Controllability properties of a class of systems modeling swimming microscopic organisms

Mario Sigalotti, Jean-Claude Vivalda

To cite this version:

Mario Sigalotti, Jean-Claude Vivalda. Controllability properties of a class of systems modeling swimming microscopic organisms. 2007. hal-00188193v1

HAL Id: hal-00188193
 https://hal.science/hal-00188193v1

Preprint submitted on 15 Nov 2007 (v1), last revised 20 May 2008 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Controllability properties of a class of systems modeling swimming microscopic organisms

Mario Sigalotti and Jean-Claude Vivalda

15th November 2007

Abstract

We consider a finite-dimensional model for the motion of microscopic organisms whose propulsion exploits the action of a layer of cilia covering its surface. The model couples Newton's laws driving the organism, cosidered as a rigid body, with Stokes equations governing the surrounding fluid. The action of the cilia is described by a set of controlled velocity fields on the surface of the organism. The first contribution of the paper is the proof that such a system is generically controllable when the space of controlled velocity fields is at least three-dimensional. We also provide a complete characterization of controllable systems in the case in which the organism has a spherical shape. Finally, we offer a complete picture of controllable and non-controllable systems under the additional hypothesis that the organism and the fluid have densities of the same order of magnitude.

1 Introduction

The mathematical description of the motion of swimming organisms and of the mechanisms of their propulsion is a challenging and wide field of research. This paper aims at giving a contribution to such a domain in a comparatively narrow direction.

The object of our study are microscopic organisms. The most prominent aspect of the models describing their motion is the very high level of viscosity ($[3,15,19]$). The mechanism of their propulsion depends heavily on the different species and admits a great variety of models (see, for instance, $[2,7,9,14]$ and references therein).

Among microscopic organisms we will further restrict our attention to the class of ciliata, whose propulsion is determined by cilia, hair-like organelles covering their surface and whose size is very small compared with that of the organism (see [4, 5, 9]). Recently San Martín, Takahashi and Tucsnak [16] proposed a control theoretic approach to the description of ciliata. Following the former literature (and in particular [9, 13]) they assume that the organism is a rigid body and that the motion of the cilia is described by a set of controlled velocity fields on a surface enclosing the layer of cilia. They are therefore faced to an infinite-dimensional control system coupling Navier-Stokes equations, which describe the motion of the fluid, and the equations for the rigid body arising form Newton's laws. The hypothesis of high viscosity (ie, of low Raynolds number) mentioned above is exploited to reduce such a control system to a finite-dimensional version of it. The state-space is given by the coordinates of the center of mass of the organism, its orientation and its angular and linear velocities.

Summarizing, San Martín, Takahashi and Tucsnak single out a 12 -dimensional nonlinear control system which is affine in the controls. The control system depends on a number of parameters which are explicitly derived as functions of the shape of the organism, of its mass distribution, and of the surface velocity fields describing the motion of the cilia. The authors study the control properties of the system proving that it is generically controllable when the number of controlled vector fields
is at least six (see Section 5 for details). They also provide some example of controllable systems in the case in which the organism has a spherical shape. In this special case they also study the controllability properties of the linearization of the system at its rest position.

Our scope is to enhance the results of [16] basically in three directions: firstly we want to give sharper results on the generic controllability of the system; secondly we want to obtain a complete characterization of controllable systems in the case in which the organism is spherical; thirdly we want to provide a complete picture of controllable and non-controllable systems in the simplified situation which -following again [16]- comes into effect in the case in which the organism and the fluid have densities of the same order of magnitude. The overall aim is to provide a better understanding of the dependence of the controllability properties of the model proposed in [16] on the physical quantities characterizing it. The hard aspect of the model is indeed the difficulty to obtain reliable expressions for the surface velocity fields describing the motions of the cilia. In this regard, it is important to provide as precise as possible parametric analysis of the controllability properties of the system.

The paper is organized as follows. Section 2 introduces the control theoretical language adopted throughout the paper. Section 3 presents the control system obtained in [16] and recalls the relations between the physical quantities characterizing the organism and the parameters appearing in the model. Section 4 is technical and contains an abstract controllability result used in the later sections. Section 5 is devoted to the analysis of the genericity of the controllability of the system introduced in Section 3. Genericity is initially formulated in terms of the parameters appearing in the finite-dimensional system and then expressed in terms of the physical objects they depend on (Section 5.3). The main result is that the system is generically controllable if the number of controlled vector fields is at least three and that one controlled vector field suffices for its generic accessibility (Theorem 5.1). Section 6 analyzes the case in which the organism is spherical and provides a complete characterization of the sets of parameters that make the system controllable (Theorem 6.1). Finally, Section 7 establishes a characterization of controllable systems when the organism can be assumed to have the same density as the fluid (Theorem 7.2). The result follows from a further reduction of the system that trasforms it into a six-dimensional one. The reduction procedure, suggested in [16], is carried out in full details.

