FREE MARTINGALE POLYNOMIALS FOR STATIONARY JACOBI PROCESSES

N. DEMNI 1 Abstract. We generalize a previous result concerning free martingale polynomials for the stationary free Jacobi process of parameters λ ∈]0.1], θ = 1/2. Hopelessly, apart from the case λ = 1, the polynomials we derive are no longer orthogonal with respect to the spectral measure. As a matter of fact, we use the multiplicative renormalization method to write down its corresponding orthogonal polynomials as well as the orthogonality measure associated with the martingale polynomials. We finally give a realization of the spectral measure of the free stationary Jacobi process by means of the corresponding one mode interacting Fock space.

Preliminaries

Let (A , φ) a W ⋆ -non commutative probability space. Easily speaking, A is a unital von Neumann algebra and φ is a tracial faithful linear functional (state). In a previous work ( [START_REF] Demni | Free Jacobi process[END_REF]), we defined, via matrix theory, and studied a two parameters-dependent selfadjoint free process, called free Jacobi process. Our focus will be on a particular case called the stationary Jacobi process since its spectral distribution does not depend on time. It is defined as J t := P U Y t QY ⋆ t U ⋆ P where • (Y t ) t≥0 is a free multiplicative Brownian motion (see [START_REF] Biane | Free Brownian motion, free stochastic calculus and random matrices[END_REF]).

• U is a Haar unitary operator in (A , Φ).

• P is a projection with Φ(P ) = λθ ≤ 1, θ ∈]0, 1].

• Q is a projection with Φ(Q) = θ.

• QP = P Q = P if λ ≤ 1 Q if λ > 1 • {U, U ⋆ }
and {P, Q} are free (see [START_REF] Speicher | Combinatorics of Free Probability Theory[END_REF] for freeness).

Thus the process takes values in the compressed space (P A P, (1/φ(P ))φ). The spectral distribution has the following decomposition :

µ λ,θ (dx) = 1 2πλθ (x + -x)(x -x -) x(1 -x) 1 [x -,x + ] (x)dx + a 0 δ 0 (dx) + a 1 δ 1 (dx)
where δ y stands for the Dirac mass at y with corresponding weight a y , y ∈ {0, 1} and

x ± = θ(1 -λθ) ± λθ(1 -θ) 2 
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Its Cauchy transform writes

(1)

G µ λ,θ (z) = (2 -(1/λθ))z + (1/λ -1) + √ Az 2 -Bz + C 2z(z -1) , z ∈ C \ [0, 1] with A = 1/(λθ) 2 , B = 2((1/λθ)(1 + 1/λ) -2/λ) et C = (1 -1/λ) 2 .
It was shown in [START_REF] Demni | Free Jacobi process[END_REF] that if λ ∈]0, 1], 1/θ ≥ λ + 1 then the process is injective in P A P , that is a 0 = a 1 = 0. Moreover, µ 1,1/2 (dx) fits the Beta distribution B(1/2, 1/2):

µ 1,1/2 (dx) = 1 π x(1 -x) 1 [0,1] (x)dx
Recall that the Tchebycheff polynomials of the first kind are defined by

T n (x) = cos(n arccos x), n ≥ 0, |x| ≤ 1.
and that they are orthogonal with respect to µ 1,1/2 (dx). Their generating function is given by:

g(u, x) = n≥0 T n (x)u n = 1 -ux 1 -2ux + u 2 , |u| < 1.
In [START_REF] Demni | Free Jacobi process[END_REF], we proved that for r > 0 g(re t , J t ) = ((1 + re t )P -2e t J t )((1 + re t ) 2 P -4re t J t ) -1 , t < -ln r defines a free martingale with respect to the natural filtration of J, say J t , the unit of the compressed space being the projection P . It follows that (e nt T n (2J t -P )) t≥0 , n ≥ 1 is a family of free martingale polynomials. Note also that

h(re t , J t ) := 2g(re t , J t ) -P = (1 -r 2 e 2t ) (1 + re t ) 2 (P - 4re t (1 + re t ) 2 J t ) -1 = 1 -re t 1 + re t (P - 4re t (1 + re t ) 2 J t ) -1 = (1 -(re t ) 2 )(P -2re t (2J t -P ) + (re t ) 2 ) -1
is also a free martingale. Let U n denote the n-th Tchebycheff polynomial of the second kind defined by

