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Abstract

We consider a finite-dimensional model for the motion of microscopic organisms whose propul-
sion exploits the action of a layer of cilia covering its surface. The model couples Newton’s laws
driving the organism, considered as a rigid body, with Stokes equations governing the surrounding
fluid. The action of the cilia is described by a set of controlled velocity fields on the surface of
the organism. The first contribution of the paper is the proof that such a system is generically
controllable when the space of controlled velocity fields is at least three-dimensional. We also
provide a complete characterization of controllable systems in the case in which the organism
has a spherical shape. Finally, we offer a complete picture of controllable and non-controllable
systems under the additional hypothesis that the organism and the fluid have densities of the
same order of magnitude.

1 Introduction

The mathematical description of the motion of swimming organisms and of the mechanisms of their
propulsion is a challenging and wide field of research. This paper aims at giving a contribution to
such a domain in a comparatively narrow direction.

The object of our study are microscopic organisms. The most prominent aspect of the models
describing their motion is the very high level of viscosity ([3, 18, 22]). The mechanism of their
propulsion depends heavily on the different species and admits a great variety of models (see, for
instance, [2, 7, 9, 17] and references therein).

Among microscopic organisms we will further restrict our attention to the class of ciliata, whose
propulsion is determined by cilia, hair-like organelles covering their surface and whose size is very
small compared with that of the organism (see [4, 5, 9]). Recently San Mart́ın, Takahashi and
Tucsnak [19] proposed a control theory approach to the description of ciliata. Following the former
literature (and in particular [9, 16]) they assume that the organism is a rigid body and that the
motion of the cilia is described by a set of controlled velocity fields on a surface enclosing the layer
of cilia. They are therefore faced to an infinite-dimensional control system coupling Navier–Stokes
equations, which describe the motion of the fluid, and the equations for the rigid body arising form
Newton’s laws. The hypothesis of high viscosity (ie, of low Raynolds number) mentioned above is
exploited to reduce such a control system to a finite-dimensional version of it. The state-space is
given by the coordinates of the center of mass of the organism, its orientation and its angular and
linear velocities.

Summarizing, San Mart́ın, Takahashi and Tucsnak single out a 12-dimensional nonlinear control
system which is affine in the controls. The control system depends on a number of parameters which
are explicitly derived as functions of the shape of the organism, of its mass distribution, and of the
surface velocity fields describing the motion of the cilia. The authors study the control properties
of the system proving that it is generically controllable when the number of controlled vector fields
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is at least six (see Section 5 for details). They also provide some example of controllable systems
in the case in which the organism has a spherical shape. In this special case they also study the
controllability properties of the linearization of the system at its rest position.

Our scope is to enhance the results of [19] basically in three directions: firstly we want to give
sharper results on the generic controllability of the system; secondly we want to obtain a complete
characterization of controllable systems in the case in which the organism is spherical; thirdly we want
to provide a complete picture of controllable and non-controllable systems in the simplified situation
which –following again [19]– comes into effect in the case in which the organism and the fluid have
densities of the same order of magnitude. The overall aim is to provide a better understanding of the
dependence of the controllability properties of the model proposed in [19] on the physical quantities
characterizing it. The hard aspect of the model is indeed the difficulty to obtain reliable expressions
for the surface velocity fields describing the motions of the cilia. In this regard, it is important to
provide as precise as possible parametric analysis of the controllability properties of the system.

The paper is organized as follows. Section 2 introduces the control theoretical language adopted
throughout the paper. Section 3 presents the control system obtained in [19] and recalls the rela-
tions between the physical quantities characterizing the organism and the parameters appearing in
the model. Section 4 is technical and contains an abstract controllability result used in the later
sections. Section 5 is devoted to the analysis of the genericity of the controllability of the system
introduced in Section 3. Genericity is initially formulated in terms of the parameters appearing
in the finite-dimensional system and then expressed in terms of the physical objects they depend
on (Section 5.3). The main result is that the system is generically controllable if the number of
controlled vector fields is at least three and that one controlled vector field suffices for its generic
accessibility (Theorem 5.1). Section 6 analyzes the case in which the organism is spherical and
provides a complete characterization of the sets of parameters that make the system controllable
(Theorem 6.1). Finally, Section 7 establishes a characterization of controllable systems when the
organism can be assumed to have the same density as the fluid (Theorem 7.2). The result follows
from a further reduction of the system that transforms it into a six-dimensional one. The reduction
procedure, suggested in [19], is carried out in full details.

2 Notations and definitions

Let us first introduce some notations: in the following Id denotes the 3 × 3 identity matrix, 0m×n

is the zero m × n matrix, 0m = 0m×1 is the zero vector in Rm. We denote by Mm×n the set of
m× n real matrices. The interior of a set W is denoted by Int(W ) and its closure by Clos(W ). For
simplicity of notation, when no confusion is possible, row and column vectors are identified. The
canonical orthonormal basis of R3 is denoted by {e1, e2, e3}. For every ω ∈ R3 we denote by S(ω)
the skew symmetric matrix such that S(ω)z = ω × z for every z ∈ R3, that is,

S(ω) =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 .

In what follows we deal with control systems of the type

q̇ = f(q, u), q ∈M, u ∈ Rm, (1)

whereM is a smooth (C∞) manifold and f : M×Rm → TM is smooth with respect to both variables.
Moreover, for every T ≥ 0 the endpoint mapping ET which associates to an initial condition q0 ∈M
and a control function u ∈ L∞([0, T ],Rm) the final point of the corresponding trajectory of (1) is
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well defined and continuous on M ×L∞([0, T ],Rm), where the L1 norm is chosen on L∞([0, T ],Rm).
(For these and finer properties of the endpoint mapping see, for instance, [1].)

Let F = {f(·, u) | u ∈ Rm} be the family of vector fields characterizing (1). For every X =
f(·, u) ∈ F we denote by etX the one-parameter group generated byX, that is, etX(q) = Et(q, u1[0,t]).
The attainable set from q ∈M is the set

A(q,F ) = ∪T≥0ET (q, L∞([0, T ],Rm)).

When no confusion is possible we write A(q) = A(q,F ).
We say that (1) (or, equivalently, F ) is controllable if for every q ∈ M the set A(q) is equal to

M . We say that (1) is approximatively controllable if A(q) is dense in M .
Give two vector fields X and Y on M , the Lie bracket between X and Y is defined, in a local

system of coordinates, by the relation

[X,Y ] = (DY )X − (DX)Y

where DX denotes the derivative of X. Denote by L the Lie algebra generated by F . System (1)
is Lie-bracket generating if for every q ∈M the set L (q) = {V (q) | V ∈ L } is equal to TqM .

3 The dynamics of swimming microscopic organisms

In [19] the authors describe the swimming of a microscopic organism immersed in an infinite volume
of fluid by coupling the dynamics of a rigid body (representing the organism) with the Navier–Stokes
equations describing the behavior of the fluid outside the body. Exploiting the hypothesis of very
low Reynolds number, they derive a simplified version of the coupled system. The system obtained
in this way is finite-dimensional and nonlinear; more precisely, it has the following expression:

ż = Az + E(z) +Bu , (2)

ζ̇ = Rξ , (3)

Ṙ = RS(ω) , (4)

where z = (ξ, ω) ∈ R3 × R3, ζ ∈ R3, R ∈ SO(3), and

E(z) =

(

ξ × ω
J−1((Jω) × ω)

)

.

Here J ∈ M3×3 denotes the inertia matrix of the rigid body representing the organism. Recall that
J is symmetric and positive definite. The matrix A ∈ M6×6 is a function of the rigid body and the
viscosity of the fluid and its expression is given at the end of the section.

The control function u takes values in Rm, m ≥ 1, and B is a 6-by-m matrix, which we write as

B =

(

B1

B2

)

where both B1 and B2 belong to M3×m.
An important feature of the system above is that (2) is a well-defined control system on R6, since

it does not depend on ζ nor R.
Denote by X0 the vector field on R6×R3×SO(3) which is the drift of the control system (2)–(4),

that is,

X0(z, ζ,R) =





Az + E(z)
Rξ

RS(ω)



 .
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Let moreover X1, . . . ,Xm be the controlled vector fields, so that system (2)–(4) can be written as

q̇ = X0(q) +
m
∑

i=1

uiXi(q), q ∈ R9 × SO(3).

Define L as the Lie algebra generated by X0,X1, . . . ,Xm.
We say that a vector field X on R9×SO(3) is a constant vector field if there exist v1, v2 ∈ R3 such

that X : (ξ, ω, ζ,R) 7→ (v1, v2, 06) and we write X = (v1, v2, 06). Clearly, X1, . . . ,Xm are constant
vector fields. Notice that if V = (v1, v2, 06) and W = (w1, w2, 06) are constant vector fields, then

[[X0, V ],W ] =





v2 × w1 + w2 × v1
J−1 (Jw2 × v2 + Jv2 × w2)

06



 (5)

is a constant vector field as well.

