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FREE MARTINGALE POLYNOMIALS FOR STATIONARY JACOBI

PROCESSES

N. DEMNI 1

Abstract. We generalize a previous result concerning free martingale polynomials for
the stationary free Jacobi process of parameters λ ∈]0.1], θ = 1/2. Hopelessly, apart
from the case λ = 1, the polynomials we derive are no longer orthogonal with respect
to the spectral measure. As a matter of fact, we use the multiplicative renormaliza-
tion method to write down its corresponding orthogonal polynomials as well as the
orthogonality measure associated with the martingale polynomials. We finally give a
realization of the spectral measure of the free stationary Jacobi process by means of
the corresponding one mode interacting Fock space.

1. Preliminaries

Let (A , φ) a W ⋆-non commutative probability space. Easily speaking, A is a unital
von Neumann algebra and φ is a tracial faithful linear functional (state). In a previous
work ([8]), we defined, via matrix theory, and studied a two parameters-dependent self-
adjoint free process, called free Jacobi process. Our focus will be on a particular case
called the stationary Jacobi process since its spectral distribution does not depend on
time. It is defined as Jt := PUYtQY

⋆
t U

⋆P where

• (Yt)t≥0 is a free multiplicative Brownian motion (see [7]).
• U is a Haar unitary operator in (A ,Φ).
• P is a projection with Φ(P ) = λθ ≤ 1, θ ∈]0, 1].
• Q is a projection with Φ(Q) = θ.

• QP = PQ =

{

P if λ ≤ 1
Q if λ > 1

• {U,U⋆} and {P,Q} are free (see [12] for freeness).

Thus the process takes values in the compressed space (PA P, (1/φ(P ))φ). The spectral
distribution has the following decomposition :

µλ,θ(dx) =
1

2πλθ

√

(x+ − x)(x− x−)

x(1 − x)
1[x

−
,x+](x)dx+ a0δ0(dx) + a1δ1(dx)

where δy stands for the Dirac mass at y with corresponding weight ay, y ∈ {0, 1} and

x± =
(

√

θ(1 − λθ) ±
√

λθ(1 − θ)
)2
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2 FREE MARTINGALE POLYNOMIALS FOR STATIONARY JACOBI PROCESSES

Its Cauchy transform writes

(1) Gµλ,θ
(z) =

(2 − (1/λθ))z + (1/λ − 1) +
√
Az2 −Bz + C

2z(z − 1)
, z ∈ C \ [0, 1]

with A = 1/(λθ)2, B = 2((1/λθ)(1 + 1/λ)− 2/λ) et C = (1− 1/λ)2. It was shown in [8]
that if λ ∈]0, 1], 1/θ ≥ λ+ 1 then the process is injective in PA P , that is a0 = a1 = 0.
Moreover, µ1,1/2(dx) fits the Beta distribution B(1/2, 1/2):

µ1,1/2(dx) =
1

π
√

x(1 − x)
1[0,1](x)dx

Recall that the Tchebycheff polynomials of the first kind are defined by

Tn(x) = cos(n arccos x), n ≥ 0, |x| ≤ 1.

and that they are orthogonal with respect to µ1,1/2(dx). Their generating function is
given by:

g(u, x) =
∑

n≥0

Tn(x)un =
1 − ux

1 − 2ux+ u2
, |u| < 1.

In [8], we proved that for r > 0

g(ret, Jt) = ((1 + ret)P − 2etJt)((1 + ret)2P − 4retJt)
−1, t < − ln r

defines a free martingale with respect to the natural filtration of J , say Jt, the unit of
the compressed space being the projection P . It follows that (entTn(2Jt −P ))t≥0, n ≥ 1
is a family of free martingale polynomials. Note also that

h(ret, Jt) := 2g(ret, Jt) − P =
(1 − r2e2t)

(1 + ret)2
(P − 4ret

(1 + ret)2
Jt)

−1

=
1 − ret

1 + ret
(P − 4ret

(1 + ret)2
Jt)

−1

= (1 − (ret)2)(P − 2ret(2Jt − P ) + (ret)2)−1

is also a free martingale. Let Un denote the n-th Tchebycheff polynomial of the second
kind defined by

Un(cosα) =
sin(n+ 1)α

sinα
, α ∈ R

with generating function given by
∑

n≥0

Un(x)un =
1

1 − 2ux+ u2
, |x| ≤ 1, |u| < 1.

