t} of [s, t], whose mesh tends to zero. Thus, the 1-increment δf is the indefinite integral of the 1-increment g.

We also need some product rules for the operator δ. For this recall the following convention: for g ∈ C n ([a, b]; R l,d ) and h ∈ C m ([a, b]; R d,p ) let gh be the element of C n+m-1 ([a, b]; R l,p ) defined by (gh) t 1 ,...,t m+n-1 = g t 1 ,...,tn h tn,...,t m+n-1 , 

(i) Let g ∈ C 1 ([a, b]; R l,d ) and h ∈ C 1 ([a, b], R d ). Then gh ∈ C 1 (R l ) and δ(gh) = δg h + g δh. (ii) Let g ∈ C 1 ([a, b]; R l,d ) and h ∈ C 2 ([a, b]; R d ). Then gh ∈ C 2 ([a, b]; R l ) and δ(gh) = -δg h + g δh. (iii) Let g ∈ C 2 ([a, b]; R l,d ) and h ∈ C 1 ([a, b]; R d ). Then gh ∈ C 2 ([a, b]; R l ) and δ(gh) = δg h + g δh. (iv) Let g ∈ C 2 ([a, b]; R l,d ) and h ∈ C 2 ([a, b]; R d,p ). Then gh ∈ C 3 ([a, b]; R l,p
) and δ(gh) = -δg h + g δh.

Classical controlled paths (CCP).

In the remainder of this article, we will use both the notations t s f dg or J st (f dg) for the integral of a function f with respect to a given function g on the interval [s, t]. Moreover, we also set f ∞ = sup x∈R d,l |f (x)| for a function f : R d,l → R m,n . To simplify the notation we will write

C γ k instead of C γ k ([a, b]; V ), if [a, b]
and V are obvious from the context. Before we consider the technical details, we will make some heuristic considerations about the properties that the solution of equation ( 5) should enjoy. Set σt = σ (y t ), and suppose that y is a solution of (5), which satisfies y ∈ C κ 1 for a given 1 3 < κ < γ. Then the integral form of our equation can be written as

y t = α + t 0 σu dx u , t ∈ [0, T ]. ( 10 
)
Our approach to generalised integrals induces us to work with increments of the form (δy) st = y ty s instead of [START_REF] Gubinelli | Rough evolution equation[END_REF]. It is immediate that one can decompose the increments of ( 10) into (δy

) st = t s σu dx u = σs (δx) st + ρ st with ρ st = t s (σ u -σs )dx u .
We thus have obtained a decomposition of y of the form δy = σδx + ρ. Let us see, still at a heuristic level, which regularity we can expect for σ and ρ: If σ is bounded and continuously differentiable, we have that σ is bounded and

|σ t -σs | ≤ σ ′ ∞ y κ |t -s| κ
, where y κ denotes the κ-Hölder norm of y. Hence σ belongs to C κ 1 and is bounded. As far as ρ is concerned, it should inherit both the regularities of δσ and x, provided that the integral t s (σ uσs )dx u = t s (δσ) su dx u is well defined. Thus, one should expect that ρ ∈ C 2κ 2 . In summary, we have found that a solution δy of equation [START_REF] Gubinelli | Rough evolution equation[END_REF] should be decomposable into

δy = σδx + ρ with σ ∈ C κ 1 bounded and ρ ∈ C 2κ 2 . (11) 
This is precisely the structure we will demand for a possible solution of equation ( 5) respectively its integral form (10):

Definition 2.5. Let a ≤ b ≤ T and let z be a path in C κ 1 ([a, b]; R n ) with κ ≤ γ and 2κ + γ > 1. We say that z is a classical controlled path based on x, if z a = α ∈ R n and δz ∈ C κ 2 ([a, b]; R n ) can be decomposed into δz = ζδx + r, i. e. (δz) st = ζ s (δx) st + ρ st , s, t ∈ [a, b], (12) 
with ζ ∈ C κ 1 ([a, b]; R n,d ) and ρ ∈ C 2κ 2 ([a, b]; R n ). The space of classical controlled paths on [a, b] will be denoted by Q κ,α ([a, b]; R n ), and a path z ∈ Q κ,α ([a, b]; R n ) should be considered in fact as a couple (z, ζ). The norm on Q κ,α ([a, b]; R n ) is given by N [z; Q κ,α ([a, b]; R n )] = sup s,t∈[a,b] |(δz) st | |s -t| κ + sup s,t∈[a,b] |ρ st | |s -t| 2κ + sup t∈[a,b] |ζ t | + sup s,t∈[a,b] |(δζ) st | |s -t| κ .
Note that in the above definition α corresponds to a given initial condition and ρ can be understood as a regular part. Moreover, observe that a can be negative. Now we can sketch the strategy used in [START_REF] Gubinelli | Controlling rough paths[END_REF], in order to solve equation ( 5): (a) Verify the stability of

Q κ,α ([a, b]; R n ) under a smooth map ϕ : R n → R n,d .
(b) Define rigorously the integral z u dx u = J (zdx) for a classical controlled path z and compute its decomposition [START_REF] Lyons | System control and rough paths[END_REF]. (c) Solve equation ( 5) in the space Q κ,α ([a, b]; R n ) by a fixed point argument. Actually, for the second point we had to impose a priori the following hypothesis on the driving rough path, which is a standard assumption in the rough paths theory:

Hypothesis 2.6. The R d -valued γ-Hölder path x admits a Lévy area, i.e. a process

x 2 = J (dxdx) ∈ C 2γ 2 ([0, T ]; R d,d ), which satisfies δx 2 = δx ⊗ δx, that is (δx 2 ) sut (i, j) = [δx i ] su [δx j ] ut , for all s, u, t ∈ [0, T ], i, j ∈ {1, . . . , d}.
Then, using the strategy sketched above, the following result is obtained in [START_REF] Gubinelli | Controlling rough paths[END_REF]: Theorem 2.7. Let x be a process satisfying Hypothesis 2.6 and let σ ∈ C 2 (R n ; R n,d ) be bounded together with its derivatives. Then we have:

(1) Equation ( 5) admits a unique solution

y in Q κ,α ([0, T ]; R n ) for any κ < γ such that 2κ + γ > 1. (2) The mapping (α, x, x 2 ) → y is continuous from R n ×C γ 1 ([0, T ]; R d )×C 2γ 2 ([0, T ]; R d,d ) to Q κ,α ([0, T ]; R n ), in a sense which is detailed in [9, Proposition 8].

The delay equation

In this section, we make a first step towards the solution of the delay equation

dy t = σ(y t , y t-r 1 , . . . , y t-r k )dx t , t ∈ [0, T ], y t = ξ t , t ∈ [-r k , 0], ( 13 
)
where x is a R d -valued γ-Hölder continuous function with γ > 1 3 , the function σ ∈ C 3 (R n,k+1 ; R n,d ) is bounded together with its derivatives, ξ is a R n -valued 2γ-Hölder continuous function, and 0 < r 1 < . . . < r k < ∞. For convenience, we set r 0 = 0 and, moreover, we will use the notation

s(y) t = (y t-r 1 , . . . , y t-r k ), t ∈ [0, T ]. (14) 
3.1. Delayed controlled paths. As in the previous section, we will first make some heuristic considerations about the properties of a solution: set σt = σ(y t , s(y) t ) and suppose that y is a solution of ( 13) with y ∈ C κ 1 for a given 1 3 < κ < γ. Then we can write the integral form of our equation as

(δy) st = t s σu dx u = σs (δx) st + ρ st with ρ st = t s (σ u -σs )dx u .
Thus, we have again obtained a decomposition of y of the form δy = σδx + ρ. Moreover, it follows (still at a heuristic level) that σ is bounded and satisfies

|σ t -σs | ≤ σ ′ ∞ k i=0 |y t-r i -y s-r i | ≤ (k + 1) σ ′ ∞ y γ |t -s| γ .
Thus, with the notation of Section 2.1, we have that σ belongs to C γ 1 and is bounded. The term ρ should again inherit both the regularities of δσ and x. Thus, one should have that ρ ∈ C 2κ 2 . In conclusion, the increment δy should be decomposable into

δy = σδx + ρ with σ ∈ C γ 1 bounded and ρ ∈ C 2κ 2 . ( 15 
)
This is again the structure we will ask for a possible solution to [START_REF] Lyons | Differential equations driven by rough signals[END_REF]. However, this decomposition does not take into account that equation ( 13) is actually a delay equation.

To define the integral t s σu dx u , we have to enlarge the class of functions we will work with, and hence we will define a delayed controlled path (hereafter DCP in short).