Remark 3.1. For every constant vector field V = (v1, v2, 06), the bracket [X0, V ] is of the form

[X0, V ](z, ζ,R) = (G(z, V ),−Rv1,−RS(v2))

for some smooth map G with values in R6. Therefore, if the constant vector fields contained in L

span R6 × {06}, then system (2)–(4) is Lie-bracket generating.

We conclude the section by recalling the analytic characterization of the coefficients appearing
in A, B and J . Let Ω ⊂ R3 be an open bounded connected set whose boundary is of class C2,
representing the (rigid) shape of the organism. Then the coefficients Jij of J are given by

Jij =

∫

Ω
δ(x)(ei × (x− ξ̄)) · (ej × (x− ξ̄))dx, (6)

where ξ̄ denotes the mass center of Ω and δ : Ω → (0,∞) is the (possibly non-constant) density
function.

Denote by F the set R3
r Clos(Ω) and, for l ∈ N, 1 ≤ q ≤ ∞, let

Dl,q(F ) = {ϕ ∈ L1
loc | ∂

αϕ ∈ Lq(F ) for all α ∈ N3, |α| = l}.

According to [19, Lemma 3.1], for every i ∈ {1, 2, 3} there exists a unique solution (h(i), p(i)) of















−∆h(i) + ∇p(i) = 0 on F

divh(i) = 0 on F

h(i) = ei on ∂Ω

lim|y|→∞ h(i)(y) = 0

and a unique solution (H(i), P (i)) of















−∆H(i) + ∇P (i) = 0 on F

divH(i) = 0 on F

H(i)(y) = ei × y on ∂Ω

lim|y|→∞H(i)(y) = 0

such that h(i),H(i) ∈ Ls(F ) ∩D1,r(F ) ∩D2,θ(F ) ∩ C∞(F ) and p(i), P (i) ∈ Lr(F ) ∩D1,θ(F ) ∩ C∞(F )
for s ∈ (3,∞], r ∈ (3/2,∞] and θ ∈ (1,∞).
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The Cauchy stress is the tensor σ defined by the relation

σ(v, p) = −pId + µ

(

∂vk

∂yl

+
∂vl

∂yk

)

1≤l,k≤3

(7)

where µ is the Reynolds number of the fluid. For i = 1, 2, 3, define

g(i) = σ(h(i), p(i))n|∂Ω, G(i) = σ(H(i), P (i))n|∂Ω,

where n is the unit inner normal to ∂Ω.
Denote by Θ1,Θ2,Υ1,Υ2 the matrices in M3×3 defined by

Θ1
ij = −

∫

∂Ω
g
(i)
j ds, Θ2

ij = −

∫

∂Ω

(

x× g(i)
)

j
ds,

Υ1
ij = −

∫

∂Ω
G

(i)
j ds, Υ2

ij = −

∫

∂Ω

(

x×G(i)
)

j
ds,

where ds is the surface element of ∂Ω. It turns out (see [11]) that Υ1 = (Θ2)
T

and that

A =

(

m̄−1Θ1 m̄−1Θ2

J−1Υ1 J−1Υ2

)

, (8)

where m̄ denotes the mass of the organism. Moreover, with respect to the inner product in R6

defined by

〈a, b〉J = m̄

3
∑

l=1

albl +

3
∑

l,k=1

Jlka3+lb3+k, (9)

A is self-adjoint and negative-definite.
The matrix B is defined by

B =

(

m̄−1κ
J−1K

)

(10)

where the entries of κ and K are

κij = −

∫

∂Ω
g(i) · ψjds, Kij = −

∫

∂Ω
G(i) · ψjds,

and ψ1, . . . , ψm are fixed functions in C2(∂Ω,R3), each one associated to a component of the control
u, that describe the admissible propulsive actions of the organism.

4 A controllability result in a more general setting

The following proposition provides sufficient (and necessary) conditions for the controllability of
systems that generalize those introduced in the previous section, in the sense that a more general
structure for the dynamics in the coordinates z is allowed.

Proposition 4.1. Consider the following control system

ż = f(z, u), z ∈ R6, u ∈ Rm. (11)

Then (3),(4),(11) is controllable if and only if it is Lie-bracket generating at (z, ζ,R) = (09, Id) and
system (11) is controllable.
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Proof. One direction of the equivalence being obvious, let us assume that system (11) is controllable
and that (3),(4),(11) is Lie-bracket generating at (z, ζ,R) = (09, Id).

Notice that

(z′, ζ ′, R′) ∈ A(z, ζ,R) =⇒ (z′, ζ̄ + R̄ζ ′, R̄R′) ∈ A(z, ζ̄ + R̄ζ, R̄R) (12)

for every (ζ̄ , R̄) ∈ R3 × SO(3), where the letter A is used here to denote attainable sets for system
(3),(4),(11). Indeed, if t 7→ u(t) is an admissible control steering (z, ζ,R) to (z′, ζ ′, R′) and t 7→
(z(t), ζ(t), R(t)) is the corresponding trajectory, then t 7→ (z(t), ζ̄ + R̄ζ(t), R̄R(t)) is an admissible
trajectory corresponding to the same control u.

Fix (z0, ζ0, R0), (z1, ζ1, R1) ∈ R9 × SO(3). Since (11) is controllable, then there exist η0, η1 ∈ R3

and Q0, Q1 ∈ SO(3) such that (06, η0, Q0) ∈ A(z0, ζ0, R0) and (z1, ζ1, R1) ∈ A(06, η1, Q1). We are
left to prove that A(06, η0, Q0) contains {06} × R3 × SO(3).

Since (3),(4),(11) is Lie-bracket generating at (z, ζ,R) = (09, Id), then the set

G = Int(A(09, Id))

is nonempty, as it follows from Krener’s theorem (see, for instance, [12, Theorem 1, p. 66]). Fix
(z∗, ζ∗, R∗) ∈ G. Since (11) is controllable, there exists a control law t 7→ u(t), defined on an interval
[0, T ] and such that the solution of (11) with initial condition z(0) = z∗ satisfies z(T ) = 06. The
flow corresponding to the control law u, evaluated at time T , is a diffeomorphism sending (z∗, ζ∗, R∗)
to a point of the form (06, ζ∗∗, R∗∗). In particular, since the image of G by such diffeomorphism
is contained in G, there exists an open nonempty subset V of R3 × SO(3) such that {06} × V is
contained in G.

Notice the following consequence of (12): if (06, ζ̄ , R̄) ∈ A(06, η0, Q0) and (06, ζ
′, R′) ∈ G, then

(06, ζ̄ + R̄ζ ′, R̄R′) ∈ Int(A(06, η0, Q0)) . (13)

Indeed, taking (z, ζ,R) = (09, Id) in (12), we have that for every (z′′, ζ ′′, R′′) in a neighborhood of
(06, ζ

′, R′), the point (z′′, ζ̄ + R̄ζ ′′, R̄R′′) belongs to A(06, ζ̄ , R̄) and, since (06, ζ̄ , R̄) ∈ A(06, η0, Q0),
we are done.

Notice that for every nonempty open subset O of SO(3)

W = {P1P2 · · ·Pk | k ∈ N, P1, . . . , Pk ∈ O} (14)

is equal to SO(3). Indeed, since O contains at least one element P0 of finite order, ie, an axial
rotation of angle commensurable with π, then Id belongs to the interior of W . The completeness of
SO(3) guarantees that W = SO(3).

Take as O the projection of V on SO(3). Then for every R ∈ SO(3) there exists ζ ∈ R3

such that (06, ζ, R) belongs to G; this can be seen by noticing that there exist k elements
(06, ζ1, P1), . . . , (06, ζk, Pk) in V such that Pi ∈ O and P1P2 · · ·Pk = R and by applying repeat-
edly (13) in the special case η0 = 03 and Q0 = Id.

As a consequence, without loss of generality,

Q0 = Id, Q1 = Id.

Indeed, since there exists ζ0 ∈ R3 such that (06, ζ0, Q
−1
0 ) ∈ G, equation (13) with (ζ̄ , R̄) = (η0, Q0)

shows that (06, η0 + Q0ζ0, Id) ∈ A(06, η0, Q0); similarly, the existence of ζ1 ∈ R3 such that
(06, ζ1, Q1) ∈ G implies that (06, η1, Q1) ∈ A(06, η1 − ζ1, Id).

Moreover, for every element p of RP2, the Grassmannian of one-dimensional subspaces of R3,
there exists ζp ∈ R3 such that (06, ζp, Rp) lies in G, where Rp denotes the rotation of angle π around
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the axis p. Applying (13) to (ζ̄ , R̄) = (ζ ′, R′) = (ζp, Rp) in the special case η0 = 03, we obtain that
(06, ζp + Rpζp, Id) lies in G. Notice that ζp + Rpζp= 2 〈ζp, p〉 p belongs to the axis p. Therefore, G
intersects {06} × p× {Id} for every p ∈ RP2.