Then, one deduces either from the above generating function or from the relation
2Tn = Un − Un−2, U−1 := 0 that {Mn

t := ent(Un − Un−2)(2Jt − P ), n ≥ 1}t≥0 is a
family of free martingale polynomials. The aim of this work is to extend this claim
to the range θ = 1/2, λ ∈]0, 1]. The motivation originates from [10] where the author
determines the family of orthogonal polynomials with respect to µλ,θ. Our first guess
was that these will be free martingales polynomials for all λ ∈]0, 1], θ ≤ 1/(λ+ 1). Yet,
things turn to be more complicated: not only the range is restricted but the martingale
polynomials we derive are not orthogonal with respect to µλ,1/2 except for λ = 1. As
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a matter of fact, we will on one hand derive the orthogonal polynomials corresponding
to µλ,1/2 and compute on the other hand the appropriate orthogonality measure for our
martingales polynomials. The last part of the paper is devoted to a realization of the
free stationary Jacobi process using the Accardi-Bozejko isomorphism (see [1]) as well
as some comments.

Remark. From a matrix theory point of view, the choice θ = 1/2 correponds to the ultra-
spherical multivariate Beta distribution (see [8]). Moreover, to our level of Knowledge,
there is only one result concerning martingale polynomials for the stationary (classical)
Jacobi process, which is restricted to the one dimensional case. More precisely, pick
a vector (x1, . . . , xd) belonging to the sphere Sd−1, d ≥ 2 distributed according to the
uniform (Haar) measure, then form the discrete process defined by

sp =

p
∑

i=0

x2
i , 1 ≤ p ≤ d− 1.

It is a known that each random variable has the Beta distribution B((d− p/2), p/2). It
was shown in [11] that

Md
n(p) =

1

((d− p)/2)n
Pα,β

n (2sp − 1),

where Pα,β
n denotes the n-th Jacobi polynomial of parameters α = (d − p)/2 − 1, β =

(p/2)− 1, is a martingale with respect to the natural filtration of the process. To relate
this to our work, we rewrite sp in the matrix form

sp = P1UdQpU
⋆
dP1,

where Ud is a d × d Haar unitary matrix, P1 is a d × d projection with only one non
vanishing coefficient (P1)11 = 1 and Qp is a d× d projection with only p non vanishing
term (Qp)11 = · · · = (Qp)pp = 1. For d = 2p, we get the ultraspherical polynomials of
parameter λ = (p − 1)/2.

2. Main result

One has for λ ∈]0, 1], θ = 1/2

x− =

(√
2 − λ

2
−

√
λ

2

)2

≤ x ≤ x+ =

(√
2 − λ

2
+

√
λ

2

)2

⇒ −1 ≤ 2x− 1
√

λ(2 − λ)
≤ 1

and our main result is stated as follows:

Proposition 2.1. Set

a(λ) =
(1 − λ)
√

λ(2 − λ)
, xt,λ =

2Jt − P
√

λ(2 − λ)

For each n ≥ 1, the process defined by

Mn
t := [Un(xt,λ) − 2a(λ)Un−1(xt,λ) − Un−2(xt,λ)]

(

et

λ(2 − λ)

)n

, t ≥ 0

is a (Jt)-free martingale.
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3. Proof of the main result

The proof consists of two parts: the first one consists in deriving a martingale function
for all values of λ ∈]0, 1], θ ≤ 1/2 ≤ 1/(λ+1). In the second one, we specialize for θ = 1/2
and show that this function correponds to the generating function of the polynomials
stated above.
First step: inspired by the above expression of h(ret, Jt), we will look for martingales of
the form

Rt := Kt(P − ZtJt)
−1 = Kt

∑

n≥0

Zn
t J

n
t := KtHt

where K,Z are differentiable functions of the variable t lying in some interval [0, t0[ such
that 0 < Zt < 1 for t ∈ [0, t0[. The finite variation part of dRt is given by

FV (dRt) = K ′
tHtdt+KtFV (dHt)

Our main tool is the free stochastic calculus and more precisely the free stochastic
differential equation already set for Jn

t , n ≥ 1 ([8]):

dJn
t = dMt + n(θP − Jt)J

n−1
t dt+ λθ

n−1
∑

l=1

l[mn−l(P − Jt)J
l−1
t + (mn−l−1 −mn−l)J

l
t)]dt

where dM stands for the martingale part and mn is the n-th moment of Jt in PA P :

mn := φ̃(Jn
t ) :=

1

φ(P )
φ(Jn

t )

The finite variation part FV (dJn
t ) of Jn

t transforms to:

FV (dJn
t ) = n(θP − Jt)J

n−1
t dt+ λθ

[

n−1
∑

l=1

l[mn−lJ
l−1
t +

n−1
∑

l=1

l(mn−l−1 − 2mn−l)J
l
t)

]

dt

= n(θP − Jt)J
n−1
t dt+ λθ

n−1
∑

l=1

lmn−lJ
l−1
t +

n
∑

l=1

(l − 1)(mn−l − 2mn−l+1)J
l−1
t dt

= n(θP − Jt)J
n−1
t dt+ λθ

n
∑

l=1

[lmn−l + (l − 1)(mn−l − 2mn−l+1)]J
l−1
t dt− nλθJn−1

t dt

= nθ(1− λ)Jn−1
t dt− nJn

t dt+ λθ

n
∑

l=1

[mn−l + 2(l − 1)(mn−l −mn−l+1)]J
l−1
t dt
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Thus

FV (dHt) =
∑

n≥1

nZ ′
tZ

n−1
t Jn

t dt+
∑

n≥1

ZtFV (Jn
t )

=
∑

n≥1

nZ ′
tZ

n−1
t Jn

t dt−
∑

n≥0

nZn
t J

n
t dt + θ(1 − λ)

∑

n≥1

nZn
t J

n−1
t dt

+ λθ
∑

n≥1

n
∑

l=1

Zn
t mn−lJ

l−1
t dt + 2λθ

∑

n≥1

n
∑

l=1

(l − 1)Zn
t (mn−l −mn−l+1)]J

l−1
t dt

=
∑

n≥1

n[Z ′
tZ

n−1
t − Zn

t ]Jn
t dt+ θ(1 − λ)

∑

n≥0

(n+ 1)Zn+1
t Jn

t dt

+ λθ
∑

n≥0

∑

l≥0

Zn+l+1
t mnJ

l
tdt + 2λθ

∑

n≥0

∑

l≥0

lZn+l+1
t (mn −mn+1)]J

l
tdt

= [Z ′
t/Zt − 1 + θ(1 − λ)Zt]

∑

n≥1

nZn
t J

n
t dt+ θ(1 − λ)Zt

∑

n≥0

Zn
t J

n
t dt

+ λθ
∑

n≥0

Zn+1
t mn

∑

l≥0

Z l
tJ

l
tdt+ 2λθ

∑

n≥0

Zn+1
t (mn −mn+1)]

∑

l≥0

lZ l
tJ

l
tdt

Recall that the Cauchy transform of a measure on the real line is defined by

Gν(z) =

∫

R

1

z − x
ν(dx) =

∑

n≥0

1

zn+1

∫

R

xnν(dx)

for some values of z for which both the integral and the infinite sum make sense. Then,
since 0 < Z < 1 and µλ,θ is supported in [0, 1], it is easy to see that

∑

n≥0

Zn+1
t (mn −mn+1) =

(

1 − 1

Zt

)

Gµλ,θ

(

1

Zt

)

+ 1

with Gµλ,θ
given by (1). This gives

2λθ(1 − z)Gµλ,θ
(z) =

(1 − 2λθ)z − θ(1 − λ) −
√

z2 − (λθ)2Bz + (λθ)2C

z
,

so that

2λθ(1 − Z−1
t )Gµλ,θ

(Z−1
t ) + 2λθ = 1 − θ(1 − λ)Zt −

√

1 − (λθ)2BZt + (λθ)2CZt,

We finally get:

FV (dHt) = [Z ′
t/Zt −

√

1 − (λθ)2BZt + (λθ)2CZ2
t ]
∑

n≥1

nZn
t J

n
t dt

+

[

λθGµλ,θ

(

1

Zt

)

+ θ(1 − λ)Zt

]

∑

n≥0

Zn
t J

n
t dt

In order to derive free martingales, we shall pick Z such that Z ′
t = Zt

√

1 − (λθ)2BZt + (λθ)2CZ2
t .

This shows that Z is an increasing function and one can solve the above non linear dif-
ferential equation as follows: use the variables change u = Zt, t < t0, then integrate to
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get :
∫

[Z0,Zt]

du

u
√

1 − 2θ(1 + λ− 2λθ)u+ (θ(1 − λ))2u2
= t

Remark. Let c1 = 2θ(1+λ−2λθ), c2 = θ2(1−λ)2. Then, the function u 7→ 1−c1u+c2u
2

is decreasing for u ∈]0, 1[: in fact,

2c2u− c1 < 2c2 − c1 = 2θ2(1 − λ)2 − 2θ(1 + λ− 2λθ)

= 2θ[θ(1 + λ2) − (1 + λ)] ≤ 2θ

(

1 + λ2

1 + λ
− (1 + λ)

)

= − 4λθ

1 + λ
< 0

which yields 1 − c1u+ c2u
2 > 1 − c1 + c2 = (1 − θ(1 + λ))2 ≥ 0.