Definition 3.1. Let 0 ≤ a ≤ b ≤ T and z ∈ C κ 1 ([a, b]; R n ) with 1 3 < κ ≤ γ. We say that z is a delayed controlled path based on x, if z a = α belongs to R n and if δz ∈ C κ 2 ([a, b]; R n ) can be decomposed into (δz) st = k i=0 ζ (i) s (δx) s-r i ,t-r i + ρ st for s, t ∈ [a, b], (16) 
where

ρ ∈ C 2κ 2 ([a, b]; R n ) and ζ (i) ∈ C κ 1 ([a, b]; R n,d ) for i = 0, . . . , k. The space of delayed controlled paths on [a, b] will be denoted by D κ,α ([a, b]; R n ), and a path z ∈ D κ,α ([a, b]; R n ) should be considered in fact as a (k + 2)-tuple (z, ζ (0) , . . . , ζ (k) ). The norm on D κ,α ([a, b]; R n ) is given by N [z; D κ,α ([a, b]; R n )] = sup s,t∈[a,b] |(δz) st | |s -t| κ + sup s,t∈[a,b] |ρ st | |s -t| 2κ + k i=0 sup t∈[a,b] |ζ (i) t | + k i=0 sup s,t∈[a,b] |(δζ (i) ) st | |s -t| κ .
Now we can sketch our strategy to solve the delay equation:

(1) Consider the map

T σ defined on Q κ,α ([a, b]; R n ) × Q κ, α([a -r k , b -r 1 ]; R n ) by (T σ (z, z)) t = σ(z t , s(z) t ), t ∈ [a, b], (17) 
where we recall that the notation s(z) has been introduced at (14). We will show that

T σ maps Q κ,α ([a, b]; R n ) × Q κ, α([a -r k , b -r 1 ]; R n ) smoothly onto a space of the form D κ, α([a, b]; R n,d ). (2) Define rigorously the integral z u dx u = J (zdx) for a delayed controlled path z ∈ D κ, α([a, b]; R n,d ), show that J (zdx) belongs to Q κ,α ([a, b]; R d ),
and compute its decomposition [START_REF] Lyons | System control and rough paths[END_REF]. Let us point out the following important fact:

T σ creates "delay", that is T σ (z, z) ∈ D κ, α([a, b]; R n,d ), while J creates "advance", that is J (zdx) ∈ Q κ,α ([a, b]; R n ). ( 3 
) By combining the first two points, we will solve equation ( 13) by a fixed point argument on the intervals [0, r 1 ], [r 1 , 2r 1 ], . . . .

3.2.

Action of the map T on controlled paths. The major part of this section will be devoted to the following two stability results:

Proposition 3.2. Let 0 ≤ a ≤ b ≤ T , let α, α be two initial conditions in R n and let ϕ ∈ C 3 (R n,k+1 ; R l ) be bounded with bounded derivatives. Define T ϕ on Q κ,α ([a; b]; R n ) × Q κ, α([a -r k ; b -r 1 ]; R n ) by T ϕ (z, z) = ẑ, with ẑt = ϕ(z t , s(z) t ), t ∈ [a, b].
Then, setting α = ϕ(α, s(z a )) = ϕ(α, za-r 1 , . . . , za-r k-1 , α), we have T ϕ (z, z) ∈ D κ, α([a; b]; R l ) and it admits a decomposition of the form

(δẑ) st = ζs (δx) st + k i=1 ζ(i) s (δx) s-r i ,t-r i + ρst , s, t ∈ [a, b], (18) 
where ζ, ζ(i) are the R l,d -valued paths defined by

ζs = ∂ϕ ∂x 1,0 (z s , s(z) s ), . . . , ∂ϕ ∂x n,0 (z s , s(z) s ) ζ s , s ∈ [a, b],
and

ζ(i) s = ∂ϕ ∂x 1,i (z s , s(z) s ), . . . , ∂ϕ ∂x n,i (z s , s(z) s ) ζs-r i , s ∈ [a, b],
for i = 1, . . . , k. Moreover, the following estimate holds:

N [ẑ; D κ,â ([a; b]; R l )] (19) 
≤ c ϕ,T 1 + N 2 [z; Q κ,α ([a, b]; R n )] + N 2 [z; Q κ, α([a -r k , b -r 1 ]; R n )] ,
where the constant c ϕ,T depends only ϕ and T .

Proof. Fix s, t ∈ [a, b] and set

ψ (i) s = ∂ϕ ∂x 1,i (z s , s(z) s ), . . . , ∂ϕ ∂x n,i (z s , s(z) s )
.

for i = 0, . . . , k. It is readily checked that (δẑ) st = ϕ(z t-r 0 , zt-r 1 , . . . , zt-r k ) -ϕ(z s-r 0 , zs-r 1 , . . . , zs-r k ) = ψ (0) s ζ s (δx) st + k i=1 ψ (i) s ζs-r i (δx) s-r i ,t-r i + ρ1 st + ρ2 st ,
where

ρ1 st = ψ (0) s ρ st + k i=1 ψ (i) s ρs-r i ,t-r i , ρ2 st = ϕ(z t-r 0 , zt-r 1 , . . . , zt-r k ) -ϕ(z s-r 0 , zs-r 1 , . . . , zs-r k ) -ψ (0) (δz) st - k i=1 ψ (i) s (δz) s-r i ,t-r i . (i) We first have to show that ρ1 , ρ2 ∈ C 2κ 2 ([a, b]; R l ).
For the second remainder term Taylor's formula yields

|ρ 2 st | ≤ 1 2 ϕ ′′ ∞ |(δz) st | 2 + k i=1 |(δz) s-r i ,t-r i | 2 ,
and hence clearly, thanks to some straightforward bounds in the spaces Q, we have

|ρ 2 st | |t -s| 2κ ≤ 1 2 ϕ ′′ ∞ N 2 [z; Q κ,α ([a, b]; R n )] + k i=1 N 2 [z; Q κ,α ([a -r i , b -r i ]; R n )] .
(20) The first term can also be bounded easily: it can be checked that

|ρ 1 st | |t -s| 2κ ≤ ϕ ′ ∞ N ρ; C 2κ 2 ([a, b]; R n ) + k i=1 N ρ, C 2κ 2 ([a -r i , b -r i ]; R n ) (21)
Putting together the last two inequalities, we have shown that decomposition [START_REF] Nualart | Stochastic calculus with respect to the fractional Brownian motion and applications[END_REF] holds, that is

(δẑ) st = ψ (0) ζ s (δx) s,t + k i=1 ψ (i) s ζ(i) s-r i (δx) s-r i ,t-r i + ρst with ρst = ρ1 st + ρ2 st ∈ C 2κ 2 ([a, b]; R d ).
(ii) Now we have to consider the "density" functions 

ζs = ψ (0) s ζ s , ζ(i) s = ψ (i) s ζs-r i , s ∈ [a, b].
| ζs | ≤ ϕ ′ ∞ sup s∈[a,b] |ζ s |, sup s∈[a,b] | ζ(i) s | ≤ ϕ ′ ∞ sup s∈[a,b] | ζs-r i | (22) 
for i = 1, . . . , k. Moreover, for i = 1, . . . , k, we have

| ζ(i) s 1 -ζ(i) s 2 | ≤ |(ψ (i) s 1 -ψ (i) s 2 ) ζs 1 -r i | + |( ζs 1 -r i -ζs 2 -r i )ψ (i) s 2 )| ≤ ϕ ′′ ∞ |z s 1 -z s 2 | sup s∈[a,b] | ζs-r i | + ϕ ′′ ∞ k j=1 |z s 1 -r j -zs 2 -r j | sup s∈[a,b] | ζs-r i | + ψ (i) ∞ | ζs 1 -r i -ζs 2 -r i | ≤ ϕ ′′ ∞ N [z; C κ 1 ([a, b]; R n )] sup s∈[a,b] | ζs-r i | |s 2 -s 1 | κ (23) + ϕ ′′ ∞ k j=1 N [z; C κ 1 ([a -r j , b -r j ]; R n )] sup s∈[a,b] | ζs-r i | |s 2 -s 1 | κ + ψ (i) ∞ N [ ζ; C κ 1 ([a -r i , b -r i ]; R n )] |s 2 -s 1 | κ . Similarly, we obtain | ζs 1 -ζs 2 | ≤ ϕ ′′ ∞ N [z; C κ 1 ([a, b]; R n )] sup s∈[a,b] |ζ s | |s 2 -s 1 | κ + ϕ ′′ ∞ k j=1 N [z; C κ 1 ([a -r j , b -r j ]; R n )] sup s∈[a,b] |ζ s | |s 2 -s 1 | κ + ψ (i) ∞ N [ζ; C κ 1 ([a, b]; R n )] |s 2 -s 1 | κ . (24) 
Hence, the densities satisfy the conditions of Definition 3.1.

(iii) Finally, combining the estimates ( 20), ( 21), ( 22) and (23) yields the estimate [START_REF] Nualart | Differential equations driven by fractional Brownian motion[END_REF], which ends the proof.

We thus have proved that the map T ϕ is quadratically bounded in z and z. Moreover, for fixed z the map

T ϕ (•, z) : Q κ,α ([a; b]; R d ) → D κ, α([a; b]; R d )] is locally Lipschitz continuous: Proposition 3.3. Let the notation of Proposition 3.2 prevail. Let 0 ≤ a ≤ b ≤ T , let z (1) , z (2) ∈ Q κ,α ([a, b]; R n ) and let z ∈ Q κ, α([a -r k , b -r 1 ]; R n ). Then, N [T ϕ (z (1) , z) -T ϕ (z (2) , z); D κ,0 ([a; b]; R d )] (25) 
≤ c ϕ,T 1 + C(z (1) , z (2) , z)

2 N [z (1) -z (2) ; Q κ,α ([a, b]; R n )],
where

C(z (1) , z (2) , z) = N [z; Q κ, α([a -r k , b -r 1 ]; R n )] +N [z (1) ; Q κ,α ([a, b]; R n )] + N [z (2) ; Q κ,α ([a, b]; R n )] ( 26 
)
and the constant c ϕ,T depends only on ϕ and T .