2 Notations and definitions

Let us first introduce some notations: in the following Id denotes the 3×3 identity matrix, $0_{m \times n}$ is the zero $m \times n$ matrix, $0_{m}=0_{m \times 1}$ is the zero vector in \mathbf{R}^{m}. We denote by $\mathscr{M}_{m \times n}$ the set of $m \times n$ real matrices. The interior of a set W is denoted by $\operatorname{Int}(W)$ and its closure by $\operatorname{Clos}(W)$. For simplicity of notation, when no confusion is possible, row and column vectors are identified. The canonical orthonormal basis of \mathbf{R}^{3} is denoted by $\left\{e_{1}, e_{2}, e_{3}\right\}$.

In what follows we deal with control systems of the type

$$
\begin{equation*}
\dot{q}=f(q, u), \quad q \in M, \quad u \in \mathbf{R}^{m} \tag{1}
\end{equation*}
$$

where M is a smooth $\left(\mathcal{C}^{\infty}\right)$ manifold and $f: M \times \mathbf{R}^{m} \rightarrow T M$ is smooth with respect to both variables. Moreover, for every $T \geq 0$ the endpoint mapping E_{T} which associates to an initial condition $q_{0} \in M$ and a control function $u \in L^{\infty}\left([0, T], \mathbf{R}^{m}\right)$ the final point of the corresponding trajectory of (1) is well defined and continuous on $M \times L^{\infty}\left([0, T], \mathbf{R}^{m}\right)$, where the L^{1} norm is chosen on $L^{\infty}\left([0, T], \mathbf{R}^{m}\right)$. (For these and finer properties of the endpoint mapping see, for instance, [1].)

Let $\mathscr{F}=\left\{f(\cdot, u) \mid u \in \mathbf{R}^{m}\right\}$ be the family of vector fields characterizing (1). For every $X=$ $f(\cdot, u) \in \mathscr{F}$ we denote by $e^{t X}$ the one-parameter group generated by X, that is, $e^{t X}(q)=E_{t}\left(q, u 1_{[0, t]}\right)$. The attainable set from $q \in M$ is the set

$$
\mathcal{A}(q, \mathscr{F})=\cup_{T \geq 0} E_{T}\left(q, L^{\infty}\left([0, T], \mathbf{R}^{m}\right)\right) .
$$

When no confusion is possible we write $\mathcal{A}_{q}=\mathcal{A}(q, \mathscr{F})$.
We say that (1) is controllable (respectively, approximatively controllable) if for every $q \in M$ the set \mathcal{A}_{q} is equal to (respectively, dense in) M.

Give two vector fields X and Y on M, the Lie bracket between X and Y is defined, in a local system of coordinates, by the relation

$$
[X, Y]=(D Y) X-(D X) Y
$$

where $D X$ denotes the derivative of X. Denote by \mathscr{L} the Lie algebra generated by \mathscr{F}. System (1) is Lie-bracket generating if for every $q \in M$ the set $\mathscr{L}(q)=\{V(q) \mid V \in \mathscr{L}\}$ is equal to $T_{q} M$.

3 The dynamics of swimming microscopic organisms

In [16] the authors describe the swimming of a microscopic organism immersed in an infinite volume of fluid by coupling the dynamics of a rigid body (representing the organism) with the Navier-Stokes equations describing the behavior of the fluid outside the body. Exploiting the hypothesis of very low Reynolds number, they derive a simplified version of the coupled system. The system obtained in this way is finite-dimensional and nonlinear; more precisely, it has the following expression:

$$
\begin{align*}
\dot{z} & =A z+E(z)+B u \tag{2}\\
\dot{\zeta} & =R \xi \tag{3}\\
\dot{R} & =R S(\omega), \tag{4}
\end{align*}
$$

where $z=(\xi, \omega) \in \mathbf{R}^{3} \times \mathbf{R}^{3}, \zeta \in \mathbf{R}^{3}, R \in S O(3)$, and

$$
E(z)=\binom{\xi \times \omega}{J^{-1}((J \omega) \times \omega)} .
$$

Here $J \in \mathscr{M}_{3 \times 3}$ denotes the inertia matrix of the rigid body representing the organism. Recall that J is symmetric and positive definite. The matrix $A \in \mathscr{M}_{6 \times 6}$ is a function of the rigid body and the viscosity of the fluid and its expression is given at the end of the section.