Of special interest will be for us the expression of (13) when R̄ = R′ = Id, namely

(06, ζ̄ , Id) ∈ A(06, η0, Id), (06, ζ
′, Id) ∈ G =⇒ (06, ζ̄ + ζ ′, Id) ∈ Int(A(06, η0, Id)) . (15)

Let
S2
± = {v ∈ S2 | {06} × R≥0(±v) × {Id} ∩G 6= ∅}

where S2 denotes the unit sphere in R3. As we remarked above, S2
+ and S2

− cover S2 and, by
construction, they are open. Moreover, both are nonempty, since v ∈ S2

± implies that −v ∈ S2
∓.

Since S2 is connected we have S2
+ ∩ S2

− 6= ∅, ie, there exist v ∈ R3 and two non-negative constants
λ1, λ2 such that both (06, λ1v, Id) and (06,−λ2v, Id) lie in G; moreover, due to the openness of G,
these constants can be assumed to be positive and commensurable and so there exist two positive
integers n1 and n2 such that n1λ1 − n2λ2 = 0. Applying repeatedly (15) in the special case η0 = 03,
we obtain that G contains (09, Id) and, therefore, {06} × R3 × {Id}.

Applying (15) again with ζ̄ = η0 we deduce that (06, η1, Id) is attainable from (06, η0, Id).

5 Generic properties

The expression generic is commonly used to denote a property of a system that is, in a suitable
sense, stable under small perturbations and that, even when it fails to apply, can be forced to hold
by applying to the system an arbitrary small perturbation.

In order to define precisely what a generic property means in the present context, define

Ξm
0 = {(A,B, J) ∈ M6×6 × M6×m × M3×3 | J = JT > 0, A ∈ Sym−

J },

where

Sym−
J = {A ∈ M6×6 | A is symmetric and negative definite with respect to 〈·, ·〉J}

and 〈·, ·〉J is defined as in (9).
We say that a property is generic for system (2)–(4) when m = m0 if there exists an open and

dense set O in Ξm0

0 such that the property holds for every system defined by a triple in O.
Such a definition of genericity, given in terms of the entries of the matrices A, J and B, is adapted

to the finite-dimensional formulation (2)–(4) but can appear unsatisfactory from the point of view
of the physical model. Section 5.3 discusses how to define the genericity directly in the space of
configurations of the organism and provides a physically justified counterpart of the following result.

Theorem 5.1. (a) Generically when m ≥ 1 the rank of L is maximal at every point. (b) Generically
when m ≥ 3 system (2)–(4) is controllable.

The generic conditions ensuring the Lie-bracket generating condition and the controllability of
(2)–(4) are given explicitly in the Propositions 5.2 and 5.3. Notice that the techniques applied in
this section are independent of the structure imposed on A by the physical motivations of the model,
namely, the fact that A ∈ Sym−

J . Indeed, the conditions thatare obtained in the following sections
define an open and dense set in

Ξm
1 = {(A,B, J) ∈ M6×6 × M6×m × M3×3 | J = JT > 0}

for m ≥ 1 (for the Lie-bracket generating condition) or m ≥ 3 (for the controllability) whose in-
tersection with Ξm

0 is open and dense in Ξm
0 . In other words, Lie-bracket generating condition and

controllability are generic properties (for m = 1 and m = 3, respectively) also in the class of systems
of the form (2)–(4) for which the triple (A,B, J) is taken in Ξm

1 .
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5.1 Generic Lie-bracket generating condition for m = 1

When m = 1 the two matrices B1 and B2 are column vectors that we denote by b1 and b2 respectively.
Then X1 = (b1, b2, 06) and L is the Lie algebra generated by X0 and X1.

Proposition 5.2. Let i = 0 or i = 1. There exists an open and dense set of triples (A,B, J) in Ξ1
i

such that system (2)–(4) is Lie-bracket generating. More precisely, if J , b1, and b2 satisfy the three
following conditions

det(b1, Jb2, J
2b2) 6= 0, (16)

det(b2, Jb2, J
2b2) 6= 0, (17)

det

(

J −
‖Jb2‖

2

〈Jb2, b2〉
Id

)

6= 0, (18)

then L is maximal at every point.

Proof. Let us prove, first of all, that if C ∈ M (3 × 3) is symmetric and invertible, and if b ∈ R3 is
such that Cb and C2b are linearly independent, then

C−1(Cb× b) = det(C−1)(C2b× Cb). (19)

Notice that
〈

C−1(Cb× b), Cb
〉

= 0 =
〈

C−1(Cb× b), C2b
〉

, and therefore

C−1(Cb× b) = k(C2b× Cb), (20)

for some k ∈ R. For every x ∈ R3 we have det(C−1x,Cb, b) = (detC−1) det(x,C2b, Cb) and also

det(C−1x,Cb, b) =
〈

C−1x,Cb× b
〉

=
〈

x,C−1(Cb× b)
〉

= k
〈

x,C2b×Cb
〉

= k det(x,C2b, Cb).

Therefore
(detC−1) det(x,C2b, Cb) = k det(x,C2b, Cb)

for every x ∈ R3, proving that (19) holds true. In particular, taking J = C and b = b2, we have

J−1(Jb2 × b2) = det(J−1)(J2b2 × Jb2). (21)

Denote by V1 the Lie bracket [[X0,X1],X1]. According to (5) we have

V1 = 2 ((b2 × b1), J
−1(Jb2 × b2), 06).

Similarly, the definition V2 =
1

4
[[X0, V1], V1] leads to the expression

V2 = (−
〈

J−1(Jb2 × b2), b2
〉

b1 +
〈

J−1(Jb2 × b2), b1
〉

b2,−
〈

J−1(Jb2 × b2), b2
〉

b2, 06).

Since
〈

J−1(Jb2 × b2), b2
〉

X1 + V2 = (
〈

J−1(Jb2 × b2), b1
〉

b2, 09) we have that

Z1 = (b2, 09)

belongs to L , as it follows from (16) and from (21).

Let Z2 =
1

2
[[X0, Z1], V1]. Applying again (5), we have that

Z2 = (−b2 × J−1(Jb2 × b2), 09).

8



Equation (21) implies that

Z2 = ((det J−1) b2 × (Jb2 × J2b2), 09).

Letting
b3 = b2 × (Jb2 × J2b2)

we can represent Z3 =
1

2
[[X0, Z2],X1] as

Z3 = (b2 × b3, 09).

We have shown that the Lie algebra L contains the vector fields

Z1 = (b2, 09), Z2 = (b3, 09), Z3 = (b2 × b3, 09).

Notice that
b3 =

〈

b2, J
2b2
〉

Jb2 − 〈b2, Jb2〉J
2b2

is not in span(b2), since 〈b2, Jb2〉 > 0 and because of (17). As a consequence, the vectors b2, b3 and
b2 × b3 are linearly independent.

Therefore, L contains every constant vector field of the type (v, 09), with v in R3. It follows
that

W1 = (03, b2, 06)

is in L . As a consequence of (5), [[X0,W1],W1] = 2(03, J
−1(Jb2 × b2), 06) lies in L as well. Due to

(21), we deduce that
W2 = (03, J

2b2 × Jb2, 06)

belongs to L . Let
b4 = J2b2 × Jb2

and let W3 = [[X0,W1],W2]; we have W3 = (03, b5, 06) with b5 = J−1(Jb4 × b2 + Jb2 × b4). We
are left to prove that the vectors b2, b4 and b5 are linearly independent. Let D = det(b2, b4, b5) and
notice that

D = det(b2, b4, J
−1(Jb4 × b2 + Jb2 × b4))

= (det J−1) det(Jb2, Jb4, Jb4 × b2 + Jb2 × b4)

= (det J−1) 〈Jb2, Jb4 × (Jb4 × b2) + Jb4 × (Jb2 × b4)〉

= (det J−1)
〈

Jb2, 〈Jb4, b4〉Jb2 − 〈Jb4, Jb2〉 b4 + 〈Jb4, b2〉Jb4 − ‖Jb4‖
2b2
〉

.

Since 〈Jb4, Jb2〉 =
〈

b4, J
2b2
〉

= 0 and 〈Jb4, b2〉 = 〈b4, Jb2〉 = 0 we have

D = (det J−1)
〈

Jb2, 〈Jb4, b4〉 Jb2 − ‖Jb4‖
2b2
〉

= (det J−1)(‖Jb2‖
2 〈Jb4, b4〉 − ‖Jb4‖

2 〈Jb2, b2〉).

Now, taking C = J−1 and b = J2b2 in (19), we have Jb4 = (det J)(Jb2 × b2), from which we deduce

〈Jb4, b4〉 = (det J)(〈Jb2, b2〉
〈

Jb2, J
2b2
〉

− ‖Jb2‖
4).

We also have

‖Jb4‖
2 = (det J)2‖Jb2 × b2‖

2

= (det J)2(‖Jb2‖
2‖b2‖

2 − 〈Jb2, b2〉
2).
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Defining λ = ‖Jb2‖
2/ 〈Jb2, b2〉 we get

D = ‖Jb2‖
2(〈Jb2, b2〉

〈

J2b2, Jb2
〉

− ‖Jb2‖
4) − (detJ) 〈Jb2, b2〉 (‖Jb2‖

2‖b2‖
2 − 〈Jb2, b2〉

2)

= 〈Jb2, b2〉
3

(

〈

J3b2, b2
〉

〈Jb2, b2〉
λ− λ3 − (detJ)

(

‖b2‖
2

〈Jb2, b2〉
λ− 1

)

)

.