Proof. Denote ẑ(j) = T σ (z (j) , z) for j = 1, 2. By Proposition 3.2 we have

δẑ (j) st = ζ(j) s (δx) st + k i=1 ζ(i,j) s (δx) s-r i ,t-r i + ρ(j) st , s, t ∈ [a, b] with ζ(j) s = ψ (0,j) s ζ (j) s , ζ(i,j) s = ψ (i,j) s ζs-r i , s ∈ [a, b],
where

ψ (i,j) s = ∂ϕ ∂x 1,i (z (j) s , s(z) s ), . . . , ∂ϕ ∂x n,i (z (j) s , s(z) s ) , s ∈ [a, b],
for i = 0, . . . , k, j = 1, 2. Furthermore, it holds ρ(j)

st = ρ(1,j) st + ρ(2,j) st , where ρ(1,j) st = ψ (0,j) s ρ (j) st + k i=1 ψ (i,j) s ρs-r i ,t-r i , ρ(2,j) st = σ(z (j) t-r 0 , zt-r 1 , . . . , zt-r k ) -σ(z (j) s-r 0 , zs-r 1 , . . . , zs-r k ) -ψ (0,j) s (δz (j) ) st - k i=1 ψ (i,j) s (δz) s-r i ,t-r i .
Thus, we obtain for ẑ = ẑ(1)ẑ(2) the decomposition

(δẑ) st = k i=0 ζ(i) s (δx) s-r i ,t-r i + ρst with ζ(0) s = ψ (0,1) s ζ (1) s -ψ (0,2) s ζ (2) 
s , the paths ζ(i) are defined by ζ(i) s = (ψ

(i,1) s -ψ (i,2) s
) ζs-r i for i = 1, . . . , k, and ρst = ρ(1) stρ(2) st .

In the following we will denote constants (which depend only on T and ϕ) by c, regardless of their value. For convenience, we will also use the short notations N [z], N [z (1) ], N [z (2) ] and N [z (1) z (2) ] instead of the corresponding quantities in (25)-( 26).

(i) We first control the supremum of the density functions ζ (i) , i = 0, . . . , k. For i = 0, we can write

ζ(0) s = ψ (0,1) s (ζ (1) s -ζ (2) s ) + (ψ (0,1) s -ψ (0,2) s )ζ (2)
s and thus it follows

| ζ(0) s | ≤ ϕ ′ ∞ |ζ (1) s -ζ (2) s ||ζ (2) s | + ϕ ′′ ∞ |z (1) s -z (2) s | ≤ c 1 + N [z (2) ] N [z (1) -z (2) ] (27) 
Similarly, we get

| ζ(i) s | ≤ c N [z] N [z (1) -z (2) ]. ( 28 
)
(ii) Now, consider the increments of the density functions. Here, the key is to expand the expression ψ

(i,1) s -ψ (i,2
)

s
for i = 0, . . . , k. For this define

u s (r) = r(z (1) s -z (2) s ) + z (2) s , r ∈ [0, 1], s ∈ [a, b].
We have ∂ϕ ∂x l,i (z (1) s , s(z) s ) -

∂ϕ ∂x l,i (z (2) s , s(z) s ) = ∂ϕ ∂x l,i (u s (1), s(z) s ) - ∂ϕ ∂x l,i (u s (0), s(z) s ) = θ (l,i) s (z (1) s -z (2) s )
, where

θ (l,i) s = 1 0 ∂ 2 ϕ ∂x 1,0 ∂x l,i
(u s (r), s(z) s ), . . . , ∂ 2 ϕ ∂x n,0 ∂x l,i (u s (r), s(z) s ) dr.

Hence it follows

ψ (i,1) s -ψ (i,2) s = θ (1,i) s (z (1) s -z (2) s ), . . . , θ (n,i) s (z (1) s -z (2) s ) . (29) 
Note that θ (l,i) is clearly bounded and, under the assumption ϕ ∈ C 3 b , it moreover satisfies: |θ

(l,i) t -θ (l,i) s | ≤ c N [z (1) ] + N [z (2) ] + N [z] |t -s| κ . (30) 
For i = 0 we can now write

ζ(0) t -ζ(0) s = ψ (0,1) t -ψ (0,1) s (ζ (1) s -ζ (2) s ) + ψ (0,1) t (ζ (1) 
t -ζ (2) t ) -(ζ (1) s -ζ (2) s ) + ψ (0,1) s -ψ (0,2) s (ζ (2) 
t -ζ (2) s ) + ζ (2) t (ψ (0,1) t -ψ (0,2) t ) -(ψ (0,1) s -ψ (0,2) s ) .
It follows 1) z (2) ] N [z (2) ] |t -s| κ

| ζ(0) t -ζ(0) s | ≤ c N [z (1) ] + N [z] |t -s| κ N [z (1) -z (2) ] + c N [z (1) -z (2) ] |t -s| κ + c N [z ( 
+ N [z (2) ] (ψ

(0,1) t -ψ (0,2) t ) -(ψ (0,1) s -ψ (0,2) s ) . (31) 
Using ( 29) and (30) we obtain (ψ

(0,1) t -ψ (0,2) t ) -(ψ (0,1) s -ψ (0,2) s ) (32) 
≤ c 1 + N [z (1) ] + N [z (2) ] + N [z] N [z (1) z (2) ] |t -s| κ .

Combining (31) and (32) yields

| ζ(0) t -ζ(0) s | ≤ c 1 + N [z (1) ] + N [z (2) ] + N [z] 2 N [z (1) -z (2) ] |t -s| κ . ( 33 
)
By similar calculations we also have

| ζ(i) t -ζ(i) s | ≤ c 1 + N [z (1) ] + N [z (2) ] + N [z] 2 N [z (1) -z (2) ] |t -s| κ (34) 
for i = 1, . . . , k.

(iii) Now, we have to control the remainder term ρ. For this we decompose ρ as ρst = ρ

(1)

st + ρ (2)
st , where

ρ (1) st = ψ (0,1) s ρ (1) st -ψ (0,2) s ρ (2) st + k i=1 ψ (i,1) s -ψ (i,2) s ρs-r i ,t-r i , ρ (2) 
st = ϕ(z (1) t-r 0 , zt-r 1 , . . . , zt-r k ) -ϕ(z (1) s-r 0 , zs-r 1 , . . . , zs-r k ) -ϕ(z (2) t-r 0 , zt-r 1 , . . . , zt-r k ) -ϕ(z (2) 
s-r 0 , zs-r 1 , . . . , zs-r k ) ψ (0,1) s (δz (1) ) stψ (0,2) s (δz (2) 

) st - k i=1 ψ (i,1) s -ψ (i,2) s (δz) s-r i ,t-r i .
We consider first ρ (1) : for this term, some straightforward calculations yield

|ρ (1) st | ≤ c(1 + N [z (2) ] + N [z]) N [z (1) -z (2) ] |t -s| 2κ . ( 35 
)
Now consider ρ (2) . The mean value theorem yields

ρ (2) st = ψ(0,1) s -ψ (0,1) s (δz (1) ) st -ψ(0,2) s -ψ (0,2) s (δz (2) ) st + k i=1 ψ(i,1) s -ψ(i,2) s -ψ (i,1) s -ψ (i,2) s (δz) s-r i ,t-r i = ψ(0,1) s -ψ (0,1) s (δ(z (1) -z (2) )) st + ψ(0,1) s -ψ(0,2) s -ψ (0,1) s -ψ (0,2) s (δz (2) ) st + k i=1 ψ(i,1) s -ψ(i,2) s -ψ (i,1) s -ψ (i,2) s (δz) s-r i ,t-r i Q 1 + Q 2 + Q 3 , with ψ(i,j) s = 1 0 ∂ϕ ∂x 1,i (v (j) s (r)), . . . , ∂ϕ ∂x n,i (v (j) s (r)) dr, v (j) s (r) = z (j) s + r(z (j)
tz (j) s ), zs-r 1 + r(z t-r 1zs-r 1 ), . . . , zs-r k + r(z t-r kzs-r k ) . We shall now bound Q 1 , Q 2 and Q 3 separately: it is readily checked that

| ψ(i,j) s -ψ (i,j) s | ≤ c 1 + N [z (1) ] + N [z (2) ] + N [z] |t -s| κ ,
and thus we obtain

Q 1 ≤ c 1 + N [z (1) ] + N [z (2) ] + N [z] N [z (1) -z (2) ] |t -s| 2κ . ( 36 
)
In order to estimate Q 2 and Q 3 , recall that by (29) in part (ii) we have

ψ (i,1) s -ψ (i,2) s = θ (1,i) s (z (1) s -z (2) s ), . . . , θ (n,i) s (z (1) s -z (2) s ) , (37) 
where

θ (l,i) s = 1 0 ∂ 2 ϕ ∂x 1,0 ∂x l,i (u s (r ′ ), s(z) s ), . . . , ∂ 2 ϕ ∂x n,0 ∂x l,i (u s (r ′ ), s(z) s ) dr ′ , u s (r ′ ) = z (1) s + r ′ (z (2) s -z (1)
s ). Similarly, we also obtain that ψ(i,1)

s -ψ(i,2) s = θ(1,i) s (z (1) s -z (2) s ), . . . , θ(n,i) s (z (1) s -z (2) s ) (38) with θ(l,i) s 
= 1 0 1 0 ∂ 2 ϕ ∂x 1,0 ∂x l,i (ū s (r, r ′ )), . . . , ∂ 2 ϕ ∂x n,0 ∂x l,i (ū s (r, r ′ )) dr dr ′ ūs (r, r ′ ) = v (1) s (r) + r ′ v (2) s (r) -v (1)
s (r) . Now, using (37) and (38) we can write ψ(i,1)

s -ψ(i,2) s -ψ (i,1) s -ψ (i,2) s = ( θ(1,i) s -θ (1,i) s )(z (1) -z (2) ), . . . , ( θ(n,i) s -θ (n,i) s )(z (1) -z (2)
for any i = 0, . . . , k. Since moreover