U n (cos α) = sin(n + 1)α sin α , α ∈ R
with generating function given by n≥0

U n (x)u n = 1 1 -2ux + u 2 , |x| ≤ 1, |u| < 1.
Then, one deduces either from the above generating function or from the relation

2T n = U n -U n-2 , U -1 := 0 that {M n t := e nt (U n -U n-2 )(2J t -P ), n ≥ 1} t≥0
is a family of free martingale polynomials. The aim of this work is to extend this claim to the range θ = 1/2, λ ∈]0, 1]. The motivation originates from [START_REF] Kubo | The class of measures applicable to the renormalization method for (1 -x) -1[END_REF] where the author determines the family of orthogonal polynomials with respect to µ λ,θ . Our first guess was that these will be free martingales polynomials for all λ ∈]0, 1], θ ≤ 1/(λ + 1). Yet, things turn to be more complicated: not only the range is restricted but the martingale polynomials we derive are not orthogonal with respect to µ λ,1/2 except for λ = 1. As a matter of fact, we will on one hand derive the orthogonal polynomials corresponding to µ λ,1/2 and compute on the other hand the appropriate orthogonality measure for our martingales polynomials. The last part of the paper is devoted to a realization of the free stationary Jacobi process using the Accardi-Bozejko isomorphism (see [START_REF] Accardi | Interacting Fock space and Gausssianization of probability measures[END_REF]) as well as some comments.

Remark. From a matrix theory point of view, the choice θ = 1/2 correponds to the ultraspherical multivariate Beta distribution (see [START_REF] Demni | Free Jacobi process[END_REF]). Moreover, to our level of Knowledge, there is only one result concerning martingale polynomials for the stationary (classical) Jacobi process, which is restricted to the one dimensional case. More precisely, pick a vector (x 1 , . . . , x d ) belonging to the sphere S d-1 , d ≥ 2 distributed according to the uniform (Haar) measure, then form the discrete process defined by

s p = p i=0 x 2 i , 1 ≤ p ≤ d -1.
It is a known that each random variable has the Beta distribution B((d -p/2), p/2). It was shown in [START_REF] Silverstein | Orthogonal polynomial martingales on spheres[END_REF] that

M d n (p) = 1 ((d -p)/2) n P α,β n (2s p -1),
where P α,β n denotes the n-th Jacobi polynomial of parameters α = (d -p)/2 -1, β = (p/2) -1, is a martingale with respect to the natural filtration of the process. To relate this to our work, we rewrite s p in the matrix form 

s p = P 1 U d Q p U ⋆ d P 1 , where U d is a d × d

Main result

One has for

λ ∈]0, 1], θ = 1/2 x -= √ 2 -λ 2 - √ λ 2 2 ≤ x ≤ x + = √ 2 -λ 2 + √ λ 2 2 ⇒ -1 ≤ 2x -1 λ(2 -λ) ≤ 1
and our main result is stated as follows:

Proposition 2.1. Set a(λ) = (1 -λ) λ(2 -λ) , x t,λ = 2J t -P λ(2 -λ)
For each n ≥ 1, the process defined by

M n t := [U n (x t,λ ) -2a(λ)U n-1 (x t,λ ) -U n-2 (x t,λ )] e t λ(2 -λ) n , t ≥ 0 is a (J t )-free martingale.

Proof of the main result

The proof consists of two parts: the first one consists in deriving a martingale function for all values of λ ∈]0, 1], θ ≤ 1/2 ≤ 1/(λ+1). In the second one, we specialize for θ = 1/2 and show that this function correponds to the generating function of the polynomials stated above. First step: inspired by the above expression of h(re t , J t ), we will look for martingales of the form

R t := K t (P -Z t J t ) -1 = K t n≥0 Z n t J n t := K t H t
where K, Z are differentiable functions of the variable t lying in some interval [0, t 0 [ such that 0 < Z t < 1 for t ∈ [0, t 0 [. The finite variation part of dR t is given by

F V (dR t ) = K ′ t H t dt + K t F V (dH t )
Our main tool is the free stochastic calculus and more precisely the free stochastic differential equation already set for J n t , n ≥ 1 ([8]):

dJ n t = dM t + n(θP -J t )J n-1 t dt + λθ n-1 l=1 l[m n-l (P -J t )J l-1 t + (m n-l-1 -m n-l )J l t )]dt
where dM stands for the martingale part and m n is the n-th moment of J t in P A P :

m n := φ(J n t ) := 1 φ(P ) φ(J n t )
The finite variation part F V (dJ n t ) of J n t transforms to:

F V (dJ n t ) = n(θP -J t )J n-1 t dt + λθ n-1 l=1 l[m n-l J l-1 t + n-1 l=1 l(m n-l-1 -2m n-l )J l t ) dt = n(θP -J t )J n-1 t dt + λθ n-1 l=1 lm n-l J l-1 t + n l=1 (l -1)(m n-l -2m n-l+1 )J l-1 t dt = n(θP -J t )J n-1 t dt + λθ n l=1 [lm n-l + (l -1)(m n-l -2m n-l+1 )]J l-1 t dt -nλθJ n-1 t dt = nθ(1 -λ)J n-1 t dt -nJ n t dt + λθ n l=1 [m n-l + 2(l -1)(m n-l -m n-l+1 )]J l-1 t dt Thus F V (dH t ) = n≥1 nZ ′ t Z n-1 t J n t dt + n≥1 Z t F V (J n t ) = n≥1 nZ ′ t Z n-1 t J n t dt - n≥0 nZ n t J n t dt + θ(1 -λ) n≥1 nZ n t J n-1 t dt + λθ n≥1 n l=1 Z n t m n-l J l-1 t dt + 2λθ n≥1 n l=1 (l -1)Z n t (m n-l -m n-l+1 )]J l-1 t dt = n≥1 n[Z ′ t Z n-1 t -Z n t ]J n t dt + θ(1 -λ) n≥0 (n + 1)Z n+1 t J n t dt + λθ n≥0 l≥0 Z n+l+1 t m n J l t dt + 2λθ n≥0 l≥0 lZ n+l+1 t (m n -m n+1 )]J l t dt = [Z ′ t /Z t -1 + θ(1 -λ)Z t ] n≥1 nZ n t J n t dt + θ(1 -λ)Z t n≥0 Z n t J n t dt + λθ n≥0 Z n+1 t m n l≥0 Z l t J l t dt + 2λθ n≥0 Z n+1 t (m n -m n+1 )] l≥0 lZ l t J l t dt
Recall that the Cauchy transform of a measure on the real line is defined by

G ν (z) = R 1 z -x ν(dx) = n≥0 1 z n+1 R x n ν(dx)
for some values of z for which both the integral and the infinite sum make sense. Then, since 0 < Z < 1 and µ λ,θ is supported in [0, 1], it is easy to see that n≥0

Z n+1 t (m n -m n+1 ) = 1 - 1 Z t G µ λ,θ 1 Z t + 1
with G µ λ,θ given by (1). This gives

2λθ(1 -z)G µ λ,θ (z) = (1 -2λθ)z -θ(1 -λ) -z 2 -(λθ) 2 Bz + (λθ) 2 C z , so that 2λθ(1 -Z -1 t )G µ λ,θ (Z -1 t ) + 2λθ = 1 -θ(1 -λ)Z t -1 -(λθ) 2 BZ t + (λθ) 2 CZ t , We finally get: F V (dH t ) = [Z ′ t /Z t -1 -(λθ) 2 BZ t + (λθ) 2 CZ 2 t ] n≥1 nZ n t J n t dt + λθG µ λ,θ 1 Z t + θ(1 -λ)Z t n≥0 Z n t J n t dt
In order to derive free martingales, we shall pick Z such that

Z ′ t = Z t 1 -(λθ) 2 BZ t + (λθ) 2 CZ 2 t .
This shows that Z is an increasing function and one can solve the above non linear differential equation as follows: use the variables change u = Z t , t < t 0 , then integrate to get :

[Z 0 ,Zt] du u 1 -2θ(1 + λ -2λθ)u + (θ(1 -λ)) 2 u 2 = t Remark. Let c 1 = 2θ(1+ λ-2λθ), c 2 = θ 2 (1-λ) 2 . Then, the function u → 1-c 1 u+ c 2 u 2 is decreasing for u ∈]0, 1[: in fact, 2c 2 u -c 1 < 2c 2 -c 1 = 2θ 2 (1 -λ) 2 -2θ(1 + λ -2λθ) = 2θ[θ(1 + λ 2 ) -(1 + λ)] ≤ 2θ 1 + λ 2 1 + λ -(1 + λ) = - 4λθ 1 + λ < 0 which yields 1 -c 1 u + c 2 u 2 > 1 -c 1 + c 2 = (1 -θ(1 + λ)) 2 ≥ 0.
Next, use the variable change 1