Cayley–Hamilton theorem implies that

J3 = a2J
2 + a1J + (det J)Id, a1, a2 ∈ R,

and thus
〈

J2b2, Jb2
〉

〈Jb2, b2〉
= a2

〈

J2b2, b2
〉

〈Jb2, b2〉
+ a1 + (det J)

‖b2‖
2

〈Jb2, b2〉

= a2λ+ a1 + (detJ)
‖b2‖

2

〈Jb2, b2〉
.

Therefore,

D = 〈Jb2, b2〉
3

((

a2λ+ a1 + (det J)
‖b2‖

2

〈Jb2, b2〉

)

λ− λ3 − (detJ)

(

‖b2‖
2

〈Jb2, b2〉
λ− 1

))

= 〈Jb2, b2〉
3 (−λ3 + a2λ

2 + a1λ+ detJ)

= 〈Jb2, b2〉
3 det(J − λId)

which is different from zero because of (18). �

5.2 Generic controllability in the case m = 3

The aim of this section is to prove the genericity of the controllability of (2) in the case m = 3. Let
us introduce the notation

A =

(

A11 A12

A21 A22

)

with each Aij belonging to M3×3.

Proposition 5.3. Let i = 0 or i = 1. There exists an open and dense set of triples (A,B, J) in
Ξ3

i such that system (2) is controllable. More precisely, if B2 and Ã11 + ÃT
11 are invertible with

Ã11 = A11 − B1B
−1
2 A21 and if at least one eigenvector of J is not an eigenvector of B1B

−1
2 , then

system (2) is controllable.

Propositions 5.2 and 5.3 lead to the following statement, which follows from Proposition 4.1.

Corollary 5.4. For m ≥ 3 and i = 0 or i = 1, there exists an open and dense set of triples (A,B, J)
in Ξ3

i such that system (2)–(4) is controllable.

The proof of Proposition 5.3 will be split in several steps. The following lemma allows us to study
the controllability of (2) by investigating the controllability of an equivalent system in R3 (instead
of R6).

Lemma 5.5. Assume that B2 is invertible and define B̃ = B1B
−1
2 and Ã11 = A11 − B̃A21. Then,

the controllability of (2) is equivalent to the controllability of the system

ẋ = Ã11x− v × x+ (Ã11B̃ +A12 − B̃A22)v − v × B̃v − B̃J−1(Jv × v), x ∈ R3, (22)

with the control v taking values in R3.

10



Proof. Suppose that system (2) is controllable. Let x = ξ − B̃ω and rewrite system (2) as

{

ẋ = Ã11x− ω × x+ (Ã11B̃ +A12 − B̃A22)ω − ω × B̃ω − B̃J−1(Jω × ω),

ω̇ = A21x+ (A21B̃ +A22)ω + J−1(Jω × ω) +B2 u.

Given two points (x0, ω0) and (x1, ω1) in R6, there exists a control u : [0, T ] → R3 that steers
(x0, ω0) to (x1, ω1). Thus, denoting by (x(·), ω(·)) the corresponding trajectory, the control v(t) =
ω(t) steers system (22) from x0 to x1.

Conversely, let system (22) be controllable and fix two pairs (ξ0, ω0) and (ξ1, ω1) in R6. Notice
that (22) can be controlled by smooth controls v : [0, T ] → R3 satisfying

v(0) = ω0, v(T ) = ω1. (23)

(The result follows from the controllability of (22) and the density of {v ∈ C∞([0, T ],R3) | v(0) =
ω0, v(T ) = ω1} in L∞(0, T ) with respect to the L1-norm. The proof can be deduced from the general
results in [10] or easily adapted from [6] and [12, Theorem 4, p. 110].)

Therefore, if v ∈ C∞([0, T ],R3) satisfies (23) and steers (22) from ξ0 − B̃ω0 to ξ1 − B̃ω1, then

u(t) = B−1
2

(

v̇(t) −A21x(t) − (A21B̃ +A22)v(t) − J−1(Jv(t) × v(t))
)

steers (2) from (ξ0, ω0) to (ξ1, ω1).

The following lemma establishes the controllability of system (22) in a first case.

Lemma 5.6. Assume that the matrix Ã11 + ÃT
11 has two nonzero eigenvalues with opposite signs.

Then there exists an open and dense subset O of {(B, J) ∈ M6×3 × M3×3 | J = JT > 0} such
that system (22) is controllable if (B, J) ∈ O. More precisely, if B2 is invertible and if at least one
eigenvector of J is not an eigenvector of B1B

−1
2 , then system (22) is controllable.

For the proof of this lemma we shall use the following result, proven in [15], about the control-
lability of a family of affine vector fields in Rn. An affine vector field X is a mapping from Rn to
Rn of the form X : x 7→ Cx+ c where C ∈ Mn×n and c is a constant vector in Rn; the linear part
of X, denoted by Λ(X), is the linear vector field x 7→ Cx. If F is a family of affine vector fields,
we denote by Λ(F ) the set of linear parts of the vector fields in F and we say that F has no fixed
point if there does not exist a point x0 ∈ Rn such that X(x0) = 0 for every X ∈ F .

Theorem 5.7 (Jurdjevic and Sallet). Let F be a family of affine vector fields given on Rn.
Assume that F has no fixed point. If Λ(F ) is controllable on Rn

r {0} then F is controllable on
Rn.

Proof of Lemma 5.6. From Lemma 5.5, we know that it is sufficient to prove the controllability of
the system defined by the family of affine vector fields F = {C(v)x+ c(v) | v ∈ R3 } where

C(v) = Ã11 − S(v), c(v) = (Ã11B̃ +A12 − B̃A22)v − v × B̃v − B̃J−1(Jv × v).

Choose v0 in such a way that S(v0) = (Ã11 − ÃT
11)/2. Then

Ã11 − S(v0) =
Ã11 + ÃT

11

2
.
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Define the family of linear vector fields G = { Ã11−S(v0), S(v) | v ∈ R3 }. The two closed convex
cones generated by the families Λ(F ) and G are identical, since for every finite family (αi)0≤i≤N of
positive numbers and every choice of v1, . . . , vN ∈ R3,

α0(Ã11 − S(v0)) +

N
∑

i=1

αiS(vi) = α0(Ã11 − S(v0)) + lim
r→+∞

1

r

N
∑

i=1

αi

(

Ã11 − S(−r vi)
)

and

N
∑

i=1

αi(Ã11 − S(vi)) =

(

N
∑

i=1

αi

)

(

Ã11 − S(v0)
)

+
N
∑

i=1

αiS(v0 − vi).

Therefore, the controllability of Λ(F ) on R3
r {0} is equivalent to the one of G (see [13, 14]).

The trajectories of the vector field S(v) are circles contained in planes orthogonal to v and whose
centers are at the intersections of these planes with the line Rv. Let x ∈ R3

r {0}; thanks to the
vector fields S(v), the attainable set from x for G contains the sphere of center 03 passing through x.
Now, as Ã11−S(v0) has two eigenvalues with opposite sign, we can move (thanks to this vector field)
along a direction towards the origin and along an half-line exiting the sphere and going to infinity.
Therefore, using again the fact that the family {S(v) | v ∈ R3} is transitive on every sphere, we
proved that G , and thus Λ(F ), is controllable on R3

r {0}.
Assume now that we can find a fixed point, denoted by x0, which is common to all the vector

fields in F . For every vector v ∈ R3, we have

C(v)x0 + c(v) = C(−v)x0 + c(−v) = 03

from which we deduce
Ã11x0 − v × B̃v − B̃J−1(Jv × v) = 0. (24)

Taking v = 03 gives Ã11x0 = 03 and therefore (24) can be rewritten as

B̃v × v = B̃J−1(Jv × v) (25)

for every v ∈ R3. In particular, if v is an eigenvector of J but not of B̃, then the right-hand side of
(25) is equal to zero, while the right-hand side is not, leading to a contradiction.

We are left to deal with the case where the eigenvalues of

Ãs
11 =

Ã11 + ÃT
11

2
,

the symmetric part of Ã11, are all positive or all negative. Although in this case the linear part of
the family F is not controllable on R3

r {0}, we can nevertheless adapt the method introduced in
[15] in order to prove the controllability of (22).

Lemma 5.8. Assume that the matrix Ãs
11 is invertible and that its eigenvalues have all the same

sign. Then there exists an open and dense subset O of {(B, J) ∈ M6×3 × M3×3 | J = JT > 0} such
that system (22) is controllable if (B, J) ∈ O. More precisely, if B2 is invertible and if at least one
eigenvector of J is not an eigenvector of B̃, then system (22) is controllable.

Notice that, together with Lemma 5.6, Lemma 5.8 concludes the proof of Proposition 5.3. In
order to show Lemma 5.8 we need some definitions and have to prove some intermediate results.

