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Abstract: This paper deals with the state estimation of nonlinear systems. Our
approach is based on the representation of a nonlinear system with the help of a
decoupled multiple model. This kind of multiple model constitutes an alternative
to the classic Takagi-Sugeno multiple model. Indeed, in opposition to this last,
in the decoupled multiple model the dimension (i.e. the number of states) of the
submodels may be different. In order to cope with the state estimation problem a
Proportional-Integral observer (PIO) is designed. Indeed, in contrast to the classic
Proportional observer the PIO is known by its robustness properties. Sufficient
conditions for ensuring the estimation error convergence are given in LMI form.

Keywords: multiple model, nonlinear systems, state estimation, PI Observer.

1. INTRODUCTION

The knowledge of the state (i.e. internal variables)
of a system is often necessary in order to design
a control law or set up a FDI strategy. Unfortu-
nately, as a general rule, the direct measurement
of the state variables of a system is not possi-
ble owing to the inaccessibility of the variable,
the sensor cost, the technological limitations, etc.
Therefore, in several engineering problems the
state estimation is a fundamental point.

A common solution, in order to provide a state
estimation of a system, is to use an observer. An
observer yields an estimation of the state using
the available model of the system, the inputs
and the measurable outputs of the system. The
classic observer, used in the linear systems theory,
is the famous Luenberger observer (Luenberger,
1971), also named Proportional observer (PO).
However, it is well known that the precision of
the estimation provides by this observer is directly

affected by the incertitudes of the model (i.e.
knowledge of the parameters) and also by the
quality of the employed signals which is affected
by noise, perturbations, etc.

In order to provide a better estimation under
system perturbations a Proportional-Integral ob-
server (PIO) may be used. Indeed, the PI observer
thanks to its integral action introduce a robust-
ness degree in the state estimation (Weinmann,
1991). The purpose of this note is to extend the
principle of the PIO observer used in the linear
system framework (Beale and Shafai, 1989) to
nonlinear systems. To this end, the multiple model
approach can be employed.

In this modelling framework, the dynamic behav-
iour of a nonlinear system is described by taking
into consideration the contribution of a collection
of linear submodels. Each submodel is valid in a
particular operating zone and the global model is
obtained via an interpolation mechanism. Hence,



a multiple model is able to characterize accurately
a complex system by increasing the number of
submodels. Besides, the available tools for linear
systems may partially be extended to nonlinear
systems represented by a multiple model. Nowa-
days, the multiple model approach represents a
powerful tool in order to cope with several control
problems.

Two basic structures of multiple model can be
distinguished for interconnecting the submodels
between them (Filev, 1991). In the first structure,
the submodels have the same state vector (Takagi-

Sugeno multiple model); in the second one, the
submodels are decoupled and their state vectors
are different (decoupled multiple model).

The Takagi-Sugeno multiple model is commonly
used in the multiple model framework. Several
works deal with the modelling, the control and
the diagnosis of nonlinear systems based on this
multiple model. Besides, in order to tackle the
state estimation problem, extensions of the pop-
ular proportional observer (Tanaka and Sugeno,
1992; Guerra et al., 2006), sliding mode observer
(Bergstern and Driankov, 2002) and unknown in-
puts observer (Marx et al., 2007) have been suc-
cessfully proposed.

The decoupled multiple model has been unfortu-
nately less investigated in the literature. However,
it represents an increasing alternative to Takagi-
Sugeno multiple model. Indeed, the usefulness of
this multiple model has been clearly established
for the control (Gawthrop, 1995; Gatzke and
Doyle III, 1999; Gregorcic and Lightbody, 2000)
and the modelling (Venkat et al., 2003; Thiaw et

al., 2007) of nonlinear systems. More recently, the
state estimation problem has been investigated in
(Orjuela et al., 2007) and the design of a propor-
tional observer has been proposed.

Our contribution in this note is to design a Pro-
portional-Integral observer for nonlinear systems
modelled by a decoupled multiple model. Indeed,
to the best of the authors’ knowledge, the design
of this observer has not been reported previously.
The outline of this paper is as follows. The two
classic structures of multiple models are detailed
in section 2. In section 3, the design of PIO
is exposed and sufficient existence condition of
the PIO is given in terms of LMI. Finally, in
section 4, a simulation example illustrates the
state estimation of a decoupled multiple model.

Notations. The following notations will be used
all along this paper. P > 0 (P < 0) denotes a
positive (negative) definite matrix P ; XT denotes
the transpose of matrix X and I is the identity
matrix of appropriate dimension. We shall simply
write µi(ξ(k)) = µi(k).

2. STRUCTURES OF MULTIPLE MODELS

A multiple model is built by blending several
linear submodels. Basically, two kinds of multiple
models can be distinguished according to the
coupling between the submodels.