Next, use the variable change 1 − vu =
√

1 − c1u+ c2u2. This gives

u =
2v − c1
v2 − c2

, du = −2
v2 + c2 − c1v

(v2 − c2)2
dv, 1 − vu = −v

2 + c2 − c1v

v2 − c2

Moreover

u 7→ v =
1 −

√
1 − c1u+ c2u2

u
, 0 < u < 1

is an increasing function: in fact the numerator of its derivative writes

c1u− 2c2u
2 + 2(1 − c1u+ c2u

2) − 2
√

1 − c1u+ c2u2 = (2 − c1u) − 2
√

1 − c1u+ c2u2

Since 2− c1u > 2− c1 = 2(1− θ(1 +λ)) + 4λθ2 > 0, our claim follows from the fact that
c21 − 4c2 = 16λθ2(1 − λθ)(1 − 2θ) ≥ 0.

Finally, the integral transforms to
∫

[v0,vt]

2dv

2v − c2
= log

∣

∣

∣

∣

2vt − c1
2v0 − c1

∣

∣

∣

∣

= t

where 1 − Ztvt =
√

1 − c1Zt + c2Z2
t , 1 − Z0v0 =

√

1 − c1Z0 + c2Z2
0 . Note also that

c21 − 4c2 ≥ 0 implies that for all u ∈ [Z0, Zt] ⊂]0, 1[

v − c1
2

=
1 −

√
1 − c1u+ c2u2

u
− c1

2
=

(1 − c1u/2) −
√

1 − c1u+ c2u2

u

=
(1 − c1u/2)

2 − (1 − c1u+ c2u
2)

u((1 − c1u/2) +
√

1 − c1u+ c2u2)
≥ 0

since 1 − c1/2u ≥ 1 − c1/2 ≥ 0. Thus v ≥ c1/2 ≥ √
c2.

vt = [(2v0 − c1)e
t + c1]/2 ⇔

√

1 − c1Zt + c2Z2
t = 1 − (2v0 − c1)e

±t + c1
2

Zt

We finally get

Zt =
4(2v0 − c1)e

±t

((2v0 − c1)et + c1)2 − 4c2
, t ≤ t0

where t0 is the first time such that Zt0 = 1 ⇔ (2v0 − c1)e
t0 + c1)

2 − 4c2 − 4(2v0 − c1)e
t0 .

Set r = r(λ, θ) := (2v0 − c1) and x0 = et0 > 1, then r2x2
0 + 2(c1 − 2)rx0 + c21 − 4c2 = 0.

The discriminant equals to ∆ = 16r2(1 + c2 − c1) = 16r2(1 − θ(1 + λ))2. Thus

x0 =
−(c1 − 2) − 2(1 − θ(1 + λ))

r
=

2(1 − θ(1 + λ)) + 4λθ2 − 2(1 − θ(1 + λ))

r
=

4λθ2

r
≥ 1
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The last inequality follows from the fact that 1 −√
c2u ≥ 1 − θ(1 + λ) ≥ 0 and from

r − 4λθ2 = 2v0 − c1 − 4λθ2 = 2(v0 − θ(1 + λ)) = 2(v0 −
√
c2) ≤ 0.

It gives t0 = − ln(r/4λθ2). Note also that the denominator is well defined for all t ≤ t0
since c21 ≥ 4c2 and 2v0 − c1 ≥ 0.
For the ramaining terms, we shall choose K such that

K ′
t +Kt

[

λθGµλ,θ

(

1

Zt

)

+ θ(1 − λ)Zt

]

= 0

An easy computation shows that this equals to

K ′
t +

Kt

2

[

θ(1 − λ)
Z2

t

Zt − 1
+ (1 − 2θ)

Zt

Zt − 1
− Zt

√

1 − c1Zt + c2Z2
t

Zt − 1

]

= 0

Remembering the choice of the function Z, this writes

K ′
t −

Kt

2

[

Z ′
t

Zt − 1
− (1 − 2θ)

Zt

Zt − 1
− θ(1 − λ)