Let F and Λ(F ) be defined as above. In the proof of Lemma 5.6 we pointed out that starting
form a point x ∈ R3 and following all possible linear vector fields of the type S(v) one can attain the
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entire sphere of center 03 and radius ‖x‖. If the eigenvalues of Ãs
11 are negative (resp. positive), the

vector field Ãs
11 points towards the interior (resp. the exterior) of this sphere, from which we deduce

that

A(x,Λ(F )) =

{

{x} ∪ {y ∈ R3 | 0 < ‖y‖ < ‖x‖} if Ãs
11 < 0,

{x} ∪ {y ∈ R3 | ‖y‖ > ‖x‖} if Ãs
11 > 0.

In the sequel, we shall need the notion of normal accessibility, which is recalled below.

Definition 5.9. Let V be a family of complete vector fields on a manifold M . The point y is said
to be normally V -accessible from x if there exist X1, . . . ,Xp in V and t1, . . . , tp > 0 such that

y = et1X1

◦ · · · ◦ etpXp

(x)

and the mapping
(τ1, . . . , τp) 7−→ eτ1X1

◦ · · · ◦ eτpXp

(x),

defined in a neighborhood of (t1, . . . , tp), is of rank equal to dimM at (t1, . . . , tp).

In [15] the authors exploit the fact that if a family of vector fields is controllable, then every point
y is normally accessible from every point x. As the family Λ(F ) is not controllable on R3

r {0}, we
are lead to prove directly the following normal accessibility property.

Lemma 5.10. Assume that the eigenvalues of Ã11+ÃT
11 have all the same sign. Then we can extract

from F a finite family F 0 such that there exists a sphere of center 03 and radius r of points normally
Λ(F 0)-accessible from every point of the unit sphere.

Proof. Let v0 ∈ R3 be such that Ãs
11 = Ã11 − S(v0) = Ãs

11. Let, moreover, w1 be an eigenvector of
Ãs

11 and take w2, w3 ∈ R3 such that the family (w1, w2, w3) is an orthogonal basis of R3. Consider
now the family

Λ(F 0) = { Ãs
11, Ã

s
11 − k2S(w2), Ã

s
11 − k3S(w3) }

extracted from Λ(F ).
Since S(w2) and S(w3) are nonzero skew-symmetric matrices, each of their spectra contains the

value zero and two nonzero purely imaginary eigenvalues. Notice that

lim
kj→+∞

Ã11 − kjS(wj)

kj
= −S(wj).

As the roots of a characteristic polynomial depend continuously on the coefficients of the related
matrix, it follows that for k2 and k3 large enough Ãs

11 − k2S(w2) and Ãs
11 − k3S(w3) have a pair

of non-real eigenvalues. By projecting the vector fields Ãs
11 − k2S(w2) and Ãs

11 − k3S(w3) on the
unit sphere, it is easy to see that the family Λ(F 0) is transitive on the directions, that is, from
any half-line starting from the origin, one can reach any other half-line. Moreover, thanks to the
eigendirection w1 of the vector field Ãs

11 we can go as far as we want (case Ãs
11 > 0) or as close as

we want to the origin (case Ãs
11 < 0). Hence, for every x ∈ R3

r {03}, A(x,Λ(F 0)) contains a set of
the form R3

rB(0, r) (case Ãs
11 > 0) or B(0, r) r {03} (case Ãs

11 < 0). The interior of A(x,Λ(F 0))
being nonempty, there exists at least one point, denoted by y, that can be normally Λ(F 0)-accessed
from x (see [21]). Notice that since y is normally Λ(F 0)-accessible from x, then y is also normally
Λ(F 0)-accessible from every point in a (sufficiently small) neighborhood of x. Moreover, all the
points in A(y,Λ(F 0)) are normally Λ(F 0)-accessible from x.

We conclude by using the compactness of the unit sphere: for every x ∈ S2, there exists a
neighborhood Vx of x and a set R3

rB(0, rx) (case Ãs
11 > 0) or B(0, rx)r{03} (case Ãs

11 < 0) whose
points are normally Λ(F 0)-accessible from every point of Vx. As we can include the unit sphere in
a finite union of neighborhoods Vx, we can claim the existence of a sphere of radius r whose points
are normally Λ(F 0)-accessible from every point of the unit sphere.
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The following lemma guarantees the unboundedness of the sets A(x,F ) and A(x,−F ).

Lemma 5.11. If B2 is invertible and if at least one eigenvector of J is not an eigenvector of B̃,
then for every x ∈ R3 both sets A(x,F ) and A(x,−F ) are unbounded.

Proof. Take v ∈ R3 such that q(v) = −v × B̃v − B̃J−1(Jv × v) 6= 03; this is possible since at least
one eigenvector of J is not an eigenvector of B̃. For every α ∈ R the vector field x 7→ C(αv)x+c(αv)
is in F and

lim
α→∞

C(αv)x+ c(αv)

α2
= q(v).

This proves that, given a time T > 0, the solution of ẋ = C(αv)x + c(αv) on the interval
[−Tα−2, Tα−2] is as close as we want to the solution of ẋ = q(v) on [−T, T ] (with the same ini-
tial condition) provided that α is large enough. Now, the solution of ẋ = q(v), x(0) = x0, leaves any
fixed bounded set both in time T and in time −T , provided that T is large enough.

We consider now, as in [15], the family {hλ,w | λ > 0, w ∈ Rn} of affine diffeomorphisms of Rn

defined by hλ,w(x) = w + λ(x− w). An easy computation shows that, for every X ∈ F ,

(hλ,w∗X)(x) = Λ(X)(x − w) + λX(w)

where hλ,w∗X denotes the pushforward of the vector field X by hλ,w. In particular

lim
λ→0

(hλ,w∗X)(x) = Λ(X)(x −w). (26)

Denote by Fλ,w the image of the family F by hλ,w∗, that is, the transformation of F under the
change of coordinates hλ,w.

Proof of Lemma 5.8. Let Λ(F 0) and r be as in the statement of Lemma 5.10. Consider the finite
family Λ(F 0

w) = {Λ(X)(x−w) | X ∈ F 0 } and notice that each point of the sphere of center w and
radius r is normally Λ(F 0

w)-accessible from every point of the sphere of center w and radius 1. Let
Fλ,w = {hλ,w∗X | X ∈ F}. Thanks to formula (26) we can assert that, if λ is chosen sufficiently
small, the sphere of center w and radius r is contained in the reachable set for Fλ,w from every point
of the sphere of center w and radius 1 (see [21, Lemma 3.2]). Fix such a λ > 0.

Given w in R3 we claim that A(w,F ) contains a neighborhood of w. Indeed, since the sets
A(x,F ) and A(x,−F ) are unbounded, the same is true for the sets A(x,Fλ,w) and A(x,−Fλ,w),
for every x ∈ R3. This implies in particular, because of the arc-connectedness of attainable sets, that
there exists y ∈ A(w,Fλ,w) such that ‖y−w‖ = 1. Let ρ < r and fix z ∈ B(w, ρ). Since A(z,−Fλ,w)
is unbounded, then, again by arc-connectedness, there exists z′ ∈ A(z,−Fλ,w) such that ‖z′−w‖ = r.
Since from every point of the sphere of center w and radius 1, we can reach any point of the sphere
of center w and radius r, the point z′ is reachable from y by the family Fλ,w. Finally, every point
z ∈ B(w, ρ) belongs to A(w,Fλ,w) (see Figure 1). Since Fλ,w is the transformation of F by a
diffeomorphism preserving w, we deduce that A(w,F ) contains a neighborhood of w. Therefore,
every attainable set A(x,F ) is open.

Since the control system defined by −F has the same form as that defined by F and verifies the
hypotheses of both Lemmas 5.10 and 5.11, the reasoning above proves also that every attainable set
A(x,−F ) is open. Take now y in the closure of A(x,F ). The set A(y,−F ) being open, there exists
z ∈ A(y,−F )∩A(x,F ) which proves that y is reachable from x by the family F . Every attainable
set A(x,F ) is therefore both open and closed; thus it is equal to R3.
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Figure 1: z belongs to A(w,Fλ,w) (the case r < 1).

5.3 Generic controllability: physical interpretation

The scope of this section is to provide a better physical insight of Theorem 5.1. More precisely,
we want to check that for m ≥ 3 there exists an open and dense set in the (suitably defined)
space of microscopic organisms modeled here such that the corresponding control system (2)-(4) is
controllable.

The space of organisms, denoted by Σm, will be identified with the set of pairs (Ω,Ψ), where
Ω ⊂ R3 is open, nonempty, connected, bounded, and of class C2, while Ψ is the m-uple of functions in
C2(∂Ω,R3) determining the action of the controls (see Section 3). For simplicity we assume that the
density δ of the organism is constant, so that the inertia matrix J is determined (up to the positive
multiplicative constant δ) by the shape Ω. (For the general case see Remark 5.14.) The topology on
Σm can be defined assigning the basis of open subsets defined by

Nm,ε(Ω,Ψ) =
{

((Id + υ)(Ω),Φ) | υ ∈W 3,∞(Ω,R3),Φ ∈ (C2(∂Ω,R3))m,

‖υ‖3,∞ < ε, ‖Φ ◦ (Id + υ) − Ψ‖C2(Ω) < ε
}

for all ε ∈ (0, 1/2) and all (Ω,Ψ) ∈ Σm (see [20] or, for a different approach, [8]). By extension Σ0

denotes the set of C2, open, nonempty, connected, bounded subsets of R3 endowed with the topology
whose basis is given by all

N0,ε(Ω) =
{

(Id + υ)(Ω) | υ ∈W 3,∞(Ω,R3), ‖υ‖3,∞ < ε
}

,

ε ∈ (0, 1/2), Ω ∈ Σ0.