ūs (r, r ′ ) -(u s (r ′ ), s(z) s ) = r (z (1) 
t -z (1) s ) + r ′ (z (2) 
t -z (2) s -(z (1) 
tz (1) s )), zt-r 1zs-r 1 , . . . , zt-r kzs-r k , another Taylor expansion yields

| θ(l,i) s -θ (l,i) s )| ≤ c N [z (1) ] + N [z (2) ] + N [z] |t -s| κ . Hence, we obtain ψ(i,1) s -ψ(i,2) s -ψ (i,1) s -ψ (i,2) s ≤ c N [z (1) ] + N [z (2) ] + N [z] N [z (1) -z (2) ] |t -s| κ , (39) 
from which suitable bounds for Q 2 and Q 3 are easily deduced. Thus it follows by (36) and (39) that

|ρ (2) st | ≤ c 1 + N [z (1) ] + N [z (2) ] + N [z] 2 N [z (1) -z (2) ] |t -s| 2κ .
Combining this estimate with (35) we finally have

|ρ st | ≤ c 1 + N [z (1) ] + N [z (2) ] + N [z] 2 N [z (1) -z (2) ] |t -s| 2κ . (40) 
(iv) The assertion follows now from ( 27), ( 28), (33), (34) and (40). Here we denote by A * the transposition of a vector or matrix A and by A 1 • A 2 the inner product of two vectors or two matrices A 1 and A 2 . We will also write

Q κ,α (resp. D κ,α ) instead of Q κ,α ([a, b]; V ) (resp. D κ,α ([a, b]; V )) if there is no risk of confusion about [a, b] and V .
Note that if the increments of m can be expressed like in [START_REF] Neuenkirch | Trees and asymptotic developments for fractional diffusion processes[END_REF], m * admits the decomposition

(δm * ) st = k i=0 (δx) * s-r i ,t-r i ζ (i) * s + ρ * st , (41) 
where

ρ * ∈ C 2κ 2 ([a, b]; R 1,d
) and the densities ζ (i) , i = 0, . . . , k satisfy the conditions of Definition 3.1.

To illustrate the structure of the integral of a DCP, we first assume that the paths x, ζ (i) and ρ are smooth, and we express J (m * dx) in terms of the operators δ and Λ. In this case, J (m * dx) is well defined, and we have

t s m * u dx u = m * s (x t -x s ) + t s (m * u -m * s )dx u for a ≤ s ≤ t ≤ b, or in other words J (m * dx) = m * δx + J (δm * dx). (42) 
Now consider the term J (δm * dx): Using the decomposition (41) we obtain

J (δm * dx) = t s k i=0 (δx) * s-r i ,u-r i ζ (i) * s + ρ * su dx u = A st + J st (ρ * dx) (43) 
with

A st = k i=0 t s (δx) * s-r i ,u-r i ζ (i) * s dx u .
Since, for the moment, we are dealing with smooth paths, the density ζ (i) can be taken out of the integral above, and we have

A st = k i=0 ζ (i) s • x 2 st (-r i ),
with the d × d matrix x 2 st (v) defined by

x 2 st (v) = t s u+v s+v dx w dx (1) u , . . . , t s u+v s+v dx w dx (d) u , 0 ≤ s ≤ t ≤ T for v ∈ {-r k , . . . , -r 0 }. Indeed, we can write t s (δx) * s-r i ,u-r i ζ (i) * s dx u = t s ζ (i) s • [(δx) s-r i ,u-r i ⊗ dx u ] = ζ (i) s • t s (δx) s-r i ,u-r i ⊗ dx u = ζ (i) s • x 2 st (-r i ).
Inserting the expression of A st into (42) and ( 43) we obtain

J st (m * dx) = m * s (δx) st + k i=0 ζ (i) s • x 2 st (-r i ) + J st (ρ * dx) (44) for a ≤ s ≤ t ≤ b.
Let us now consider the Lévy area term

x 2 st (-r i ). If x is a smooth path, it is readily checked that [δx 2 (-r i )] sut = x 2 st (-r i ) -x 2 su (-r i ) -x 2 ut (-r i ) = (δx) s-r i ,u-r i ⊗ (δx) ut ,
for any i = 0, . . . , k. This decomposition of δx 2 (-r i ) into a product of increments is the fundamental algebraic property we will use to extend the above integral to non-smooth paths. Hence, we will need the following assumption: and admits a delayed Lévy area, i.e., for all v ∈ {-r k , . . . , -r 0 }, there exists a path

x 2 (v) ∈ C 2γ 2 ([0, T ]; R d,d ), which satisfies δx 2 (v) = δx v ⊗ δx, (45) 
that is

(δx 2 (v)) sut (i, j) = [δx i ] s+v,u+v [δx j
] ut for all s, u, t ∈ [0, T ], i, j ∈ {1, . . . , d}.

In the above formulae, we have set x v for the shifted path x v s = x s+v .

To finish the analysis of the smooth case it remains to find a suitable expression for J (ρ * dx). For this, we write (44) as

J st (ρ * dx) = J st (m * dx) -m * s (δx) st - k i=0 ζ (i) s • x 2 st (-r i ) (46) 
and we apply δ to both sides of the above equation. For smooth paths m and x we have

δ(J (m * dx)) = 0, δ(m * δx) = -δm * δx,
by Proposition 2.4. Hence, applying these relations to the right hand side of (46), using the decomposition (41) and again Proposition 2.4, we obtain

[δ(J (ρ * dx))] sut = (δm * ) su (δx) ut + k i=0 (δζ (i) ) su • x 2 st (-r i ) - k i=0 ζ (i) s • (δx 2 (-r i )) sut = k i=0 (δx) * s-r i ,u-r i ζ (i) * s (δx) ut + ρ * su (δx) ut + k i=0 (δζ (i) ) su • x 2 st (-r i ) - k i=0 ζ (i) s • [(δx) s-r i ,t-r i ⊗ (δx) ut ] = ρ * su (δx) ut + k i=0 (δζ (i) ) su • x 2 st (-r i ).
In summary, we have derived the representation

δ[J (ρ * dx)] = ρ * δx + k i=0 δζ (i) • x 2 (-r i ),
for two regular paths m and x.

If m, x, ζ (i) , i = 0, . . . , k and x 2 are smooth enough, we have δ[J (ρ * dx)] ∈ ZC 1+ 3 and thus belongs to the domain of Λ due to Proposition 2.2. (Recall that δδ = 0.) Hence, it follows

J (ρ * dx) = Λ ρ * δx + k i=0 δζ (i) • x 2 (-r i ) ,
and inserting this identity into (44), we end up with

J (m * dx) = m * δx + k i=0 ζ (i) • x 2 (-r i ) + Λ ρ * δx + k i=0 δζ (i) • x 2 (-r i ) . ( 47 
)
The expression above can be generalised to the non-smooth case, since J (m * dx) has been expressed only in terms of increments of m and x. Consequently, we will use (47) as the definition for our extended integral. Proposition 3.5. For fixed 1 3 < κ < γ, let x be a path satisfying Hypothesis 3.4. Furthermore, let m ∈ D κ, α([a, b]; R d ) such that the increments of m are given by [START_REF] Neuenkirch | Trees and asymptotic developments for fractional diffusion processes[END_REF]. Define z by z a = α with α ∈ R and

(δz) st = m * s (δx) st + k i=0 ζ (i) s • x 2 st (-r i ) + Λ st ρ * δx + k i=0 δζ (i) • x 2 (-r i ) (48) for a ≤ s ≤ t ≤ b. Finally, set J (m * dx) = δz.
(49) Then:

(1) J (m * dx) coincides with the usual Riemann integral, whenever m and x are smooth functions.

(2) z is well-defined as an element of

Q κ,α ([a, b]; R) with decomposition δz = m * δx+ ρ, where ρ ∈ C 2κ 2 ([a, b]; R) is given by ρ = k i=0 ζ (i) • x 2 (-r i ) + Λ ρ * δx + k i=0 δζ (i) • x 2 (-r i ) .
(3) The semi-norm of z can be estimated as

N [z; Q κ,α ([a, b]; R)] ≤ m ∞ + c int (b -a) γ-κ N [m; D κ, α([a, b]; R d )] ( 50 
)
where

c int = c κ,γ,ϕ,T x γ + k i=0 x 2 (-r i ) 2γ
with the constant c κ,γ,ϕ,T depending only on κ, γ, ϕ and T . Moreover,

z γ ≤ c int (b -a) γ-κ N [m; D κ, α([a, b]; R d )]. ( 51 
) (4) It holds J st (m * dx) = lim |Πst|→0 N i=0 m * t i (δx) t i ,t i+1 + k j=0 ζ (j) t i • x 2 t i ,t i+1 (-r j ) ( 52 
)
for any a ≤ s < t ≤ b, where the limit is taken over all partitions Π st = {s = t 0 , . . . , t N = t} of [s, t], as the mesh of the partition goes to zero.

Proof.

(1) The first of our claims is a direct consequence of the derivation of equation ( 47).