Z2
t

Zt − 1

]

= 0

or equialently

K ′
t −

Kt

2

[

Z ′
t

Zt − 1
− (1 − θ − λθ)

Zt

Zt − 1
− θ(1 − λ)Zt

]

= 0

If Kt 6= 0, then

logKt =
1

2
log(1 − Zt) −

1 − θ − λθ

2

∫

Zs

Zs − 1
ds− θ(1 − λ)

2

∫

Zsds+ C

If λ 6= 1, then the last term is given by

−θ(1 − λ)

2

∫

Zsds =
θ(1 − λ)√

c2

∫

(r/2
√
c2)e

t

1 −
(

ret + c1
2
√
c2

)2 = arg tanh

(

ret + c1
2
√
c2

)

where arg tanh(u) = (1/2) log((u+ 1)/(u − 1)), |u| > 1. The second term writes

Zt

Zt − 1
=

4ret

4c2 + 4ret − (ret + c1)2
=

4ret

4c2 − c21 + (c1 − 2)2 − (ret + c1 − 2)2

=
ret

c2 + 1 − c1 −
(

ret + c1 − 2

2

)2 =
1

c2 + 1 − c1

ret

1 −
(

ret + c1 − 2

2
√
c2 + 1 − c1

)2

=
2√

c2 + 1 − c1

(r/2
√
c2 + 1 − c1)e

t

1 −
(

ret + c1 − 2

2
√
c2 + 1 − c1

)2

Observe that 2 − c1 − ret > 2 − c1 − ret0 = 2(1 − θ(1 + λ) ≥ 0. Thus, if θ(1 + λ) 6= 1

1 − θ(1 + λ)

2

∫

Zs

Zs − 1
ds = arg tanh

(

2 − c1 − ret

2
√
c2 + 1 − c1

)
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Thus, if λ 6= 1 (θ ≤ 1/2 < 1/(λ+ 1)),

Kt = C(1 − Zt)
1/2

(

ret + c1 + 2
√
c2

ret + c1 − 2
√
c2

)1/2(
2 − c1 − 2c3 − ret

2 − c1 + 2c3 − ret

)1/2

where c3 :=
√
c2 + 1 − c1 = 1 − θ(λ + 1). Note that for λ = 1, θ = 1/2, c1 = 1, c2 =

0, c3 = 0 and

Kt = C
1 − ret

1 + ret
, t < t0 = − ln r.

The case θ = 1/2, λ 6= 1: free martingales polynomials: one has

c1 = 1, c2 =
(1 − λ)2

4
, c3 =

√
c2 =

1 − λ

2
, Zt =

4ret

(ret + 1)2 − (1 − λ)2

c1 + 2
√
c2 = 2(1 + c3) − c1 = 2 − λ, c1 − 2

√
c2 = 2(1 − c3) − c1 = λ.

1 − Zt =
(ret − 1)2 − (1 − λ)2

(ret + 1)2 − (1 − λ)2
=

(ret + λ− 2)(ret − λ)

(ret + 2 − λ)(ret + λ)

Thus, for t < − ln(r/λ),

Kt = C
λ− ret

λ+ ret

so that

Rt = C
λ− ret

λ+ ret
(P − 4ret

(ret + 1)2 − (1 − λ)2
Jt)

−1

= C(λ− ret)(2 − λ+ ret)(λ(2 − λ)P + (ret)2P − 2ret(2Jt − P ))−1

=
C(λ− ret)(2 − λ+ ret)

λ(2 − λ)

(

P − 2ret
√

λ(2 − λ)

(2Jt − P )
√

λ(2 − λ)
+

(ret)2

λ(2 − λ)
P

)−1

= C

(

1 − 2
(1 − λ)
√

λ(2 − λ)

ret
√

λ(2 − λ)
− (ret)2

λ(2 − λ)

)(

P − 2ret
√

λ(2 − λ)

(2Jt − P )
√

λ(2 − λ)
+

(ret)2

λ(2 − λ)
P

)−1

is a free martingale with respect to the natural filtration Jt. Besides, since λ ∈]0, 1],

then λ ≤
√

λ(2 − λ), hence (ret)/(
√

λ(2 − λ)) < 1 for all t < − ln(r/λ). Now, let us
consider the following generating function

g(u, x) =
1 − 2au− u2

1 − 2xu+ u2
, 0 < a, u < 1, |x| ≤ 1.