Theorem 5.12. Assume that m ≥ 3. There exists an open and dense set O in Σm such that (2)-(4)
is controllable if (Ω,Ψ) belongs to O. Moreover, there exists an open and dense set P in Σ0 such
that O ∩ ({Ω} × (C2(∂Ω,R3))m) is dense in {Ω} × (C2(∂Ω,R3))m for every Ω in P.

Proof. Denote by F (Ω,Ψ) the triple (A,B, J) associated to an element (Ω,Ψ) of Σ0 through (6), (8)
and (10). We want to show that each condition appearing in the statement of Propositions 5.2 and
5.3 is satisfied by the elements of the image through F of an open and dense subset of Σ0.

Notice that the map Ψ 7→ B is onto when considered from (C2(∂Ω,R3))m to M6×m (Ω fixed).
Indeed, according to [19, Lemma 4.1], g(1), g(2), g(3), G(1), G(2), G(3) are linearly independent in
L2(∂Ω,R3). Therefore, since the orthogonal to a smooth function in C2(∂Ω,R3) with respect to
the L2-product has infinite codimension, the relation (10) defines a surjective map. In particular,
the pre-image of an open and dense set in M6×m is open and dense in (C2(∂Ω,R3))m.
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Let us now take into account the dependence on Ω. We claim that the map from Σ0 to R3

that associates to a domain Ω the spectrum of the corresponding inertia matrix –with eigenvalues
repeated according to their multiplicity and with δ normalized to one– is locally open at every point.
In order to check it, fix Ω ∈ Σ0 and a system of coordinates such that 03 is the center of mass of
Ω and e1, e2, e3 its principal axes of inertia. Then the elements of the normalized inertia matrix
J0 = J/δ of Ω are

J0
ij =

{

±
∫

Ω xixjdx = 0 if i 6= j,
∫

Ω(
∑

k 6=i x
2
k)dx if i = j.

(27)

Apply the transformation Id + υ to Ω, where υ is the diagonal matrix diag(υ1, υ2, υ3), and denote
by J0(υ) the normalized inertia matrix of (Id + υ)(Ω). Then

J0
ij(υ) =

{

±(Π3
k=1(1 + υk))(1 + υi)(1 + υj)

∫

Ω xixjdx = 0 if i 6= j,
±(Π3

k=1(1 + υk))
∫

Ω(
∑

k 6=i(1 + υk)
2x2

k)dx if i = j.

The spectrum of J0(υ) is therefore given by the components of the vector σ0(υ) = (±(Π3
k=1(1 +

υk))
∫

Ω(
∑

k 6=i(1 + υk)
2x2

k)dx)
3
i=1. A straightforward computation shows that the determinant of the

Jacobian matrix of σ0 with respect to (υ1, υ2, υ3), computed at υ1 = υ2 = υ3 = 0, is different form
zero. The map υ 7→ σ0(υ) is therefore a submersion at υ = 0.

In particular, the eigenvalues of J are simple for Ω in an open and dense subset of Σ0, indepen-
dently of Ψ. If b2 does not belong to any of the three planes generated by pairs of eigenvectors of J ,
then (17) is automatically verified.

Similarly, one notices that all the assumptions appearing in the statements of Propositions 5.2
and 5.3 can be represented in the form G(Ω,Ψ) ∈ O where O is an open and dense subset of a
finite-dimensional vector space V , the map G : Σm → V is continuous and for Ω in an open and
dense subset of Σ0 we have that G(Ω,Ψ) belongs to O if B belongs to an open and dense subset of
M6×m (possibly depending on Ω). Therefore, G−1(O) is open and dense in Σm.

Remark 5.13. As recalled above it follows from [19] that, once Ω is fixed, the linear map associating
to the m-uple Ψ the matrix B through (10) is onto as a map from (L2(∂Ω,R3))m to M6×m. Thanks
to this result, and to the remark that (2)-(4) is controllable if m = 6 and B is invertible, the
authors prove that for m ≥ 6, for an open and dense subset of m-uples in C2(∂Ω,R3) (Ω fixed) the
corresponding system is controllable (see [19, Theorem 1.1]). In the language adopted here the result
of [19] says that, for every fixed Ω and for m ≥ 6, controllability is a generic property with respect
to Ψ.

Remark 5.14. In order to introduce a reasonable notion of genericity in the case where the density
δ of the organism is not constant, it is necessary to include δ in the definition of Σm. Let Σ̂m be the
set of triples (Ω,Ψ, δ) where (Ω,Ψ) ∈ Σm and δ ∈ L∞(Ω, (0,+∞)) and endow Σ̂m with the topology
whose basis is given by all

ˆNm,ε(Ω,Ψ, δ) =
{

((Id + υ)(Ω),Φ, γ) | υ ∈W 3,∞(Ω,R3),Φ ∈ (C2(∂Ω,R3))m, γ ∈ L∞(Ω, (0,+∞)),

‖υ‖3,∞ < ε, ‖Φ ◦ (Id + υ) − Ψ‖C2(Ω) < ε, ‖γ ◦ (Id + υ) − δ‖L∞(Ω) < ε
}

,

ε ∈ (0, 1/2), (Ω,Ψ, δ) ∈ Σ̂m. Following the same arguments of proof as above, one can prove that
if m ≥ 3 there exists an open and dense set O in Σ̂m such that (2)-(4) is controllable if (Ω,Ψ, δ)
belongs to O. The only difference consists in verifying that the map associating to (Ω, δ) the spectrum
of J is locally open, and this can be done by taking the same perturbation (Id + diag(υ1, υ2, υ3))(Ω)
as above for Ω and the perturbation δ ◦ (Id + diag(υ1, υ2, υ3)) for δ.
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6 Swimming spherical microscopic organisms

When the microscopic organism happens to be spherical, the equations presented in the previous
sections have a very special form. As described in [19], general results in hydrodynamics (see, e.g.,
[11]) show that the matrix A corresponding to a spherical organism is diagonal and, more precisely,
of the form

A =

(

−ρ1Id 0
0 −ρ2Id

)

,

with
ρ2 > ρ1 > 0. (28)

Moreover, since the inertia matrix J is proportional to the identity (assuming that the mass distri-
bution is homogenous inside Ω), the nonlinear term E appearing in (2) is given by

E(z) =

(

ω × ξ
03

)

.

Notice that in the spherical case ω satisfies a well-defined control subsystem, ie,

ω̇ = −ρ2ω +B2u. (29)

We are going to prove the following result.

Theorem 6.1. Let Ω be a ball and assume that the mass distribution of Ω is homogenous. Then
the control system (2)–(4) is controllable if and only if the rank of B2 is equal to three and B1 is
different from 03×m.

The easier part of the proof is to show that the controllability of (2)–(4) implies that

rankB2 = 3, B1 6= 03×m. (30)

Indeed, the linear control system (29) is, as it is well known, controllable if and only if rankB2 = 3.
Moreover, if B1 = 03×m, then the space {03}×R3 is invariant for the dynamics of the control system
(2), which is therefore non-controllable.

The converse implication will be proven in several steps.

6.1 The case where B1 and B2 are linearly independent

In this section we study the case where the organism is spherical and

rankB2 = 3, B1 6∈ span(B2). (31)

Let us prove the following technical result.

Lemma 6.2. If assumption (31) holds true, then there exist c1, c2, c3 ∈ R3, an orthonormal basis
{d1, d2, d3} of R3, and a m× 3 matrix Γ such that

B1Γv =
3
∑

i=1

vici, B2Γv =
3
∑

i=1

vidi, c1 × d1 6= 03. (32)
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Proof. Firstly, let us consider the case m = 3. Then B2 is invertible and for every orthonormal basis
{d1, d2, d3} of R3, we have

B2Γv =

3
∑

i=1

vidi,

for Γ = B−1
2 (d1|d2|d3), where (d1|d2|d3) denotes the matrix whose columns are d1, d2 and d3. Since

B1B
−1
2 is not proportional to Id, then d1 can be chosen such that d1 × (B1B

−1
2 d1) 6= 03. It suffices

to complete d1 to any orthonormal basis {d1, d2, d3}, since B1Γv =
∑3

i=1 vici with ci = B1B
−1
2 di.

Let now m > 3. Denote by B
(j)
i the j-th column of Bi.

The second case we consider is when there exist 1 ≤ j1, j2, j3 ≤ m such that B
(j1)
2 , B

(j2)
2 , B

(j3)
2

are linearly independent and (B
(j1)
1 |B

(j2)
1 |B

(j3)
1 ) 6∈ span(B

(j1)
2 |B

(j2)
2 |B

(j3)
2 ). Then, replacing v by

Γ′v = (vj1, vj2 , vj3), we fulfill the hypotheses of the case m = 3 and we are done.