-vu = √ 1 -c 1 u + c 2 u 2 . This gives u = 2v -c 1 v 2 -c 2 , du = -2 v 2 + c 2 -c 1 v (v 2 -c 2 ) 2 dv, 1 -vu = - v 2 + c 2 -c 1 v v 2 -c 2 Moreover u → v = 1 - √ 1 -c 1 u + c 2 u 2 u , 0 < u < 1
is an increasing function: in fact the numerator of its derivative writes

c 1 u -2c 2 u 2 + 2(1 -c 1 u + c 2 u 2 ) -2 1 -c 1 u + c 2 u 2 = (2 -c 1 u) -2 1 -c 1 u + c 2 u 2 Since 2 -c 1 u > 2 -c 1 = 2(1 -θ(1 + λ)) + 4λθ 2 > 0, our claim follows from the fact that c 2 1 -4c 2 = 16λθ 2 (1 -λθ)(1 -2θ) ≥ 0.
Finally, the integral transforms to

[v 0 ,vt] 2dv 2v -c 2 = log 2v t -c 1 2v 0 -c 1 = t where 1 -Z t v t = 1 -c 1 Z t + c 2 Z 2 t , 1 -Z 0 v 0 = 1 -c 1 Z 0 + c 2 Z 2 0 . Note also that c 2 1 -4c 2 ≥ 0 implies that for all u ∈ [Z 0 , Z t ] ⊂]0, 1[ v - c 1 2 = 1 - √ 1 -c 1 u + c 2 u 2 u - c 1 2 = (1 -c 1 u/2) - √ 1 -c 1 u + c 2 u 2 u = (1 -c 1 u/2) 2 -(1 -c 1 u + c 2 u 2 ) u((1 -c 1 u/2) + √ 1 -c 1 u + c 2 u 2 ) ≥ 0 since 1 -c 1 /2u ≥ 1 -c 1 /2 ≥ 0. Thus v ≥ c 1 /2 ≥ √ c 2 . v t = [(2v 0 -c 1 )e t + c 1 ]/2 ⇔ 1 -c 1 Z t + c 2 Z 2 t = 1 - (2v 0 -c 1 )e ±t + c 1 2 Z t
We finally get

Z t = 4(2v 0 -c 1 )e ±t ((2v 0 -c 1 )e t + c 1 ) 2 -4c 2 , t ≤ t 0
where t 0 is the first time such that

Z t 0 = 1 ⇔ (2v 0 -c 1 )e t 0 + c 1 ) 2 -4c 2 -4(2v 0 -c 1 )e t 0 . Set r = r(λ, θ) := (2v 0 -c 1 ) and x 0 = e t 0 > 1, then r 2 x 2 0 + 2(c 1 -2)rx 0 + c 2 1 -4c 2 = 0. The discriminant equals to ∆ = 16r 2 (1 + c 2 -c 1 ) = 16r 2 (1 -θ(1 + λ)) 2 . Thus x 0 = -(c 1 -2) -2(1 -θ(1 + λ)) r = 2(1 -θ(1 + λ)) + 4λθ 2 -2(1 -θ(1 + λ)) r = 4λθ 2 r ≥ 1 
The last inequality follows from the fact that 1 -√ c 2 u ≥ 1 -θ(1 + λ) ≥ 0 and from

r -4λθ 2 = 2v 0 -c 1 -4λθ 2 = 2(v 0 -θ(1 + λ)) = 2(v 0 - √ c 2 ) ≤ 0.
It gives t 0 = -ln(r/4λθ 2 ). Note also that the denominator is well defined for all t ≤ t 0 since c 2 1 ≥ 4c 2 and 2v 0 -c 1 ≥ 0. For the ramaining terms, we shall choose K such that

K ′ t + K t λθG µ λ,θ 1 Z t + θ(1 -λ)Z t = 0
An easy computation shows that this equals to

K ′ t + K t 2 θ(1 -λ) Z 2 t Z t -1 + (1 -2θ) Z t Z t -1 - Z t 1 -c 1 Z t + c 2 Z 2 t Z t -1 = 0
Remembering the choice of the function Z, this writes