(2) Set c x = x γ + k i=0 x 2 (-r i ) 2γ . Now we show that equation (48) defines a classical controlled path. Actually, the term m * δx is trivially of the desired form for an element of Q κ,α . So consider the term h

(1) st = k i=0 ζ (i) s • x 2 st (-r i ) for a ≤ s ≤ t ≤ b. We have |h (1) st | ≤ k i=0 ζ (i) ∞ |x 2 st (-r i )| ≤ k i=0 ζ (i) ∞ c x |t -s| 2γ ≤ k i=0 ζ (i) ∞ c x (b -a) 2(γ-κ) |t -s| 2κ .
Thus

h (1) 2κ ≤ c x (b -a) 2(γ-κ) N [m; D κ, α([a, b]; R d )]. The term h (2) = ρ * δx + k i=0 δζ (i) • x 2 (-r i )
satisfies δh (2) = 0. Indeed, we can write

δh (2) = δρ * δx + k i=0 δζ (i) • δx 2 (-r i )
by Proposition 2.4 and because δδ = 0. Applying (45) to the right hand side of the above equation it follows that

δh (2) = δρ * δx + k i=0 δζ (i) • (δx -r i ⊗ δx) = δρ * δx + k i=0 δx -r i * δζ (i) * δx = δρ * + k i=0 δx -r i * δζ (i) * δx.
However, due to Proposition 2.4, it holds

δh (2) = δρ * + k i=0 δx -r i * δζ (i) * δx = δ ρ * + k i=0 δx -r i * ζ (i) * δx.
Since the increments of m are given by ( 16) we finally obtain that δh (2) = δ(δm * )δx = 0. Moreover, recalling the notation [START_REF] Ferrante | Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter H > 1 2[END_REF], it holds

ρ * δx 2κ,κ ≤ c x (b -a) γ-κ ρ 2κ and k i=0 δζ (i) • x 2 (-r i ) κ,2κ ≤ c x (b -a) 2(γ-κ) k i=0 ζ (i) κ .
Since γ > κ > 1 3 and δh (2) = 0, we have h (2) ∈ Dom(Λ) and

h (2) 3κ ≤ c x (1 + T γ-κ )(b -a) γ-κ N [m; D κ, α([a, b]; R d )]. By Proposition 2.2 it follows Λ(h (2) ) 3κ ≤ 1 2 3κ -2 h (2) 3κ
and we finally obtain (4) By Proposition 2.4 (ii) and the decomposition [START_REF] Neuenkirch | Trees and asymptotic developments for fractional diffusion processes[END_REF] we have that

h (1) -Λ(h (2) ) 2κ ≤ c x 2 3κ -1 2 3κ -2 (1 + T γ-κ )(b -a) γ-κ N [m; D κ,α ]. ( 53 
δ(m * δx) sut = -(δm * ) su (δx) ut = -ρ * su (δx) ut - k i=0 (δx) * s-r i ,u-r i ζ (i) * u (δx) ut .
Thus, applying again Proposition 2.4 (ii), and recalling Hypothesis 3.4 for the Lévy area, we obtain that

δ m * δx + k i=0 ζ (i) • x 2 (-r i ) = -ρ * δx + k i=0 δζ (i) • x 2 (-r i ) .
Hence, equation (48) can also be written as

J (m * dx) = [Id -Λδ] m * δx + k i=0 ζ (i) • x 2 (-r i ) ,
and a direct application of Corollary 2.3 yields (52), which ends our proof.

Recall that the notation A * stands for the transpose of a matrix A. Moreover, in the sequel, we will denote by c norm a constant, which depends only on the chosen norm of R n,d . Then, for a matrix-valued delayed controlled path m ∈ D κ, α([a, b]; R n,d ), the integral J (m dx) will be defined by

J (m dx) = J (m (1) * dx), . . . , J (m (n) * dx) * ,
where

m (i) ∈ D κ, α([a, b]; R d ) for i = 1, .
. . , n and we have set m = (m (1) , . . . , m (n) ) * . Then we have by (50) that

N [J (m dx); Q κ,α ([a, b]; R n )] (54) ≤ c norm m ∞ + c int (b -a) γ-κ N [m; D κ, α([a, b]; R n,d )] .
For two paths m (1) , m (2) 

∈ D κ, α([a, b]; R n,d
) we obtain the following estimate for the difference of z (1) = J (m (1) dx) and z (2) = J (m (2) dx): As above, we have clearly

N [z (1) -z (2) ; Q κ,0 ([a, b]; R n )] ≤ c norm m (1) -m (2) ∞ + c norm c int (b -a) γ-κ N m (1) -m (2) ; D κ,0 ([a, b]; R n,d ) .

However, since m

(1)

a = m (2) a it follows N [z (1) -z (2) ; Q κ,0 ([a, b]; R n )] ≤ 2c norm c int (b -a) γ-κ N m (1) -m (2) ; D κ,0 ([a, b]; R n,d ) .
(55)

Solution to the delay equation

With the preparations of the last section, we can now solve the equation

dy t = σ(y t , y t-r 1 , . . . , y t-r k ) dx t , t ∈ [0, T ], y t = ξ t , t ∈ [-r, 0], (56) 
in the class of classical controlled paths. For this, it will be crucial to use mappings of the type

Γ : Q κ,α ([a, b]; R n ) × Q κ, α([a -r k , b -r 1 ]; R d ) → Q κ,α ([a, b]; R n )
for 0 ≤ a ≤ b ≤ T , which are defined by (z, z) → ẑ, where ẑ0 = α and δẑ given by δẑ = J (T σ (z, z)), with T σ defined in Proposition 3.2. ¿From now on, we will use the convention that z t = zt = ẑt = ξ t for t ∈ [-r, 0]. Note that this convention is consistent with the definition of a classical controlled path, see Definition 2.5: since ξ is 2γ-Hölder continuous, it can be considered as a part of the remainder term ρ.

(1) Equation ( 56) admits a unique solution y in Q κ,ξ 0 ([0, T ]; R n ) for any 1 3 < κ < γ and any T > 0.

(2) Let F :

C 2γ 1 ([-r, 0]; R n ) × C γ 1 ([0, T ]; R d ) × C 2γ 2 ([0, T ]; R d×d ) k+1 → C κ 1 ([0, T ]; R n ) be the mapping defined by F ξ, x, x 2 (0), x 2 (-r 1 ), . . . , x 2 (-r k ) = y,
where y is the unique solution of equation ( 56). This mapping is locally Lipschitz continuous in the following sense: Let x be another driving rough path with corresponding delayed Lévy area x2 (-v), v ∈ {-r k , . . . , -r 0 }, and ξ another initial condition. Moreover denote by ỹ the unique solution of the corresponding delay equation. Then, for every N > 0, there exists a constant K N > 0 such that

y -ỹ κ,∞ ≤ K N x -x γ,∞ + k i=0 N [x 2 (-r i ) -x2 (-r i ); C 2γ 2 ([0, T ]; R d )] + ξ -ξ 2γ,∞
holds for all tuples (ξ, x, x 2 , x 2 (-r 1 ), . . . ,

x 2 (-r k )), ( ξ, x, x2 , x2 (-r 1 ), . . . , x2 (-r k )) with k i=0 N [x 2 (-r i ); C 2γ 2 ([0, T ]; R d )] + k i=0 N [x 2 (-r i ); C 2γ 2 ([0, T ]; R d )] + x γ,∞ + x γ,∞ + ξ 2γ,∞ + ξ 2γ,∞ ≤ N, where f µ,∞ = f ∞ + |δf | µ denotes the usual Hölder norm of a path f .
Proof. The proof of Theorem 4.2 is obtained by means of a fixed point argument, based on the map Γ defined above.

1) Existence and uniqueness. Without loss of generality assume that T = Nr 1 . We will construct the solution of equation ( 56) by induction over the intervals [0, r 1 ], [0, 2r 1 ], . . ., [0, Nr 1 ], where we recall that r 1 is the smallest delay in (56).

(i) We will first show that equation (56) has a solution on the interval [0,

r 1 ]. For this define τ1 = (8c 2 1 ) -1/(γ-κ) ∧ r 1 , where c 1 = c growth 1 + N 2 [ξ; C 2γ 2 ([-r k , 0]; R n )] . Moreover, choose τ 1 ∈ [0, τ1 ] and N 1 ∈ N such that N 1 τ 1 = r 1 ,

and define

I i,1 = [(i -1)τ 1 , iτ 1 ], i = 1, . . . , N 1 .
Finally, consider the following mapping:

Let Γ 1,1 : Q κ,ξ 0 (I 1,1 ; R n ) → Q κ,ξ 0 (I 1,1 ; R n ) given by ẑ = Γ 1,1 (z), where (δẑ) st = J st (T σ (z, ξ) dx) for 0 ≤ s ≤ t ≤ τ 1 .
Clearly, if z (1,1) is a fixed point of the map Γ (1,1) , then z (1,1) solves equation (56) on the interval I 1,1 . We shall thus prove that such a fixed point exists. First, due to (57) we have the estimate

N [Γ 1,1 (z); Q κ,ξ 0 (I 1,1 ; R n )] ≤ c 1 1 + τ 1 γ-κ N 2 [z; Q κ,ξ 0 (I 1,1 ; R n )] . (60) 
Thanks to our choice of τ 1 and Lemma 4.1 we can now choose M 1 ∈ A c 1 ,γ-κ τ * accordingly and obtain that the ball

B M 1 = {z ∈ Q κ,ξ 0 (I 1,1 ; R n ); N [z; Q κ,ξ 0 (I 1,1 ; R n )] ≤ M 1 } (61) 
is left invariant under Γ 1,1 . Now, by changing τ 1 to a smaller value (and then N 1 accordingly) if necessary, observe that Γ 1,1 also is a contraction on B M 1 , see (59). Thus, the Banach theorem implies that the mapping Γ 1,1 has a fixed point, which leads to a unique solution z (1,1) of equation ( 56) on the interval I 1,1 .