Finally, consider the case in which for every triple 1 ≤ j1, j2, j3 ≤ m such that B
(j1)
2 , B

(j2)
2 , B

(j3)
2

are linearly independent, we have that (B
(j1)
1 |B

(j2)
1 |B

(j3)
1 ) is proportional to (B

(j1)
2 |B

(j2)
2 |B

(j3)
2 ). Let

{j1, . . . , jk} = {j | 1 ≤ j ≤ m, B
(j)
2 6= 03}.

Then (B
(j1)
1 | · · · |B

(jk)
1 ) is proportional to (B

(j1)
2 | · · · |B

(jk)
2 ). Assumption (31) implies that there exists

1 ≤ j ≤ m such that B
(j)
1 6= 03 and B

(j)
2 = 03. It suffices then to replace v by Γ′v = (vj1 +

vj , vj2, . . . , vjk
) in order to satisfy the hypotheses of the previous case.

Notice now that for every Q ∈ SO(3), the change of coordinates ξ′ = Qξ, ω′ = Qω, ζ ′ = ζ,R′ =
RQ−1 preserves the dynamics of (2)–(4). This is equivalent to say that, up to a change of coordinates,
we can replace (B1, B2) by (QB1, QB2), for every choice of Q ∈ SO(3). Let d1, d2, d3 be as in (32)
and choose Q such that Qdi = ei for i = 1, 2, 3 (where we recall that (ei)i=1,2,3 denotes the canonical
basis in R3). The above transformations show that proving the controllability of the control system
(2)–(4) under assumption (31) is equivalent to proving it under the hypotheses that m = 3, B2 = Id,
and that the first column of B1 is not proportional to e1.

Denote by b1, b2, b3 the columns of B1. Accordingly, the controlled vector fields are the three
constant vector fields Xi = (bi, ei, 06), i = 1, 2, 3.

Lemma 6.3. If (31) holds then system (2)–(4) is Lie-bracket generating.

Proof. Applying (5) in the case J = Id we obtain that for every v1, v2 ∈ R3 the constant vector
field V = (v1, v2, 06) satisfies

[[X0,Xi], V ] = (ei × v1 − bi × v2, 09). (33)

In particular, taking i = 1 and V = X1 in (33), we deduce that Z = (e1 × b1, 09) belongs to L .
Applying again (33) to V = Z we get that, for i = 1, 2, 3, Zi = (ei × (e1 × b1), 09) belongs to L .
Since Z, Z1, Z2, and Z3 span R3 × {09}, it follows that L contains

span(X1,X2,X3) + R3 × {09} = R6 × {06}.

As noticed in Remark 3.1 this proves the lemma. �

The controllability of system (2) follows from Proposition 5.3: indeed, Ã11 = ρ1Id is symmetric
and invertible and hypothesis (31) implies that B1 = B1B

−1
2 has a smaller set of eigenvectors than

J = Id. Theorem 6.1 is therefore proven, because of Proposition 4.1, under the stronger assumption
that (31) holds true.
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6.2 The proportional case

In order to complete the proof of Theorem 6.1, we have to prove that system (2)–(4) is controllable
when

rankB2 = 3, B1 = λB2, λ 6= 0. (34)

Using the same normalization argument as in the previous section, we can assume that m = 3
and B2 = Id. Moreover, we can take λ = 1 by performing the change of coordinates ξ′ = ξ/λ, ω′ =
ω, ζ ′ = ζ/λ,R′ = R. Therefore, without loss of generality, Xi = (ei, ei, 06) for i = 1, 2, 3.

Let us prove the Lie-bracket generating condition. We have

[X0,Xi] = (−ρ1ei,−ρ2ei, Rei, RS(ei))

and
[[X0,Xi], [X0,Xj ]] = (06, 2R(ej × ei), RS(ej × ei)).

A further computation yields

[[[X0,Xi], [X0,Xj ]], [X0,Xk]] = (06, 3R(ek × (ej × ei)), RS(ek × (ej × ei))).

Therefore, the Lie algebra L contains the following vector fields









ei
ei
03

03









,









−ρ1ej
−ρ2ej
Rej

RS(ej)









,









03

03

2Rek
RS(ek)









,









03

03

3Rel
RS(el)









,

for i, j, k, l = 1, 2, 3. As a consequence, L contains also









(ρ2 − ρ1)ei
03

Rei
RS(ei)









,









03

(ρ1 − ρ2)ej
Rej

RS(ej)









,









03

03

Rek
03









,









03

03

03

RS(el)









,

for i, j, k, l = 1, 2, 3. These vector fields form a moving frame on the manifold R9 × SO(3) (since
ρ1 6= ρ2).

In order to conclude the proof of Theorem 6.1 we need to show that (2) is controllable. Applying
Lemma 5.5 this turns out to be equivalent to the controllability of the following system,

ẋ = −ρ1x− v × x+ (ρ2 − ρ1)v, x ∈ R3, (35)

with the control v taking values in R3. Decomposing the control as v = wx +W with w ∈ R and
W orthogonal to x, equation (35) rewrites as

ẋ = (−ρ1 + (ρ2 − ρ1)w)x−W × x.

Clearly, choosing W = 03 allows to move as desired along span(x), while the choice w = ρ1/(ρ2 −ρ1)
permits to attain the sphere of radius ‖x‖ centered at the origin. The controllability of (2) is thus
proven and the proof of Theorem 6.1 completed.
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7 The case where the densities of the microscopic organism and of

the fluid have the same order of magnitude

As pointed out in [19, Section 2], the assumption that the densities of the microscopic organism and
of the fluid have the same order of magnitude leads to stronger simplifications than in the general
case studied in the previous sections. In particular, according to the remarks of page 6 the control
system (2.18)–(2.27) presented in [19] reduces in this case to

−∆v + ∇p = 0 on F × (0, T ), (36)

divv = 0 on F × (0, T ), (37)

v(y, t) = ξ(t) + ω(t) × y +

m
∑

i=1

ui(t)ψi(y) for (y, t) ∈ ∂Ω × (0, T ), (38)

lim
|y|→∞

v(y, t) = 0 for t ∈ (0, T ), (39)

∫

∂Ω
σ(v, p)n ds = 0 on (0, T ), (40)

∫

∂Ω
y × σ(v, p)n ds = 0 on (0, T ), (41)

ζ̇ = Rξ on (0, T ), (42)

Ṙ = RS(ω) on (0, T ). (43)

Physically, v represents the field of velocities of the fluid in F (the coordinates are attached to the
body), p is the pressure, ξ and ω are the linear and angular velocities of the organism and finally ζ
and R give its position and orientation with respect to a fixed frame. Recall that ψ1, . . . , ψm are the
functions characterizing the control actions and that σ is the Cauchy stress defined in (7).

Given a time-interval [0, T ] and a control u ∈ L∞([0, T ],Rm) there exists a unique solution
(v, p, ξ, ω, ζ,R) of (36)–(43) satisfying

v ∈ H1([0, T ], Ls(F ) ∩D1,r(F ) ∩D2,θ(F ) ∩ C∞(F )),

supy∈F (1 + ‖y‖)‖v(y, t)‖ <∞ for almost every t ∈ [0, T ],

p ∈ H1([0, T ], Lr(F ) ∩D1,θ(F ) ∩ C∞(F )),

ξ ∈ H1([0, T ],R3), ω ∈ H1([0, T ],R3), ζ ∈ C1([0, T ],R3), R ∈ C1([0, T ],SO(3)),

for s ∈ (3,∞], r ∈ (3/2,∞] and θ ∈ (1,∞) (see [9, 19]).
The finite-dimensional reduction of system (36)–(43) can be obtained following the procedure

proposed in [19]. To this extent, as in Section 3, define the fundamental solutions (h(i), p(i)) and
(H(i), P (i)) of the Stokes system and associate to them the matrices Θk,Υk, κ,K. Let L be the n×m
matrix

L = −

(

Θ1 Θ2

Υ1 Υ2

)−1(
κ
K

)

.

Lemma 7.1. For almost every t ∈ (0, T ) we have
(

ξ(t)
ω(t)

)

= Lu(t).

Proof. According to [19, Lemma 3.4] we have
∫

∂Ω
g(i) · v ds =

[∫

∂Ω
σ(v, p)n ds

]

i

= 0

∫

∂Ω
G(i) · v ds =

[
∫

∂Ω
y × σ(v, p)n ds

]

i

= 0
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where the equalities in the right-hand sides follow from (40) and (41).
On the other hand, for almost every t ∈ (0, T ),

∫

∂Ω
g(i) · v ds =

∫

∂Ω
g(i) · (ξ + ω × y +

m
∑

j=1

ujψj) ds = −(Θ1ξ + Θ2ω + κu)i,

and, similarly
∫

∂Ω
G(i) · v ds = −(Υ1ξ + Υ2ω + Ku)i.