K ′ t - K t 2 Z ′ t Z t -1 -(1 -2θ) Z t Z t -1 -θ(1 -λ) Z 2 t Z t -1 = 0
or equialently

K ′ t - K t 2 Z ′ t Z t -1 -(1 -θ -λθ) Z t Z t -1 -θ(1 -λ)Z t = 0 If K t = 0, then log K t = 1 2 log(1 -Z t ) - 1 -θ -λθ 2 Z s Z s -1 ds - θ(1 -λ) 2 Z s ds + C If λ = 1, then the last term is given by - θ(1 -λ) 2 Z s ds = θ(1 -λ) √ c 2 (r/2 √ c 2 )e t 1 - re t + c 1 2 √ c 2 2 = arg tanh re t + c 1 2 √ c 2
where arg tanh(u) = (1/2) log((u + 1)/(u -1)), |u| > 1. The second term writes

Z t Z t -1 = 4re t 4c 2 + 4re t -(re t + c 1 ) 2 = 4re t 4c 2 -c 2 1 + (c 1 -2) 2 -(re t + c 1 -2) 2 = re t c 2 + 1 -c 1 - re t + c 1 -2 2 2 = 1 c 2 + 1 -c 1 re t 1 - re t + c 1 -2 2 √ c 2 + 1 -c 1 2 = 2 √ c 2 + 1 -c 1 (r/2 √ c 2 + 1 -c 1 )e t 1 - re t + c 1 -2 2 √ c 2 + 1 -c 1 2 Observe that 2 -c 1 -re t > 2 -c 1 -re t 0 = 2(1 -θ(1 + λ) ≥ 0. Thus, if θ(1 + λ) = 1 1 -θ(1 + λ) 2 Z s Z s -1 ds = arg tanh 2 -c 1 -re t 2 √ c 2 + 1 -c 1 Thus, if λ = 1 (θ ≤ 1/2 < 1/(λ + 1)), K t = C(1 -Z t ) 1/2 re t + c 1 + 2 √ c 2 re t + c 1 -2 √ c 2 1/2 2 -c 1 -2c 3 -re t 2 -c 1 + 2c 3 -re t 1/2
where c 3 := √ c 2 + 1 -c 1 = 1 -θ(λ + 1). Note that for λ = 1, θ = 1/2, c 1 = 1, c 2 = 0, c 3 = 0 and

K t = C 1 -re t 1 + re t , t < t 0 = -ln r.
The case θ = 1/2, λ = 1: free martingales polynomials: one has

c 1 = 1, c 2 = (1 -λ) 2 4 , c 3 = √ c 2 = 1 -λ 2 , Z t = 4re t (re t + 1) 2 -(1 -λ) 2 c 1 + 2 √ c 2 = 2(1 + c 3 ) -c 1 = 2 -λ, c 1 -2 √ c 2 = 2(1 -c 3 ) -c 1 = λ. 1 -Z t = (re t -1) 2 -(1 -λ) 2 (re t + 1) 2 -(1 -λ) 2 = (re t + λ -2)(re t -λ) (re t + 2 -λ)(re t + λ)
Thus, for t < -ln(r/λ),

K t = C λ -re t λ + re t so that R t = C λ -re t λ + re t (P - 4re t (re t + 1) 2 -(1 -λ) 2 J t ) -1 = C(λ -re t )(2 -λ + re t )(λ(2 -λ)P + (re t ) 2 P -2re t (2J t -P )) -1 = C(λ -re t )(2 -λ + re t ) λ(2 -λ) P - 2re t λ(2 -λ) (2J t -P ) λ(2 -λ) + (re t ) 2 λ(2 -λ) P -1 = C 1 -2 (1 -λ) λ(2 -λ) re t λ(2 -λ) - (re t ) 2 λ(2 -λ) P - 2re t λ(2 -λ) (2J t -P ) λ(2 -λ) + (re t ) 2 λ(2 -λ) P -1
is a free martingale with respect to the natural filtration J t . Besides, since λ ∈]0, 1], then λ ≤ λ(2 -λ), hence (re t )/( λ(2 -λ)) < 1 for all t < -ln(r/λ). Now, let us consider the following generating function

g(u, x) = 1 -2au -u 2 1 -2xu + u 2 , 0 < a, u < 1, |x| ≤ 1. It follows that g(u, x) = U 0 (x) + (U 1 (x) -2a)u + n≥2 [U n (x) -2aU n-1 (x) -U n-2 (x)]u n Setting u t,λ := re t λ(2 -λ) , t < t 0 , then R t = C[P + (x t,λ -2a(λ)P )u t,λ + n≥2 [U n (x t,λ ) -2a(λ)U n-1 (x t,λ ) -U n-2 (x t,λ )]u n t,λ
Setting U -1 = U -2 = 0, it can be written as