If τ 1 = r 1 , the first step of the proof is finished. Otherwise, define the mapping Γ 2,1 :

Q κ,z (1,1) τ 1 (I 2,1 ; R n ) → Q κ,z (1,1) τ 1 (I 2,1 ; R n ) by ẑ = Γ 2,1 (z) where (δẑ) st = J st (T σ (z, ξ) dx) for τ 1 ≤ s ≤ t ≤ 2τ 1 . Since τ 1 < r 1 , it still holds N [Γ 2,1 (z); Q κ,z (1,1) τ 1 (I 2,1 ; R n )] ≤ c 1 (1 + τ 1 γ-κ N 2 [z; Q κ,z (1,1) τ 1 (I 2,1 ; R n )]) (62) 
and we obtain by the same fixed point argument as above, the existence of a unique solution z (2,1) of equation ( 56) on the interval I 2,1 .

Repeating this step as often as necessary, which is possible since the estimates on the norms of the mappings Γ j,1 , j = 1, . . . , N 1 are of the same type as (57), i.e. the constant c 1 does not change, we obtain that z = N 1 j=1 z (j,1) 1 I j,1 is the unique solution to the equation (56) on the interval [0, r 1 ]. Now, it remains to verify that z given as above is in fact a CCP. First note that by construction z is continuous on [0, r 1 ] and moreover that z is a CCP on the subintervals I j,1 with decomposition

(δz) st = ζ (j,1) s (δx) st + ρ (j,1) st , s, t ∈ I j,1 ,
for s ≤ t. Clearly, we have

(δz) st = jt j=js (δz (j,1) ) s∨t j ,t∧t j+1 , s, t ∈ [0, r 1 ],
for s ≤ t, where t j = (j -1)τ 1 and j s , j t ∈ {1, . . . , N -1} are such that

t js ≤ s < t js+1 < . . . < t jt < t ≤ t jt+1 .
Setting 

ζ s = N 1 j=1 ζ (j,
|ρ st | |s -t| 2κ ≤ N 1 j=1 sup s,t∈I j,1 |(ρ (j,1) ) st | |s -t| 2κ + sup s,t∈[0,τ 1 ] |(δx) st | |s -t| κ N 1 j=1 sup s,t∈I j,1 |(δζ (j,1) ) st | |s -t| κ .
Thus, we have in fact that z ∈ Q κ,ξ 0 ([0, τ 1 ]; R n ).

(ii) Let l = 1, . . . , N -1 assume that z ∈ Q κ,ξ 0 ([0, lr 1 ]; R n ) is the solution of the delay equation ( 56) on the interval [0, lr 1 ]. Now we will construct the solution on the interval [lr 1 , (l + 1)r 1 ]. Set

c l+1 = c growth (1 + N 2 [z; Q κ,z lr 1 -r k ([lr 1 -r k , lr 1 ]; R n ])
and define τl+1 = (8c 2 l+1 ) -1/(γ-κ) ∧ r 1 . Furthermore, choose τ l+1 ∈ [0, τl+1 ] and N l+1 ∈ N such that N l+1 τ l+1 = r 1 , and define

I i,l+1 = [lr 1 + (i -1)τ l+1 , lr 1 + iτ l+1 ],
i = 1, . . . , N l+1 .

Consider the mapping Γ 1,l+1 : Q κ,z lr 1 (I 1,l+1 ; R n ) → Q κ,z lr 1 (I 1,l+1 ; R n ) by ẑ = Γ 1,l+1 (z) where (δẑ) st = J st (T σ (z, z) dx) for lr 1 ≤ s ≤ t ≤ lr 1 + τ l+1 . Again z (1,l+1) is a fixed point of the map Γ 1,l+1 if and only if z (1,l+1) solves equation (56) on the interval I 1,l+1 . However, by (57) we have the estimate

N [Γ 1,l+1 (z); Q κ,z lr 1 (I 1,l+1 ; R n )] ≤ c l+1 (1 + τ l+1 γ-κ N 2 [z; Q κ,z lr 1 (I 1,l+1 ; R n )]).
Now we can apply the same fixed point argument as in step (i), which leads to a unique solution z (1,l+1) of (56) on the interval I 1,l+1 .

If τ l+1 = r 1 , define for the next interval I 2,l+1 the mapping

Γ 2,l+1 : Q κ,z (1,l+1) lr 1 +τ l (I 2,l+1 ; R n ) → Q κ,z (1,l+1) lr 1 +τ l (I 2,l+1 ; R n ) by ẑ = Γ 2,l+1 ( 
z), where (δẑ) st = J st (T σ (z, z) dx) for lr 1 + τ l+1 ≤ s ≤ t ≤ lr 1 + 2τ l+1 .

Since lr 1 + τ l+1 ≤ (l + 1)r 1 , we still have the estimate

N [Γ 2,l+1 (z); Q κ,z (1,l+1) lr 1 +τ l (I 2,l+1 ; R n )] ≤ c l+1 (1 + τ γ-κ l+1 N 2 [z; Q κ,z (1,l+1) lr 1 +τ l (I 2,l+1 ; R n )]).
Now the existence of a unique solution z (2,l+1) of (56) on the interval I 2,l+1 follows again by the same fixed point argument.

Proceeding completely analogous to step (i) we obtain the existence of a unique path z ∈ Q κ,z lr 1 ([lr 1 , (l+1)r 1 ]; R n ), which solves the delay equation (56) on the interval [lr 1 , (l+1)r 1 ] for a given "initial path" z ∈ Q κ,ξ 0 ([0, lr 1 ]; R n ). Patching these two paths together, we obtain (using the same arguments as at the end of step (i)) a path z ∈ Q κ,ξ 0 ([0, (l + 1)r 1 ]; R n ), which solves equation (56) on the interval [0, (l + 1)r 1 ].

Thus we have shown that there exists a unique path z ∈ Q κ,ξ 0 ([0, T ]; R n ), which is a solution of the equation (56). Moreover, by the above construction we obtain the following bound on the norm of this path:

N [z; Q κ,ξ 0 ([0, T ]; R n )] (63) ≤ f N [x; C γ 1 ([0, T ]; R n )] + k i=0 N [x 2 (-r i ); C 2γ 2 ([0, T ]; R n )] + N [ξ; C 2γ 1 ([0, T ]; R n )] ,
where f : [0, ∞) → (0, ∞) is a continuous non-decreasing function, which depends only on κ, γ, n, d, σ, T and r 1 , . . . , r k .

2) Continuity of the Itô map. Let y = F (ξ, x, x 2 (0), x 2 (-r 1 ), . . . , x 2 (-r k )) . Since y solves equation ( 56), we have (δy) st = J st (σ(y s , s(y)) dx s ). It follows by the Propositions 3.2 and 3.5 that

(δy) st = m s (δx) st + k i=0 ζ (i) s • x 2 st (-r i ) + Λ st ρδx + k i=0 δζ (i) • x 2 (-r i ) (64) for 0 ≤ s ≤ t ≤ T , with m s = σ(y s , s(y) s ), ζ (i) s = ψ (i) s m s-r i , ψ (i) s = ∂ϕ ∂x 1,i (y s , s(y) s ), . . . , ∂ϕ ∂x n,i (y s , s(y) s ) 
(65) for i = 0, . . . , k. Moreover, note that the remainder term ρ of the decomposition of y satisfies the relation

ρ st = k i=0 ζ (i) s • x 2 st (-r i ) + Λ st ρδx + k i=0 δζ (i) • x 2 (-r i ) . (66) 
Now consider (56) with a different initial path ξ, driving rough path x and corresponding delayed Lévy area x2 (v), for v ∈ {-r k , . . . , -r 0 }. If the assumptions of the theorem are satisfied, then also the equation

dỹ t = σ(ỹ t , ỹt-r 1 , . . . , ỹt-r k ) dx t , t ∈ [0, T ], ỹt = ξt , t ∈ [-r, 0]
admits a unique solution ỹ = F ( ξ, x(0), x2 , x2 (-r 1 ), . . . , x2 (-r k )). Clearly we also have in this case

(δỹ) st = ms (δx) st + k i=0 ζ(i) s • (x 2 (-r i )) st + Λ st ρδx + k i=0 δ ζ(i) • x2 (-r i ) (67) 
for 0 ≤ s ≤ t ≤ T , with m, ζ(i) and ψ(i) defined according to (65) and (66).