The control function u takes values in $\mathbf{R}^{m}, m \geq 1$, and B is a 6 -by- m matrix, which we write as

$$
B=\binom{B_{1}}{B_{2}}
$$

where both B_{1} and B_{2} belong to $\mathscr{M}_{3 \times m}$.
An important feature of the system above is that (2) is a well-defined control system on \mathbf{R}^{6}, since it does not depend on ζ nor R.

Denote by X_{0} the vector field on $\mathbf{R}^{6} \times \mathbf{R}^{3} \times \mathrm{SO}(3)$ which is the drift of the control system (2)-(4), that is,

$$
X_{0}(z, \zeta, R)=\left(\begin{array}{c}
A z+E(z) \\
R \xi \\
R S(\omega)
\end{array}\right) .
$$

Let moreover X_{1}, \ldots, X_{m} be the controlled vector fields, so that system (2)-(4) can be written as

$$
\dot{q}=X_{0}(q)+\sum_{i=1}^{m} u_{i} X_{i}(q), \quad q \in \mathbf{R}^{9} \times S O(3) .
$$

Define \mathscr{L} as the Lie algebra generated by $X_{0}, X_{1}, \ldots, X_{m}$.

We say that a vector field X on $\mathbf{R}^{9} \times S O(3)$ is a constant vector field if there exist $v_{1}, v_{2} \in \mathbf{R}^{3}$ such that $X:(\xi, \omega, \zeta, R) \mapsto\left(v_{1}, v_{2}, 0_{6}\right)$ and we write $X=\left(v_{1}, v_{2}, 0_{6}\right)$. Clearly, X_{1}, \ldots, X_{m} are constant vector fields. Notice that if $V=\left(v_{1}, v_{2}, 0_{6}\right)$ and $W=\left(w_{1}, w_{2}, 0_{6}\right)$ are constant vector fields, then

$$
\left[\left[X_{0}, V\right], W\right]=\left(\begin{array}{c}
v_{2} \times w_{1}+w_{2} \times v_{1} \tag{5}\\
J^{-1}\left(J w_{2} \times v_{2}+J v_{2} \times w_{2}\right) \\
0_{6}
\end{array}\right)
$$

is a constant vector field as well.
Remark 3.1. For every constant vector field $V=\left(v_{1}, v_{2}, 0_{6}\right)$, the bracket $\left[X_{0}, V\right]$ is of the form

$$
\left[X_{0}, V\right](z, \zeta, R)=\left(G(z, V),-R v_{1},-R S\left(v_{2}\right)\right)
$$

for some smooth map G with values in \mathbf{R}^{6}. Therefore, if the constant vector fields contained in \mathscr{L} span $\mathbf{R}^{6} \times\left\{0_{6}\right\}$, then system (2)-(4) is Lie-bracket generating.

We conclude the section by recalling the analytic characterization of the coefficients appearing in A, B and J. Let $S \subset \mathbf{R}^{3}$ be an open bounded connected set whose boundary is of class \mathcal{C}^{2}, representing the (rigid) shape of the organism. Then the coefficients $J_{i j}$ of J are given by

$$
\begin{equation*}
J_{i j}=\int_{S} \rho\left(e_{i} \times \bar{\xi}\right) \cdot\left(e_{j} \times \bar{\xi}\right) d x \tag{6}
\end{equation*}
$$

where $\bar{\xi}$ denotes the mass center of S and $\rho: S \rightarrow(0, \infty)$ is the (possibly non-constant) density function.

Denote by F the set $\mathbf{R}^{3} \backslash \operatorname{Clos}(S)$ and, for $l \in \mathbf{N}, 1 \leq q \leq \infty$, let

$$
D^{l, q}(F)=\left\{\varphi \in L_{\mathrm{loc}}^{1} \mid \partial^{\alpha} \varphi \in L^{q}(F) \text { for all } \alpha \in \mathbf{N}^{3},|\alpha|=l\right\} .
$$