It follows that

g(u, x) = U0(x) + (U1(x) − 2a)u+
∑

n≥2

[Un(x) − 2aUn−1(x) − Un−2(x)]u
n

Setting

ut,λ :=
ret

√

λ(2 − λ)
, t < t0,

then

Rt = C[P + (xt,λ − 2a(λ)P )ut,λ +
∑

n≥2

[Un(xt,λ) − 2a(λ)Un−1(xt,λ) − Un−2(xt,λ)]un
t,λ
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Setting U−1 = U−2 = 0, it can be written as

Rt = C
∑

n≥0

[Un(xt,λ) − 2a(λ)Un−1(xt,λ) − Un−2(xt,λ)]un
t,λ

Remark. The case λ = 1.
c1 = 4θ(1 − θ), c2 = 0 and Zt writes

Zt =
4ret

(ret + 4θ(1 − θ))2

Moreover, c3 =
√

1 − c1 = (1− 2θ), 2− 2c3 − c1 = 4θ2, 2+ 2c3 − c1 = 4(1− θ)2. Kt then
writes

Kt =

√

(ret + 4θ(1 − θ))2 − 4ret

ret + 4θ(1 − θ)

√

4θ2 − ret

4(1 − θ)2 − ret

4. one-parameter measures family and Orthogonal polynomials

Let µ be a measure on the real line which is not supported by a finite set. Assume
that µ has finite moments of all orders. Applying the Gram-Schmidt orthogonoliza-
tion method to the basis (1, x, x2, . . . ), there exist a unique family of monic orthogonal
polynomials with respect to µ, say (Pn)n≥0. These polynomials satisfy the three-terms
recurrence relation

(x− αn)Pn(x) = Pn+1(x) + ωnPn−1(x), n ≥ 0, P−1 := 0.

where αn ∈ R, wn > 0. (αn, ωn)n≥0 are called the Jacobi-Szegö parameters of µ. It is
known that µ is symmetric if and only if αn = 0, n ≥ 0. Another way to derive the
family (Pn)n is the multiplicative renormalization method ([3],[4],[5], [6]) that we shall
recall here : a nice function (u, x) 7→ ψ(u, x) is a generating function for the measure µ
if ψ has the expansion

ψ(u, x) =
∑

n≥0

cnPn(x)un, cn ∈ R

where Pn are orthogonal with respect to µ. Of course, there is more than one generating
function corresponding to a given measure and in order to claim whether a function is a
generating function or not, authors in [3] provided a necessary and sufficient condition.
For a particular form of ψ which fits our need, their result is formulated as follows:

Theorem 4.1. Define

θ(u) :=

∫

R

1

1 − ux
µ(dx), θ(u, v) :=

∫

R

1

(1 − ux)(1 − vx)
µ(dx).

Let ρ analytic around 0 such that ρ(0) = 0 and ρ′(0) 6= 0. Then

(2) ψ(u, x) :=
(1 − ρ(u)x)−1

θ(ρ(u))

is a generating function for µ if and only if

Θρ(u, v) :=
θ(ρ(u), ρ(v))

θ(ρ(u))θ(ρ(v))

is a function of uv.
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We will apply this result to the measures family νλ, λ ∈]0, 1] which is the image of

µλ,1/2 =
1

πλ

√

(x+ − x)(x− x−)

x(1 − x)
1[x

−
,x+](x)dx, x± =

(
√
λ±

√
2 − λ)2

4

by the map

x 7→ 2x− 1
√

λ(2 − λ)

Then,

νλ(dx) =
(2 − λ)

π

√
1 − x2

1 − λ(2 − λ)x2
1[−1,1](x)dx

Our scheme is the almost the same used in [9] except the computation of θ(u) which fol-
lows easily from Gµλ,1/2

. More precisely, authors considered the one-parameter measures
family

µa(dx) =
a
√

1 − x2

a2 + (1 − 2a)x2
1]−1,1[dx, a > 0.

It is forward that µ1/(2−λ) = νλ almost everywhere for 0 < λ ≤ 1 ⇔ 1/2 < a ≤ 1.

Proposition 4.1.

θ(u) = θλ(u) =
2 − λ

1 − λ+
√

1 − u2
, |u| < 1

Using
1

(1 − ux)(1 − vx)
=

1

u− v

(

u

1 − ux
− v

1 − vx

)

it follows that θ(u, v) = (uθ(u) − vθ(v))/(u − v) from which we deduce

Corollary 4.1.