(i) We first analyse the difference between ρ and ρ. Here we have

ρ st -ρst = e (1) 
st + Λ st (e (2) ),

= k i=0 ζ (i) s • (x 2 (-r i )) st - k i=0 ζ(i) s • (x 2 (-r i )) st e (2) = ρ δx -ρ δx + k i=0 δζ (i) • x 2 (-r i ) - k i=0 δ ζ(i) • x2 (-r i ). Now set C(y) = x ∞ + x γ + k i=0 x 2 (-r i ) 2γ + N [y; Q κ,α ([0, T ]; R n )] + ξ ∞ + ξ 2γ , (68) with e (1) st 
define C(ỹ) accordingly for ỹ, and let R be the quantity

R = x -x ∞ + x -x γ + k i=0 x 2 (-r i ) -x2 (-r i ) 2γ + ξ -ξ ∞ + ξ -ξ 2γ .
In the following we will denote constants, which depend only on κ, γ, n, d, σ and T , by c regardless of their value. 

st | ≤ c (1 + C(y))|t -s| 2γ R + c C(y)|t -s| 2γ sup τ ∈[(s-r k ) + ,t] |y τ -ỹτ | (1) 
for s, t ∈ [a, b]. Now, consider the term e (2) . We have e

sut = ρ su (δx) ut -ρsu (δx) ut + k i=0 (δζ (i) ) su • x 2 ut (-r i ) - k i=0 (δ ζ(i) ) su • x2 ut (-r i ) = (ρ -ρ) su (δx) ut + ρsu (δ(x -x)) ut + k i=0 (δ(ζ (i) -ζ(i) )) su • x 2 ut (-r i ) - k i=0 (δ ζ(i) ) su • (x 2 ut (-r i ) -x2 ut (-r i )) for s, u, t ∈ [a, b]. Clearly, it holds |(ρ -ρ) su (δx) ut | ≤ C(y)|t -u| γ |s -u| 2κ N [ρ -ρ; C 2κ 2 ([a, b]; R n )], |ρ su (δ(x -x)) ut | ≤ |t -u| γ |s -u| 2κ N [ρ; C 2κ 2 ([a, b]; R n )] R and k i=0 (δ(ζ (i) -ζ(i) )) su • x 2 ut (-r i ) ≤ c C(y)|t -u| 2γ k i=0 (δ(ζ (i) -ζ(i) )) su , k i=0 (δ ζ(i) ) su • (x 2 ut (-r i ) -x2 ut (-r i )) ≤ |t -u| 2γ R k i=0 (δ ζ(i) ) su . (2) 
Furthermore, we also have, for any i = 0, . . . , k that

δ(ζ (i) -ζ(i) ) su ≤ c sup τ 1 ,τ 2 ∈[s-r i ,t-r i ] |(y τ 1 -ỹτ 1 ) -(y τ 2 -ỹτ 2 )|, (δ ζ(i) ) su ≤ C(ỹ)|s -u| κ .
Recall that the Hölder norm of a path f is defined by

f µ,∞,[s,t] = sup τ ∈[s,t] |f τ | + sup τ 1 ,τ 2 ∈[s,t] |f τ 1 -f τ 2 | |τ 2 -τ 1 | µ . Set also C = c(1 + C(y) + C(ỹ))
, where c is again an arbitrary constant depending only on κ, γ, n, d, σ and T . Using these notations and combining the previous estimates, we end up with: 70) Hence e (2) belongs to Dom(Λ) and we obtain by Proposition 2.2 that Λ(e (2) 

e (2) sut ≤ C|t -u| γ |s -u| 2κ R + C|t -u| 2γ |s -u| κ k i=0 y -ỹ κ,∞,[a-r i ,b-r i ] + C|t -u| γ |s -u| 2κ N [ρ -ρ; C 2κ 2 ([a, b]; R n )]. (
) 3κ ≤ C R + C k i=0 y -ỹ κ,∞,[a-r i ,b-r i ] + C N [ρ -ρ; C 2κ 2 ([a, b]; R n )]. (71) 
Inserting the estimates for e (1) and Λ(e (2) ), i.e. ( 69) and ( 71), into the definition (68) of ρρ gives finally

N [ρ -ρ; C 2κ 2 ([a, b]; R n )] ≤ C|b -a| γ-κ k i=0 y -ỹ κ,∞,[a-r i ,b-r i ] R +C|b -a| γ-κ R + C|b -a| γ-κ N [ρ -ρ; C 2κ 2 ([a, b]; R n )]
, and due to the subadditivity of the Hölder norms, we get

N [ρ-ρ; C 2κ 2 ([a, b]; R n )] ≤ C|b-a| γ-κ N [ρ-ρ; C 2κ 2 ([a, b]; R n )]+C|b-a| γ-κ y-ỹ κ,∞,[a,b] R + C|b -a| γ-κ y -ỹ κ,∞,[a-r k ,a] R + C|b -a| γ-κ R. (72)
(ii) Now consider the difference between y and ỹ. Completely analogous to step (i) we also obtain that

N [y -ỹ; C κ 1 ([a, b]; R n )] ≤ C|b-a| γ-κ N [ρ-ρ; C 2κ 2 ([a, b]; R n )]+C|b-a| γ-κ y -ỹ κ,∞,[a,b] R + C|b -a| γ-κ y -ỹ κ,∞,[a-r k ,a] R + C|b -a| γ-κ R. Moreover, since sup τ ∈[a,b] |y τ -ỹτ | ≤ |y a -ỹa | + (b -a) κ N [y -ỹ; C κ 1 ([a, b]; R n )],
we also have

y -ỹ κ;[a,b] ≤ C|b -a| γ-κ N [ρ -ρ; C 2κ 2 ([a, b]; R n )] + C|b -a| γ-κ y -ỹ κ,∞,[a,b] R + C|b -a| γ-κ y -ỹ κ,∞,[a-r k ,a] R + |y a -ỹa | + C|b -a| γ-κ R. (73) (iii) Now set ∆(a, b) = N [ρ -ρ; C 2κ 2 ([a, b]; R n )] + y -ỹ κ,∞,[a,b] .
By combining (72) and (73) we finally have that

∆(a, b) ≤ C(1 + R)|b -a| γ-κ ∆(a, b) + C(1 + R)|b -a| γ-κ ∆((a -r k ) + , a) + |y a -ỹa | + C(1 + R)|b -a| γ-κ R. (74) Now choose a = 0 and b 1 = 1 2C(1+R) 1/(γ-κ)
. In this case, we obtain from (74) that

∆(0, b 1 ) ≤ 1 2 ∆(0, b 1 ) + |ξ 0 -ξ0 | + 1 2 R, which yields ∆(0, b 1 ) ≤ R + 2|ξ 0 -ξ0 | ≤ 3R. ( 75 
)
For the next interval [b 1 , 2b 1 ], we obtain in turn that

∆(b 1 , 2b 1 ) ≤ 1 2 ∆(b 1 , 2b 1 ) + 1 2 ∆(0, b 1 ) + |y b 1 -ỹb 1 | + 1 2 R,
and hence 

∆(b 1 , 2b 1 ) ≤ ∆(0, b 1 ) + 2|y b 1 -ỹb 1 | + R ≤ 10R, by (75) 
(2C(1 + R)) 1/(γ-κ) ≤ c(C(y) + C(ỹ))) 1/(γ-κ) ,
where

C(y) = x ∞ + x γ + k i=0 x 2 (-r i ) 2γ + N [y; Q κ,α ([0, T ]; R n )] + ξ ∞ + ξ 2γ ,
and C(ỹ) is defined accordingly. However, by (63) it follows that

C(y) + C(ỹ) ≤ D + f (D) + D + f ( D),
where

D = x ∞ + x γ + k i=0 x 2 (-r i ) 2γ + ξ ∞ + ξ 2γ ,
and D is again defined accordingly. Thus, we obtain now from (76) that there exists a continuous function ḡ : [0, ∞) → [0, ∞), which depends only on κ, γ, σ, n, d, T and r 1 , . . . , r k , such that ∆(0, T ) ≤ ḡ(D + D) R. Hence, the assertion follows.

Application to the fractional Brownian motion

All the previous constructions rely on the specific assumptions we have made on the path x. In this section, we will show how our results can be applied to the fractional Brownian motion. 5.1. Definition. We consider in this section a d-dimensional fBm with Hurst parameter H defined on the real line, that is a centered Gaussian process 

B = B t = (B
for i = 1, . . . , d. The fBm verifies the following two important properties:

(scaling) For any c > 0,

B (c) = c H B •/c is a fBm, (78) 
(stationarity) For any h ∈ R, B •+h -B h is a fBm. (79) Notice that, for Malliavin calculus purposes, we shall assume in the sequel that B is defined a complete probability space (Ω, F , P ), and that F = σ(B s ; s ∈ R). Observe also that we work with a fBm indexed by R for sake of simplicity, since this allows some more elegant calculations for the definition of the delayed Lévy area. 5.2. Malliavin calculus with respect to fBm. Let us give a few facts about the Gaussian structure of fractional Brownian motion and its Malliavin derivative process, following Section 2 of [START_REF] Nualart | Stochastic calculus with respect to the fractional Brownian motion and applications[END_REF]. Let E be the set of step-functions on R with values in R d . Consider the Hilbert space H defined as the closure of E with respect to the scalar product induced by ( (82) 5.3. Delayed Lévy area and fractional Brownian motion. The stochastic integrals we shall use in order to define our delayed Lévy area are defined, in a natural way, by Russo-Vallois symmetric approximations, that is, for a given process φ:

t s φ w d • B i w = L 2 -lim ε→0 (2ε) -1 t s φ w B i w+ε -B i w-ε dw,
provided the limit exists. This pathwise type notion of integral can then be related to some stochastic analysis criterions in the following way (for a proof, see [START_REF] Alòs | Stratonovich stochastic calculus for fractional Brownian motion with Hurst parameter lesser that 1 2[END_REF]): With these notations in mind, the main result of this section is the following: when i = j. In order to conclude that B 2 (v) ∈ C 2γ 2 (R d×d ) for any 1 3 < γ < H and v ∈ [-r, 0), let us recall the following inequality from [START_REF] Gubinelli | Controlling rough paths[END_REF]: let g ∈ C 2 (V ) for a given Banach space V ; then, for any κ > 0 and p ≥ 1 we have g κ ≤ c U κ+2/p;p (g) + δg κ with U γ;p (g) = 89) into (90), by recalling that δB 2 (v) = δB v ⊗ δB and (83) hold, we obtain that B 2 (v)(i, j) ∈ C 2γ 2 (R d×d ) for any 1 3 < γ < H and i, j = 1, . . . , d.

and C µ 2 (

 2 [a, b]; V ) = {f ∈ C 2 ([a, b]; V ); f µ < ∞} . Obviously, the usual Hölder spaces C µ 1 ([a, b]; V ) are determined in the following way: for a continuous function g ∈ C 1 ([a, b]; V ) set g µ = δg µ , and we will say that g

  , b]; V ) and note that the same kind of norms can be considered on the spaces ZC 3 ([a; b]; V ), leading to the definition of the spaces ZC µ 3 ([a; b]; V ) and ZC 1+ 3 ([a, b]; V ).