Let us notice that several techniques for nonlin-
ear modelling with a multiple model structure
(i.e. the parameter estimation of the submodels)
are available, see for instance (Murray-Smith and
Johansen, 1997; Gasso et al., 2001; Venkat et

al., 2003; Orjuela et al., 2006) and the references
therein for further information about these tech-
niques.

2.1 Takagi-Sugeno multiple model

The Takagi-Sugeno multiple model structure is
given by (Murray-Smith and Johansen, 1997):

x(k + 1) =

L
∑

i=1

µi(ξ(k)){Aix(k) + Biu(k)} ,(1)

y(k) =

L
∑

i=1

µi(ξ(k))Cix(k)) ,

where x ∈ R
n is the state vector, u ∈ R

m the
control input, y ∈ R

p the output and Ai ∈ R
n×n,

Bi ∈ R
n×m and Ci ∈ R

p×n are known and
constants matrices of appropriate dimensions.

The decision variable ξ(k) is a real-time accessible
signal, for example, the control input and/or a
measurable output of the system.

The µi(ξ(k)) are the weighting functions that
ensure the blending between the submodels. They
satisfy the following constraints:

L
∑

i=1

µi(ξ(k)) = 1 , ∀k (2a)

0 ≤ µi(ξ(k))≤ 1 , ∀i = 1...L, ∀k. (2b)

Let us notice that the Takagi-Sugeno multiple
model can be related to a Linear Parameter Var-
ing system (LPV). Moreover, one should note that
an only one state vector appears in the dynamic
equation of this multiple model.

2.2 Decoupled multiple model

The structure of the decoupled multiple model is
given by (Filev, 1991):

xi(k + 1) = Aixi(k) + Biu(k) ,

yi(k) = Cixi(k) , (3)

y(k) =

L
∑

i=1

µi(ξ(k))yi(k) ,



where xi ∈ R
ni and yi ∈ R

p are respectively the
state vector and the output of the ith submodel;
y ∈ R

p is the output of the multiple model. The
known and constants matrices Ai ∈ R

ni×ni ,
Bi ∈ R

ni×m and Ci ∈ R
p×ni are of appropriate

dimensions.

Let us notice that in this multiple model no
blend between the parameters of the submodels
is performed. Indeed, the dynamics of the sub-
models are completely independent and the sub-
model contributions are taken into account via
a weighted sum between the submodel outputs.
Hence, the main feature of this multiple model
is that the dimension of the submodels, i.e. the
numbers of the states, can be different (obviously
the submodel outputs must be of compatible di-
mensions).

Let us remark that the outputs yi(k) of the sub-
models are virtual outputs. Indeed, these outputs
are artificial modelling signals only used in order
to provide an approximation of the output of the
real physic system. Therefore the outputs yi(k)
cannot be employed as accessible signals to drive
an observer.

3. STATE ESTIMATION

In the present note, the concept of the PI observer
proposed in (Beale and Shafai, 1989) will be
extended in order to provide a state estimation
of a nonlinear system modelled by a multiple
model. Conditions for ensuring the exponential
convergence towards zero of the state estimation
error are established in LMIs terms (Boyd et

al., 1994).

The decoupled multiple model (3) is rewritten in
the following compact form in order to simplify
the mathematic manipulations:

x(k + 1) = Ãx(k) + B̃u(k) , (4)

y(k) = C̃(k)x(k) ,

where:

Ã =

















A1 0 0 0 0

0
. . . 0 0 0

0 0 Ai 0 0

0 0 0
. . . 0

0 0 0 0 AL

















, B̃ =

















B1

...
Bi

...
BL

















,

C̃(k) =
[

µ1(k)C1 · · ·µi(k)Ci · · ·µL(k)CL

]

,

x(k) =
[

xT
1
(k) · · ·xT

i (k) · · ·xT
L(k)

]T
∈ R

n, n =
L
∑

i=1

ni.

Notice that Ã and B̃ are constant matrices and
consequently the dynamic equation of the multiple
model takes a linear form. On the other hand,

C̃(k) is a time variable matrix. Indeed, the blend
between the submodels is carried out in the output
equation.

3.1 Proportional-Integral Observer structure

In the continuous-time case, a PIO is character-
ized by the use of an integral term of the esti-
mation error via a supplementary variable z(t).
Hence, thanks to this extra variable a robustness
degree of the state estimation with respect to the
plant perturbation is achieved (Weinmann, 1991).

In order to built a discrete-time PIO, the decou-
pled multiple model (4) is modified as follows:

x(k + 1) = Ãx(k) + B̃u(k) ,

z(k + 1) = C̃(k)x(k) , (5)

y(k) = C̃(k)x(k) .