R t = C n≥0 [U n (x t,λ ) -2a(λ)U n-1 (x t,λ ) -U n-2 (x t,λ )]u n t,λ
Remark. The case λ = 1. c 1 = 4θ(1 -θ), c 2 = 0 and Z t writes

Z t = 4re t (re t + 4θ(1 -θ)) 2 Moreover, c 3 = √ 1 -c 1 = (1 -2θ), 2 -2c 3 -c 1 = 4θ 2 , 2 + 2c 3 -c 1 = 4(1 -θ) 2 . K t then writes K t = (re t + 4θ(1 -θ)) 2 -4re t re t + 4θ(1 -θ) 4θ 2 -re t 4(1 -θ) 2 -re t

one-parameter measures family and Orthogonal polynomials

Let µ be a measure on the real line which is not supported by a finite set. Assume that µ has finite moments of all orders. Applying the Gram-Schmidt orthogonolization method to the basis (1, x, x 2 , . . . ), there exist a unique family of monic orthogonal polynomials with respect to µ, say (P n ) n≥0 . These polynomials satisfy the three-terms recurrence relation

(x -α n )P n (x) = P n+1 (x) + ω n P n-1 (x), n ≥ 0, P -1 := 0.
where α n ∈ R, w n > 0. (α n , ω n ) n≥0 are called the Jacobi-Szegö parameters of µ. It is known that µ is symmetric if and only if α n = 0, n ≥ 0. Another way to derive the family (P n ) n is the multiplicative renormalization method ([3], [START_REF] Asai | Renormalization, orthogonalization and generating function[END_REF], [START_REF] Asai | Multiplicative renormalization and generating function II[END_REF], [START_REF] Asai | Generating function method for orthogonal polynomials and Jacobi-Szegö parameters[END_REF]) that we shall recall here : a nice function (u, x) → ψ(u, x) is a generating function for the measure µ if ψ has the expansion

ψ(u, x) = n≥0 c n P n (x)u n , c n ∈ R
where P n are orthogonal with respect to µ. Of course, there is more than one generating function corresponding to a given measure and in order to claim whether a function is a generating function or not, authors in [START_REF] Asai | Multiplicative renormalization and generating function I[END_REF] provided a necessary and sufficient condition. For a particular form of ψ which fits our need, their result is formulated as follows:

Theorem 4.1. Define θ(u) := R 1 1 -ux µ(dx), θ(u, v) := R 1 (1 -ux)(1 -vx) µ(dx).
Let ρ analytic around 0 such that ρ(0) = 0 and ρ ′ (0) = 0. Then

(2) ψ(u, x) := (1 -ρ(u)x) -1 θ(ρ(u)) is a generating function for µ if and only if Θ ρ (u, v) := θ(ρ(u), ρ(v)) θ(ρ(u))θ(ρ(v)) is a function of uv.
is a generating function for ν λ corresponding to the polynomials

Q λ n (x) = U n (x) - λ 2 -λ U n-2 (x), , n ≥ 0, U -1 = U -2 := 0.
Using the recurrence relation

(3) 2xU n (x) = U n+1 (x) + U n-1 (x), U -1 := 0,
These polynomials satisfy

2xQ λ 0 (x) = Q λ 1 (x) 2xQ λ 1 (x) = Q λ 2 (x) + 1 + λ 2 -λ Q λ 0 (x) 2xQ λ n (x) = Q λ n+1 (x) + Q λ n-1 (x), n ≥ 2.
Setting Q λ -1 := 0 and since the coefficient of the leading power in Q λ n (x) is 2 n , then one deduces that the Jacobi-Szegö parameters are given by : α n = 0, n ≥ 0,