  Clearly ζ, ζ(i) are bounded on [a, b], because the functions ψ (i) are bounded (due to the boundedness of ϕ ′ ) and because ζ, ζ(i) are also bounded. In particular, it holds sup s∈[a,b]

3. 3 .

 3 Integration of delayed controlled paths (DCP). The aim of this section is to define the integral J (m * dx), where m is a delayed controlled path m ∈ D κ,α ([a, b]; R d ).

Hypothesis 3 . 4 .

 34 The path x is a R d -valued γ-Hölder continuous function with γ > 1 3

)

  Thus we have proved that ρ ∈ C 2κ 2 ([a, b]; R) and hence that z ∈ Q κ,α ([a, b]; R). (3) Because of (δz) st = m * s (δx) st + ρst and m ∈ D κ, α([a, b]; R d ) the estimates (50) and (51) now follow from (53).

  Fix an interval [a, b] ⊂ [0, T ]. By straightforward calculations we have |e

  . Repeating this step ⌊T /b 1 ⌋-times we obtain that there exists a continuous non-decreasing function g: (0, ∞) → (0, ∞) such that ∆(ib 1 , (i + 1)b 1 ) ≤ g(T /b 1 ) R for all i = 0, . . . ,⌊T /b 1 ⌋. Using the subadditivity of the Hölder norms, we obtain the estimate ∆(0, T ) ≤ (1 + T /b 1 )g(T /b 1 ) R. (76) Now recall that C = c(1 + C(y) + C(ỹ)) and note that R ≤ c(C(y) + C(ỹ)). Thus we have T /b 1 = T

  for i, j = 1, . . . , d. The divergence operator I is the adjoint of the derivative operator. If a random variable u ∈ L 2 (Ω; H) belongs to dom(I), the domain of the divergence operator, then I(u) is defined by the duality relationshipE(F I(u)) = E DF, u H ,(80)for every F ∈ D 1,2 . Moreover, let us recall two useful properties verified by D and I:• If u ∈ dom(I) and F ∈ D 1,2 such that F u ∈ L 2(Ω; H), then we have the following integration by parts formula:I(F u) = F I(u) -DF, u H . (81) • If u verifies E u 2 H +E Du 2 H⊗H < ∞, Dr u ∈ dom(I) for all r ∈ R and (I(D r u)) r∈R is an element of L 2 (Ω; H), then D r I(u) = u r + I(D r u).

Theorem 5 . 1 .(2ε) - 1 t 0 D 0 E[φ 2 u 2 E

 5110022 Fix t ≥ 0 and let φ ∈ D 1,2 (H) be a process such thatTr [0,t] D B i φ := L 2lim ε→0 B i φ u , 1 [u-ε,u+ε] H du exists, and such that, setting ℓ(t, u) u 2H-1 + (tu) 2H-1 for 0 ≤ u < t, t ] ℓ(t, u)du + [0,t] (D B i r φ u ) 2 ℓ(t, u)dudr < ∞.Then t 0 φd • B i exists, and verifiest 0 φd • B i = I B i (φ1 [0,t] ) + Tr [0,t] D B i φ.

Proposition 5 . 2 .> 1 3 .

 523 Let B be a d-dimensional fractional Brownian motion and suppose H For v ∈ [-r, 0], let B 2 (v) be the delayed Lévy area given by: , j ∈ {1, . . . , d}, Then almost all sample paths of B satisfy Hypothesis 3.4.for i = j and E|I B i (φ)| p ≤ c p |t -s| 2pH(89)

  1 t , . . . , B d t ); t ∈ R , where B 1 , . . . , B d are d independent one-dimensional fBm, i.e., each B i is a centered Gaussian process with continuous sample paths and covariance function R H (t, s) = 1 2 |s| 2H + |t| 2H -|t -s| 2H

  1 [t 1 ,t 1 ] , . . . , 1 [t d ,t d ] ), (1 [s 1 ,s 1 ] , . . . , 1 [s d ,s d ]) H H (t i , s i ) -R H (t i , s i ) -R H (t i , s i ) + R H (t i , s i ) ,for any -∞ < s i < s i < +∞ and -∞ < t i < t i < +∞, and where R H (t, s) is given by (77). The mapping(1 [t 1 ,t 1 ] , . . . , 1 [t d ,t d ] ) →can be extended to an isometry between H and the Gaussian space H 1 (B) associated with B = (B 1 , . . . , B d ). We denote this isometry by ϕ → B(ϕ). Let S be the set of smooth cylindrical random variables of the formF = f (B(ϕ 1 ), . . . , B(ϕ k )), ϕ i ∈ H, i = 1, . . . , k, where f ∈ C ∞ (R d,k ,R) is bounded with bounded derivatives. The derivative operator D of a smooth cylindrical random variable of the above form is defined as the H-valued random variable This operator is closable from L p (Ω) into L p (Ω; H). As usual, D 1,2 denotes the closure of the set of smooth random variables with respect to the norm F 2 1,2 = E|F | 2 + E DF 2 H . In particular, if D i F denotes the Malliavin derivative of F ∈ D 1,2 with respect to B i , we have D i B j t = δ i,j 1 [0,t]

		d	
	=	i=1	R d
				i=1	B i t i -B i t i
		DF =	k i=1	∂f ∂x

i (B(ϕ 1 ), . . . , B(ϕ k ))ϕ i .

The first part of the current section will be devoted to the study of the map T . By (54) we have that

Since

T σ (z, z) = (T σ (1) (z, z), . . . , T σ (n) (z, z)) * , where σ (i) ∈ C 3 b (R n,d ; R 1,d ) for i = 1, . . . , n and σ = (σ (1) , . . . , σ (n) ) * , it follows by [START_REF] Nualart | Differential equations driven by fractional Brownian motion[END_REF] that

Combining these two estimates we obtain

where the constant c growth depends only on c int , c norm , σ, κ, γ and T . Thus the semi-norm of the mapping Γ is quadratically bounded in terms of the semi-norm of z and z. Now let z (1) , z (2) 

Then, by (55) we have

Applying Proposition 3.3, i.e. inequality (25), to the right hand side of the above equation we obtain that N [Γ(z (1) , z) -Γ(z (2) , z);

≤ c lip 1 + C(z (1) , z (2) , z)

2 N [z (1) z (2) ;

with a constant c lip depending only on c int , c norm , σ, κ, γ and T , and moreover C(z (1) , z (2) ,

Thus, for fixed z the mappings Γ(•, z) are locally Lipschitz continuous with respect to the semi-norm

We also need the following Lemma, which can be shown by straightforward calculations:

Now we can state and prove our main result:

). Then we have:

Proof. When H = 1 2 , the desired conclusion is easily obtained, because the Russo-Vallois symmetric integral coincides with the Stratonovich integral. Moreover, for H > 1 2 the Russo-Vallois symmetric integral coincides with the Young integral, which is well defined in this case, and the assertion still follows easily from the properties of Young integrals. Now, fix

Due to the stationarity property (79) we will work without loss of generality on the interval [0, ts] instead of [s, t] in the sequel.

Let us now consider the case where v < 0.

, the conditions of Theorem 5.1 are easily verified, hence

Notice moreover that we have

and, for u ∈ [0, ts] and ε ∈ [0, -v] (which is always the case, for a fixed v < 0 and ε small enough) it holds

Thus, we obtain

x. Applying this inequality to the second term of the right hand side of Tr [0,t-s] D B i φ, we get

On the other hand, we have by ( 82)

. By using (80) we deduce

where the two last equalities are due to the stationarity (79) and scaling (78) properties of fractional Brownian motion. When -v < ts, then

We deduce

by ( 78) and (79)

by ( 78)

Finally, we can summarize (85) and (87) in

with a constant c H > 0, in particular independent of v. Putting together this last estimate with inequality (83), we end up with:

2) Case where i = j. By stationarity (79), we have for any v ∈ [-r, 0] that

Thus, the delayed Lévy area B 2 0,t-s (v)(i, j) = t-s 0 (B j u+v -B j v )d • B i u for v < 0 behaves as in the case where v = 0. But it is a classical result that B 2 0,t-s (0) is well-defined for H > 1/3 (see, e.g., [START_REF] Pérez-Abreu | Transfer principle for stochastic fractional integral[END_REF]). Moreover, it follows again by the stationarity (79) and the scaling (78) properties that E|B 2 0,t-s (v)(i, j)| 2 = E|B 2 0,t-s (0)(i, j)| Both in the cases i = j and i = j, the substitution formula for Russo-Vallois integrals easily yields that δB 2 (v) = δB v ⊗ δB. Furthermore, since B 2 (v) is a process belonging to the second chaos of the fractional Brownian motion B, on which all L p norms are equivalent for p > 1, we get that E|B 2 st (v)(i, j)| p ≤ c p |t -s| 2pH (88)