θ(u, v) = θλ(u, v) =
1

2 − λ

[

1 − λ+
u+ v

u
√

1 − v2 + v
√

1 − u2

]

Proof: from the definition of νλ, one writes for 0 < u < λ(2 − λ) ≤ 1:
∫

R

1

1 − ux
νλ(dx) =

∫

R

1

1 − u
2x− 1

√

λ(2 − λ)

µλ,1/2(dx) =

√

λ(2 − λ)

2u
Gµλ,1/2

(

√

λ(2 − λ) + u

2u

)

The result follows from

Gµλ,1/2
(z) =

(1 − λ)(2z − 1) −
√

4z2 − 4z + (1 − λ)2

2λz(1 − z)
, z ∈ C \ [0, 1] �

Let ρ(u) = 2u/(1 + u2), then

ρ(u) + ρ(v)

ρ(u)
√

1 − ρ2(v) + ρ(v)
√

1 − ρ2(u)
=

1 + uv

1 − uv

so that Theorem 4.1 applies and claims that

ψλ(u, x) =
1 − λ/(2 − λ)u2

1 − 2ux+ u2
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is a generating function for νλ corresponding to the polynomials

Qλ
n(x) = Un(x) − λ

2 − λ
Un−2(x), , n ≥ 0, U−1 = U−2 := 0.

Using the recurrence relation

(3) 2xUn(x) = Un+1(x) + Un−1(x), U−1 := 0,

These polynomials satisfy

2xQλ
0 (x) = Qλ

1 (x)

2xQλ
1 (x) = Qλ

2 (x) +

(

1 +
λ

2 − λ

)

Qλ
0 (x)

2xQλ
n(x) = Qλ

n+1(x) +Qλ
n−1(x), n ≥ 2.

Setting Qλ
−1 := 0 and since the coefficient of the leading power in Qλ

n(x) is 2n, then
one deduces that the Jacobi-Szegö parameters are given by : αn = 0, n ≥ 0, w1 =
1/(2(2 − λ)), wn = 1/4, n ≥ 2.

Remark. In [10], authors characterize the absolutely continuous measures for which the
multiplicative renormalization method is applicable with the generating function given
by (2). They derived a two-parameters densities family written as

f(x) =
c
√

1 − x2

π[b2 + c2 − 2b(1 − c)x+ (1 − 2c)x2]
1[−1,1](x), |b| < 1 − c, 0 < c ≤ 1.

These densities fit the image of absolutely continuous part of µλ,θ by the map

u =
2x− s

d
∈ [−1, 1]

with d = d(λ, θ) = x+ − x− = 4θ
√

λ(1 − θ)(1 − λθ), , s = s(λ, θ) = x+ + x− = 2θ(1 +
λ− 2λθ). One gets

νλ,θ(dx) =
d2

2πλθ

√
1 − x2

s(2 − s) + 2d(1 − s)x− d2x2
dx

which provides the following relations

(4) c =
1

2(1 − λθ)
, b =

√

λ

(1 − θ)(1 − λθ)
(2θ − 1)

As a result, one can derive the correponding orthogonal polynomials for λ ∈]0, 1], θ ≤
1/(λ + 1) from the generating function ([10]):

(5) φ(u, x) =
1 − 2bu+ (1 − 2c)u2

1 − 2ux+ u2
.
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5. more orthogonal polynomials

Consider the polynomials P λ
n defined by

P λ
n (x) = Un(x) − 2a(λ)Un−1(x) − Un−2(x), U−1 = U−2 := 0

with generating function

g(u, x) =
1 − 2a(λ)u − u2

1 − 2xu+ u2
, a(λ) =

1 − λ

λ(2 − λ)
, 0 < u < 1.

The P λ
n ’s appear in [2] as a limiting case of the q-Pollaczek polynomials. The coefficient

of the highest monomial is equal to 2n. Using (3), one deduces that

2[x− a(λ)]P λ
0 (x) = P λ

1 (x)

2xP λ
1 (x) = P λ

2 (x) + 2P λ
0 (x)

2xP λ
n (x) = P λ

n+1(x) + P λ
n−1(x), n ≥ 2.