w 1 = 1/(2(2 -λ)), w n = 1/4, n ≥ 2.
Remark. In [START_REF] Kubo | The class of measures applicable to the renormalization method for (1 -x) -1[END_REF], authors characterize the absolutely continuous measures for which the multiplicative renormalization method is applicable with the generating function given by [START_REF] Al-Salam | q-Pollaczek polynomials and a conjecture of Andrews and Askey[END_REF]. They derived a two-parameters densities family written as

f (x) = c √ 1 -x 2 π[b 2 + c 2 -2b(1 -c)x + (1 -2c)x 2 ] 1 [-1,1] (x), |b| < 1 -c, 0 < c ≤ 1.
These densities fit the image of absolutely continuous part of µ λ,θ by the map

u = 2x -s d ∈ [-1, 1] with d = d(λ, θ) = x + -x -= 4θ λ(1 -θ)(1 -λθ), , s = s(λ, θ) = x + + x -= 2θ(1 + λ -2λθ). One gets ν λ,θ (dx) = d 2 2πλθ √ 1 -x 2 s(2 -s) + 2d(1 -s)x -d 2 x 2 dx
which provides the following relations

(4) c = 1 2(1 -λθ) , b = λ (1 -θ)(1 -λθ) (2θ -1)
As a result, one can derive the correponding orthogonal polynomials for λ ∈]0, 1], θ ≤ 1/(λ + 1) from the generating function ( [START_REF] Kubo | The class of measures applicable to the renormalization method for (1 -x) -1[END_REF]):

(5)

φ(u, x) = 1 -2bu + (1 -2c)u 2 1 -2ux + u 2 .

more orthogonal polynomials

Consider the polynomials P λ n defined by

P λ n (x) = U n (x) -2a(λ)U n-1 (x) -U n-2 (x), U -1 = U -2 := 0 with generating function g(u, x) = 1 -2a(λ)u -u 2 1 -2xu + u 2 , a(λ) = 1 -λ λ(2 -λ)
, 0 < u < 1.

The P λ n 's appear in [START_REF] Al-Salam | q-Pollaczek polynomials and a conjecture of Andrews and Askey[END_REF] as a limiting case of the q-Pollaczek polynomials. The coefficient of the highest monomial is equal to 2 n . Using (3), one deduces that

2[x -a(λ)]P λ 0 (x) = P λ 1 (x) 2xP λ 1 (x) = P λ 2 (x) + 2P λ 0 (x) 2xP λ n (x) = P λ n+1 (x) + P λ n-1 (x), n ≥ 2.
Thus the Jacobi-Szegö parameters are given by α 0 = a(λ) and α n = 0 for all n ≥ 1 and ω 1 = 1/2, ω n = 1/4, n ≥ 2 (P λ -1 = 0). One can use Theorem 4.1 to determine the probability measure, ξ λ , with respect to which the P λ n s are orthogonal. Since α 0 = 0, then ξ λ is not symmetric. Indeed, keeping the same function ρ previously defined, then the function θ must be equal to 2 . Thus, ξ λ has two atoms a ± at ± a 2 (λ) + 1 and an absolutely continuous part given by

θ(ρ(u)) = 1 + u 2 1 -2a(λ) -u 2 so that θ(u) = 1 √ 1 -u 2 -a(λ)u From the definition of θ, one deduces that G ξ λ (u) := R 1 u -x ξ λ (dx) = 1 u θ 1 u = √ u 2 -1 + a(λ) u 2 -(1 + a 2 (λ)) for |u| > 1, u = ± 1 + a(λ)
a ± = -lim y→0 + yℑG ξ λ (± a 2 (λ) + 1 + iy), g(x) = - 1 π lim y→0 + ℑG ξ λ (x + iy)
Using that the Cauchy transform maps C + to C -, one finally gets

ξ λ (dx) = a(λ) a 2 (λ) + 1 δ √ a 2 (λ)+1 (dx) + 1 π √ 1 -x 2 a 2 (λ) + 1 -x 2 1 |x|<1 dx
Remark. To see that this defines a probability measure for λ = 1, it suffices to write

1 π 1 -1 √ 1 -x 2 a 2 (λ) + 1 -x 2 dx = 1 π 1 0 √ 1 -x √ x(a 2 (λ) + 1 -x) dx = 1 2(a 2 (λ) + 1) 2 F 1 1, 1 2 , 2; 1 a 2 (λ) + 1
where 2 F 1 denotes the Gauss hypergeometric function given by