Therefore,
(

κ
K

)

u = −

(

Θ1 Θ2

Υ1 Υ2

)(

ξ
ω

)

which proves the lemma. �

System (36)–(43) therefore reduces to the control system

{

ζ̇ = RL1u,

Ṙ = RS(L2u),
u ∈ Rm, (44)

where L1, L2 ∈ M3×m are such that

L =

(

L1

L2

)

.

By homogeneity, since the set of admissible controls is the whole Rm, the controllability in
arbitrary small time of system (44) is equivalent to the controllability of the control system whose
admissible velocities are given by the family of vector fields F = {±Xi | 1 ≤ i ≤ m} defined by

Xi(ζ,R) = (R bi, R S(ci)) (45)

where the bi’s denote the columns of L1 and the ci’s those of L2. Moreover, since F is symmetrical,
the controllability of this family is equivalent to the fact that the Lie algebra generated by F , denoted
by L , is of rank 6 at every point of R3 × SO(3) (see, eg, [1, Corollary 5.11]).

Theorem 7.2. The control system (44) is controllable in arbitrary small time if and only if one of
the following conditions is satisfied:

1. rank(L2) ≥ 2 and (L1)
T
L2 + (L2)

T
L1 6= 0m×m;

2. rank(L2) = 2 and rank(L) ≥ 3.

Proof. First of all notice that the Lie bracket between two vector fields of the form Zi(ζ,R) =
(R vi, R S(wi)), i = 1, 2, is given by

[Z1, Z2](ζ,R) = (R(w1 × v2 −w2 × v1), R S(w1 × w2)). (46)

Let us prove the “if” part of the theorem. Suppose that we can find in L two vector fields Y1, Y2

of the form
Yi(ζ,R) = (R βi, R S(γi)), i = 1, 2,

such that the vectors γ1 and γ2 are linearly independent and that the inner product 〈β1, γ1〉 is
nonzero. We prove here below that, in this case, the Lie algebra L is of full rank at every point of
R3 × SO(3). Then we show that both 1. and 2. guarantee that, without loss of generality, such Y1

and Y2 can be found.
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Let Y3 = [Y1, Y2] whose expression can be obtained using (46). Define the vector field W1 as the
bracket between Y3 and Y1. Applying again (46) we obtain that

W1(ζ,R) = [Y3, Y1](ζ,R) =

(

R
(

2〈β1, γ1〉γ2 − (〈β1, γ2〉 + 〈β2, γ1〉)γ1 − 〈γ1, γ2〉β1 + ‖γ1‖
2β2

)

RS(−〈γ1, γ2〉γ1 + ‖γ1‖
2γ2)

)

.

Let W2 be the vector field obtained adding 〈γ1, γ2〉Y1 − ‖γ1‖
2Y2 to W1, ie,

W2(ζ,R) =

(

R (2〈β1, γ1〉γ2 − (〈β1, γ2〉 + 〈β2, γ1〉) γ1)
03

)

.

Since W2 is in L , then the vector field Y4 = [W2, Y1] belongs to L as well and we have that
Y4(ζ,R) = (R(2〈β1, γ1〉γ1 × γ2), 03). Consider now the vector fields Y5 = [Y4, Y1] and Y6 = [Y4, Y2],
both belonging to L , and whose expressions are Y5(ζ,R) = (R(2〈β1, γ1〉γ1 × (γ1 × γ2)), 03) and
Y6(ζ,R) = (R(2 〈β1, γ1〉 γ2 × (γ1 × γ2)), 03). Since each matrix R in SO(3) is invertible, and because
〈β1, γ1〉 6= 0, the vector fields Y1, . . . , Y6 span T(ζ,R)R

3 × SO(3) at every (ζ,R) ∈ R3 × SO(3) if and
only if the matrix

∆ =

(

β1 β2 γ2 × β1 − γ1 × β2 γ1 × γ2 γ1 × (γ1 × γ2) γ2 × (γ1 × γ2)
γ1 γ2 γ2 × c1 03 03 03

)

is full-rank. The non-degeneracy of ∆ follows easily from the assumption that the vectors γ1 and γ2

are linearly independent.
We shall prove now that the hypotheses 1. and 2. imply the existence of two vector fields Y1 and

Y2 as above.
Let r = rank(L2). Notice that for every matrix Γ ∈ GL(m) the reparameterization u → Γu

transforms the matrix (L1, L2) into (L1Γ, L2Γ). The condition (L1)
T
L2 + (L2)

T
L1 6= 0m×m is

preserved by this transformation, since, (L1Γ)
T
L2Γ+(L2Γ)

T
L1Γ = ΓT ((L1)

T
L2 +(L2)

T
L1)Γ. Thus,

without loss of generality, we can assume that L2 = (L2,1 |03×(m−r)) where L2,1 ∈ M3×r is of rank r.
Let us write L1 as (L1,1 |L1,2) where L1,1 ∈ M3×r and L1,2 ∈ M3×(m−r).

Suppose that 1. holds. If (L1,1)
T
L2,1 + (L2,1)

T
L1,1 6= 0r×r, then we can find 1 ≤ j1, j2 ≤ r such

that 〈bj1, cj1〉 6= 0, or 〈bj2, cj2〉 6= 0, or 〈bj1, cj2〉 + 〈bj2 , cj1〉 6= 0. If 〈bj1 , cj1〉 = 〈bj2, cj2〉 = 0, then
the inner product 〈bj1 + bj2, cj1 + cj2〉 = 〈bj1, cj2〉 + 〈bj2 , cj1〉 is nonzero, and thus the vector fields

Y1 = Xj1 + Xj2 and Y2 = Xj2 fulfill the required conditions. Otherwise, (L2,1)
T
L1,2 6= 0r×(m−r)

and we can fix 1 ≤ j1, j2 ≤ r and j3 > r such that j1 6= j2, 〈bj1 , cj1〉 = 0 and 〈bj3, cj1〉 6= 0. Then
Y1 = Xj1 +Xj3 and Y2 = Xj2 fulfill the required conditions.

Assume now that 2. holds and 1. does not. Then c1 and c2 are linearly independent and

〈b1, c1〉 = 〈b2, c2〉 = 〈b1, c2〉 + 〈b2, c1〉 = 0.

Moreover, there exists j > r = 2 such that bj 6= 03 and 〈bj , c1〉 = 〈bj, c2〉 = 0. Therefore, there exists
a real number α 6= 0 such that b3 = α(c1 × c2). Then, according to (46),

[X1,Xj ](ζ,R) = (R(α c1 × (c1 × c2)), 03).

As 〈c2, c1 × (c1 × c2)〉 6= 0 the vector fields Y1 = X1 and Y2 = X2 + [X1,Xj ] fulfill the required
conditions.

Let us prove now the “only if” part of the statement. First notice that if r ≤ 1 then there exists
a vector x0 ∈ R3

r {03} such that L2u × x0 = 0 for every control u. Multiplying equation (44) by
x0, we get that Ṙx0 = 0 and so R(t)x0 = R(0)x0 for every time t. Therefore, system (44) is not
controllable.

22



Assume now that r = rank(L) = 2 and (L1)
T
L2 + (L2)

T
L1 = 0m×m. Let Y = [X1,X2], whose

expression, according to (46), is given by

Y (ζ,R) = (R(c1 × b2 − c2 × b1), R S(c1 × c2)).

Since 〈bi, ci〉 = 0 for i = 1, 2 and 〈b1, c2〉 + 〈b2, c1〉 = 0, we obtain that

[Y,X1] = −〈c1, c2〉X1 + ‖c1‖
2X2

[Y,X2] = −‖c2‖
2X1 + 〈c1, c2〉X2.

Therefore, the Lie algebra L , which is generated by X1 and X2, is equal to the linear space of vector
fields spanned by X1, X2 and Y and cannot be of full rank.

Let now r = 3 and (L1)
T
L2 + (L2)

T
L1 = 0m×m. The condition (L2,1)

T
L1,2 = 03×(m−3) implies

that the columns of L1,2 are orthogonal to all the elements of a basis of R3. Therefore, L1,2 =
03×(m−3). As for the columns of L1,1, we easily obtain from (L1,1)

T
L2,1 + (L2,1)

T
L1,1 = 03×3 that

b1 = − α12 c2 − α13 c3,

b2 =α12 c1 − α23 c3,

b3 =α13 c1 + α23 c2,

for some α12, α13, α23 ∈ R. Without loss of generality we can assume that (c1, c2, c3) is a positively
oriented orthonormal basis and an easy computation gives

[X1,X2] =X3,

[X1,X3] = −X2,

[X2,X3] =X1,

which proves that L is equal to the linear space of vector fields spanned by X1, X2 and X3 and
cannot be of full rank.
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[20] Jacques Simon. Différentiation de problèmes aux limites par rapport au domaine. Lecture notes,
University of Seville, 1991.

[21] Hector J. Sussmann. Some properties of vector field systems that are not altered by small
perturbations. J. Differ. Equations, 20:292–315, 1976.

[22] G. Taylor. Analysis of the swimming of microscopic organisms. Proc. Roy. Soc. London. Ser.
A., 209:447–461, 1951.

24