Thus the Jacobi-Szegö parameters are given by α0 = a(λ) and αn = 0 for all n ≥ 1 and
ω1 = 1/2, ωn = 1/4, n ≥ 2 (P λ

−1 = 0).
One can use Theorem 4.1 to determine the probability measure, ξλ, with respect to
which the P λ

n s are orthogonal. Since α0 6= 0, then ξλ is not symmetric. Indeed, keeping
the same function ρ previously defined, then the function θ must be equal to

θ(ρ(u)) =
1 + u2

1 − 2a(λ) − u2

so that

θ(u) =
1√

1 − u2 − a(λ)u

From the definition of θ, one deduces that

Gξλ
(u) :=

∫

R

1

u− x
ξλ(dx) =

1

u
θ

(

1

u

)

=

√
u2 − 1 + a(λ)

u2 − (1 + a2(λ))

for |u| > 1, u 6= ±
√

1 + a(λ)2. Thus, ξλ has two atoms a± at ±
√

a2(λ) + 1 and an
absolutely continuous part given by

a± = − lim
y→0+

yℑGξλ
(±
√

a2(λ) + 1 + iy), g(x) = − 1

π
lim

y→0+
ℑGξλ

(x+ iy)

Using that the Cauchy transform maps C
+ to C

−, one finally gets

ξλ(dx) =
a(λ)

√

a2(λ) + 1
δ√

a2(λ)+1
(dx) +

1

π

√
1 − x2

a2(λ) + 1 − x2
1|x|<1dx

Remark. To see that this defines a probability measure for λ 6= 1, it suffices to write

1

π

∫ 1

−1

√
1 − x2

a2(λ) + 1 − x2
dx =

1

π

∫ 1

0

√
1 − x√

x(a2(λ) + 1 − x)
dx

=
1

2(a2(λ) + 1)
2F1

(

1,
1

2
, 2;

1

a2(λ) + 1

)
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where 2F1 denotes the Gauss hypergeometric function given by

2F1(e, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
xb−1(1 − x)c−b−1(1 − zx)−edx, ℜ(b) ∧ ℜ(c− b) > 0

for |u| < 1. Then, one uses the identity

2F1(1, b, 2; z) =
1 − (1 − z)1−b

(1 − b)z

to get

1

π

∫ 1

−1

√
1 − x2

a2(λ) + 1 − x2
dx = 1 − a(λ)

√

a2(λ) + 1

6. One mode Interacting Fock space

In the sequel, we give a realization of νλ,θ, image of the spectral measure µλ,θ for
λ ∈]0, 1], θ ≤ 1/(λ+ 1) so that the support is [−1, 1]. In the quantum scope, it is known
as the quantum decomposition of νλ,θ. We only need the Jacobi-Szegö parameters in
order to apply Accardi-Bozejko Theorem ([1]). We first write down from the generating
function (5) the orthogonal polynomials (see [10]) corresponding to νλ,θ:

Qλ,θ
n = Un − 2bUn−1 + (1 − 2c)Un−2, U−1 = U−2 = 0,

where b = b(λ, θ), c = c(λ, θ) are given by (4). It follows that α0 = b, αn = 0 for
n ≥ 1 and ω1 = c/2, ωn = 1/4 for n ≥ 1. In order to use Accardi-Bozejko Theorem
([1]), we shall introduce the so-called one-mode interacting Fock space: let H be a one
dimensional separable complex Hilbert space ∼ C. Then the n-th tensor product H⊗n

is one dimensional: indeed z1 ⊗ · · · ⊗ zn = (z1 . . . zn)1 ⊗ · · · ⊗ 1 ∈ CΦn. The one-
mode interacting Fock space associated to νλ,θ is defined as Γ(CΦn, (λn)) as the infinite
orhogonal sum of CΦn equipped with the weighted scalar product

(z1Φn, z2Φn) := λnz1z2, z1, z2 ∈ C,

where λn = ω1 . . . ωn. Then νλ,θ is the vacuum distribution (in the vacuum state Φ1) of
any extension of the operator a+ + a+ αN where

a+Φn = Φn+1 (creation operator)

aΦn+1 = ωn+1Φn =
λn+1

λn
Φn, aΦ1 = 0, (annihilation operator)

NΦn = nΦn (Number operator), aa+Φn =
λn+1

λn
Φn,

and αN is defined by the spectral Theorem, that is αNΦn = αnΦn.

Remark. The concept of one mode interacting Fock space (IFS) is purely algebraic as
the reader can see from [1] and is fully characterized by both the commutation relations
between creation and annihilation operators and aΦ1 = 0. The most important feature
of Accardi-Bozejko Theorem is illustrated in the canonical isomorphism between one
mode IFS and the L2-space of a given measure µ of all order moments. It is noteworthy
that only the ωns are involved in the commutation relations (thus in both one mode IFS
and L2(µ)) while the αns reflect only the symmetry of µ.
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