2 F 1 (e, b, c; z) = Γ(c) Γ(b)Γ(c -b) 1 0 x b-1 (1 -x) c-b-1 (1 -zx) -e dx, ℜ(b) ∧ ℜ(c -b) > 0 for |u| < 1. Then, one uses the identity 2 F 1 (1, b, 2; z) = 1 -(1 -z) 1-b (1 -b)z to get 1 π 1 -1 √ 1 -x 2 a 2 (λ) + 1 -x 2 dx = 1 - a(λ)
a 2 (λ) + 1

One mode Interacting Fock space

In the sequel, we give a realization of ν λ,θ , image of the spectral measure µ λ,θ for λ ∈]0, 1], θ ≤ 1/(λ + 1) so that the support is [-1, 1]. In the quantum scope, it is known as the quantum decomposition of ν λ,θ . We only need the Jacobi-Szegö parameters in order to apply Accardi-Bozejko Theorem ( [START_REF] Accardi | Interacting Fock space and Gausssianization of probability measures[END_REF]). We first write down from the generating function ( 5) the orthogonal polynomials (see [START_REF] Kubo | The class of measures applicable to the renormalization method for (1 -x) -1[END_REF]) corresponding to ν λ,θ : Remark. The concept of one mode interacting Fock space (IFS) is purely algebraic as the reader can see from [START_REF] Accardi | Interacting Fock space and Gausssianization of probability measures[END_REF] and is fully characterized by both the commutation relations between creation and annihilation operators and aΦ 1 = 0. The most important feature of Accardi-Bozejko Theorem is illustrated in the canonical isomorphism between one mode IFS and the L 2 -space of a given measure µ of all order moments. It is noteworthy that only the ω n s are involved in the commutation relations (thus in both one mode IFS and L 2 (µ)) while the α n s reflect only the symmetry of µ.

Q λ,θ n = U n -2bU n-1 + (1 -2c)U n-2 , U -1 = U -2 =

  Haar unitary matrix, P 1 is a d × d projection with only one non vanishing coefficient (P 1 ) 11 = 1 and Q p is a d × d projection with only p non vanishing term (Q p ) 11 = • • • = (Q p ) pp = 1. For d = 2p, we get the ultraspherical polynomials of parameter λ = (p -1)/2.

  0, where b = b(λ, θ), c = c(λ, θ) are given by[START_REF] Asai | Renormalization, orthogonalization and generating function[END_REF]. It follows that α 0 = b, α n = 0 for n ≥ 1 and ω 1 = c/2, ω n = 1/4 for n ≥ 1. In order to use Accardi-Bozejko Theorem ([START_REF] Accardi | Interacting Fock space and Gausssianization of probability measures[END_REF]), we shall introduce the so-called one-mode interacting Fock space: let H be a one dimensional separable complex Hilbert space ∼ C. Then the n-th tensor product H ⊗n is one dimensional: indeedz 1 ⊗ • • • ⊗ z n = (z 1 . . . z n )1 ⊗ • • • ⊗ 1 ∈ CΦ n .The onemode interacting Fock space associated to ν λ,θ is defined as Γ(CΦ n , (λ n )) as the infinite orhogonal sum of CΦ n equipped with the weighted scalar product(z 1 Φ n , z 2 Φ n ) := λ n z 1 z 2 , z 1 , z 2 ∈ C,where λ n = ω 1 . . . ω n . Then ν λ,θ is the vacuum distribution (in the vacuum state Φ 1 ) of any extension of the operator a + + a + α N where a + Φ n = Φ n+1 (creation operator)aΦ n+1 = ω n+1 Φ n = λ n+1 λ n Φ n , aΦ 1 = 0, (annihilation operator) N Φ n = nΦ n (Number operator), aa + Φ n = λ n+1 λ n Φ n ,and α N is defined by the spectral Theorem, that is α N Φ n = α n Φ n .
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We will apply this result to the measures family ν λ , λ ∈]0, 1] which is the image of

Our scheme is the almost the same used in [START_REF] Kubo | Interpolation of Chebyshev polynomials and interacting Fock spaces[END_REF] except the computation of θ(u) which follows easily from G µ λ,1/2 . More precisely, authors considered the one-parameter measures family

Proof: from the definition of ν λ , one writes for 0 < u < λ(2 -λ) ≤ 1:

The result follows from

so that Theorem 4.1 applies and claims that