The above equations can be rewritten in the
following augmented form:

xa(k + 1) = Ã1(k)xa(k) + C̄1B̃u(k) ,

y(k) = C̃(k)C̄T
1

xa(k) , (6)

z(k) = C̄T
2

xa(k) ,

where

xa(k) =

[

x(k)
z(k)

]

, Ã1(k) =

[

Ã 0

C̃(k) 0

]

,

C̄1 =

[

I
0

]

, C̄2 =

[

0
I

]

.

The state estimation of the decoupled multiple
model (6) is achieved with the help of the following
Proportional-Integral observer:

x̂a(k + 1) = Ã1(k)x̂a(k) + C̄1B̃u(k)

+KP (y(k) − ŷ(k))

+KI(z(k) − ẑ(k)),

ŷ(k) = C̃(k)C̄T
1

x̂a(k) , (7)

ẑ(k) = C̄T
2

x̂a(k) .

3.2 Observer design

Our approach for designing the observer is similar
to the approach proposed in (Hua and Guan,
2005) used in the synchronization of a chaotic
system.

The design of the observer (7) consist in finding
matrices KP and KI such that the estimation
error given by:

ea(k) = xa(k) − x̂a(k) , (8)

tends toward zero for any initial conditions and
for any blend between the submodel outputs.



From (8), (6) and (7), the following estimation
error dynamics are obtained:

ea(k + 1) = Aobs(k)ea(k) , (9)

where Aobs(k) is defined by:

Aobs(k) = Ã1(k) − KP C̃(k)C̄T
1
− KIC̄

T
2

. (10)

Let us notice that the matrix C̃(k) can be rewrit-
ten as follows:

C̃(k) =

L
∑

i=1

µi(ξ(k))C̃i , (11)

where C̃i is a constant bloc matrix given by:

C̃i =
[

0 · · · Ci · · · 0
]

. (12)

Hence, by taking into account the form (11) of
C̃(k), the matrix Ã1(k) becomes:

Ã1(k) =

L
∑

i=1

µi(k)Āi , (13)

where

Āi =

[

Ã 0

C̃i 0

]

. (14)

Finally, by using (11) and (13), the matrix Aobs(k)
can be rewritten as follows:

Aobs(k) =

L
∑

i=1

µi(k)Φi , (15)

Φi = Āi − KP C̃iC̄
T
1
− KIC̄

T
2

. (16)

The following theorem provides sufficient condi-
tions for ensuring the exponential convergence
of the estimation error using the Proportional-
Integral observer.

Theorem 1. Consider the decoupled multiple mod-
el (4) and the Proportional-Integral observer (6).
The exponential convergence of the estimation
error is guaranteed if there exists a symmetric,
positive definite matrix P , matrices LP and LI

such that:

[

(1 − γ)P AT
i

Ai P

]

> 0 , i = 1...L . (17)

where

Ai = PĀi − LP C̃iC̄
T
1
− LIC̄

T
2

,

for a prescribed scalar 0 < γ < 1. The ob-
server gains are given by KP = P−1LP and
KI = P−1LI .

Proof. Let us consider the classic quadratic Lya-
punov function:

V (k) = eT
a (k)Pea(k), P > 0 P = PT ,(18)

and its variation denoted by:

∆V (k) = V (k + 1) − V (k) . (19)

The exponential convergence of the estimation
error is ensured if the following condition holds:

∃P = PT > 0 → ∆V (k) ≤ −γV (k), ∀k, (20)

where γ is the so called decay rate.

Now, conditions for ensuring the above inequality
must be established. Using (18), it can be shown
that ∆V (k) becomes:

∆V (k) = eT
a (k + 1)Pea(k + 1) (21)

−eT
a (k)Pea(k) ,

and substituting (9) into (21):

∆V (k) = eT
a (k){AT

obs(k)PAobs(k) − P}ea(k) .

(22)

Now, by taking into consideration (18) and (22),
(20) yields:

eT
a (k){AT

obs(k)PAobs(k) − P + γP}ea(k) ≤ 0(23)

that is a quadratic form in ea(k). Hence, the
condition (20) for ensuring the exponential con-
vergence of the estimation error is guaranteed if:

AT
obs(k)PAobs(k) − (1 − γ)P < 0 . (24)

Now, substituting (15) into (24) gives:

L
∑

i=1

µi(k)ΦT
i P

L
∑

j=1

µj(k)Φj − (1 − γ)P < 0 , (25)

and by using the Schur complement and the
property (2a) of the weighting functions, it is
possible to write:

L
∑

i=1

µi(k)

[

(1 − γ)P ΦT
i P

PΦi P

]

> 0 , (26)

and according to (2b), the above inequality is also
satisfied if:

[

(1 − γ)P ΦT
i P

PΦi P

]

> 0 , i = 1...L . (27)

Let us notice, by considering the definition (16)
of Φi, that this inequality is not a LMI in KP ,



KI and P . However, it becomes a strict LMI by
setting LP = PKP and LI = PKI :

PΦi = PĀi − LP C̃iC̄
T
1
− LIC̄

T
2

. (28)

Now, standard convex optimization algorithms
can be used in order to find matrices P , Lp and LI

for a prescribed γ. This completes the proof. 2

Remark 1. The so called decay rate (γ) is a mean
to impose a velocity convergence of the estimation
error. Hence, ensure the exponential convergence
can greatly improve the dynamic performances of
the observer.

Remark 2. The asymptotic convergence of the
estimation error is easily stabilised from theorem 1
by taking γ = 0.

4. SIMULATION EXAMPLE

The state estimation problem using the proposed
Proportional-Integral observer is illustrated in
this section. Considerer the discrete-time decou-
pled multiple with sample time 0.5 and L = 2
different dimension submodels:

A1 =

[

0.8 0
0.4 0.1

]

, A2 =





−0.3 −0.5 0.2
0.7 −0.8 0
−2.0 0.1 0.7



 ,

B1 =
[

0.2 −0.4
]T

, B2 =
[

0.2 −0.5 0.3
]T

,

C1 =

[

0.7 0.4
0.5 0.2

]

, C2 =

[

0.5 0 0.8
0.7 0.4 0.1

]

.
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Fig. 1. Weighting functions, µ1 (solid line) and µ2

(dashed line)

Here, the decision variable ξ(k) is the input signal
u(k) ∈ [0, 1]. The weighting functions are
obtained from normalised Gaussian functions:

µi(ξ(k)) = ωi(ξ(k))/
L

∑

j=1

ωj(ξ(k)), (29)

ωi(ξ(k)) = exp
(

−(ξ(k) − ci)
2
/σ2

)

, (30)

with the standard deviation σ = 0.4 and the
centres c1 = 0.25 and c2 = 0.75. Notice that
the contributions of two submodels are taken into
consideration at any time (see figure 1).

4.1 PI observer performances

A solution satisfying conditions of theorem 1 can
be found by using, for example, YALMIP interface
coupled to SeDuMi solver. Conditions of theorem
1 are fulfilled with:

KP =















0.045 0.121

−0.001 0.107

0.003 0.151

0.041 0.148

0.075 0.395

0.535 0.458

0.270 0.193















, KI =















0.136 −0.097

0.148 −0.092

0.295 −0.192

0.225 −0.276

0.668 −0.119

0.023 −0.347

0.068 −0.257















,

for a γ = 0.35.

It can be seen from figure 2 that the proposed
PI observer provides a good state estimation.
In this figure the elements of the estimation er-
ror vector (9) are noted ei. Let us notice that
the initial conditions of the multiple model are:
x(0) =

[

0.4 0.8 −0.2 0.5 −0.4
]

, and the initial
conditions of the observers are null.
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1e
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(k)
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k

Fig. 2. State estimation errors

4.2 Comparison between P and PI observers

A Proportional observer, based on the decoupled
multiple model, is designed by using the procedure
proposed in (Orjuela et al., 2007). The obtained
gain is given by:

K =

[

0.031 −0.008 0.334 0.271 0.699

0.132 0.149 −0.717 −0.324 −1.65

]

T

,

for a γ = 0.35.

For the sake of performances comparison between
both observers, a constant perturbation:

w(k) =
[

0 −0.3
]T

, ∀k , (31)

is added to the output at k = 20. This pertur-
bation can be due, for example, to a sensor fault.
The estimation errors provided by both observers
are plotted in figures 3. As clearly seen from these
pictures, the PI observer provides the best state
estimation under the considered perturbation.



0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5
e

1
(k)

0 5 10 15 20 25 30 35 40 45 50
−1

0

1e
2
(k)

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5
e

3
(k)

0 5 10 15 20 25 30 35 40 45 50
−1

0

1e
4
(k)

0 5 10 15 20 25 30 35 40 45 50
−1

0

1e
5
(k)

k

Fig. 3. State estimation errors under perturbation.
P Observer (solid line), PI Observer (dashed
line)

5. CONCLUSION

This paper has proposed the design of a new
Proportional-Integral observer, based on a de-
coupled multiple model approach, to estimate
the state of nonlinear system. In this multi-
ple model each submodel has a different state
vector in opposition to the well known Takagi-
Sugeno model where the submodels have the
same state vector. The effectiveness of the pro-
posed approach and a comparison between Pro-
portional and Proportional-Integral observers are
illustrated via a simulation example.
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