According to [16, Lemma 3.1], for every $i \in\{1,2,3\}$ there exists an unique solution $\left(h^{(i)}, p^{(i)}\right)$ of

$$
\left\{\begin{array}{rlrl}
-\Delta h^{(i)}+\nabla p^{(i)} & =0 & & \text { on } F \\
\operatorname{div} h^{(i)} & =0 & & \text { on } F \\
h^{(i)} & =e_{i} & \text { on } \partial S \\
\lim _{|y| \rightarrow \infty} h^{(i)}(y) & =0 & &
\end{array}\right.
$$

and an unique solution $\left(H^{(i)}, P^{(i)}\right)$ of

$$
\left\{\begin{aligned}
-\Delta H^{(i)}+\nabla P^{(i)} & =0 & & \text { on } F \\
\operatorname{div} H^{(i)} & =0 & & \text { on } F \\
H^{(i)}(y) & =e_{i} \times y & & \text { on } \partial S \\
\lim _{|y| \rightarrow \infty} H^{(i)}(y) & =0 & &
\end{aligned}\right.
$$

such that $h^{(i)}, H^{(i)} \in L^{s}(F) \cap D^{1, r}(F) \cap D^{2, \theta}(F) \cap \mathcal{C}^{\infty}(F)$ and $p^{(i)}, P^{(i)} \in L^{r}(F) \cap D^{1, \theta}(F) \cap \mathcal{C}^{\infty}(F)$ for $s \in(3, \infty], r \in(3 / 2, \infty]$ and $\theta \in(1, \infty)$.

The Cauchy stress is the tensor σ defined by the relation

$$
\begin{equation*}
\sigma(v, p)=-p \operatorname{Id}+\mu\left(\frac{\partial v_{k}}{\partial y_{l}}+\frac{\partial v_{l}}{\partial y_{k}}\right)_{1 \leq l, k \leq 3} \tag{7}
\end{equation*}
$$

where μ is the Reynolds number of the fluid. For $i=1,2,3$, define

$$
g^{(i)}=\left.\sigma\left(h^{(i)}, p^{(i)}\right) n\right|_{\partial S}, \quad G^{(i)}=\left.\sigma\left(H^{(i)}, P^{(i)}\right) n\right|_{\partial S},
$$

where n is the unit inner normal to ∂S.
Denote by $\Theta^{1}, \Theta^{2}, \Upsilon^{1}, \Upsilon^{2}$ the matrices in $\mathscr{M}_{3 \times 3}$ defined by

$$
\begin{aligned}
\Theta_{i j}^{1}=-\int_{\partial S} g_{j}^{(i)} d s, & \Theta_{i j}^{2}=-\int_{\partial S}\left(x \times g^{(i)}\right)_{j} d s \\
\Upsilon_{i j}^{1}=-\int_{\partial S} G_{j}^{(i)} d s, & \Upsilon_{i j}^{2}=-\int_{\partial S}\left(x \times G^{(i)}\right)_{j} d s
\end{aligned}
$$

where $d s$ is the surface element of ∂S. It turns out (see [10]) that $\Upsilon^{1}=\left(\Theta^{2}\right)^{\mathrm{T}}$ and that

$$
A=\left(\begin{array}{cc}
\bar{m}^{-1} \Theta^{1} & \bar{m}^{-1} \Theta^{2} \tag{8}\\
J^{-1} \Upsilon^{1} & J^{-1} \Upsilon^{2}
\end{array}\right)
$$

where \bar{m} denotes the mass of the organism. Moreover, with respect to the inner product in \mathbf{R}^{6} defined by

$$
\begin{equation*}
\langle a, b\rangle_{J}=\bar{m} \sum_{l=1}^{3} a_{l} b_{l}+\sum_{l, k=1}^{3} J_{l k} a_{3+l} b_{3+k} \tag{9}
\end{equation*}
$$

A is self-adjoint and negative-definite.
The matrix B is defined by

$$
\begin{equation*}
B=\binom{\bar{m}^{-1} \kappa}{J^{-1} \mathcal{K}} \tag{10}
\end{equation*}
$$

where the entries of κ and \mathcal{K} are

$$
\kappa_{i j}=-\int_{\partial S} g^{(i)} \cdot \psi_{j} d s, \quad \mathcal{K}_{i j}=-\int_{\partial S} G^{(i)} \cdot \psi_{j} d s
$$

and $\psi_{1}, \ldots, \psi_{m}$ are fixed functions in $\mathcal{C}^{2}\left(\partial S, \mathbf{R}^{3}\right)$, each one associated to a component of the control u, that describe the admissible propulsive actions of the organism.

4 A controllability result in a more general setting

The following proposition provides sufficient (and necessary) conditions for the controllability of systems that generalize those introduced in the previous section, in the sense that a more general structure for the dynamics in the coordinates z is allowed.

Proposition 4.1. Consider the following control system

$$
\begin{equation*}
\dot{z}=f(z, u), \quad z \in \mathbf{R}^{6}, \quad u \in \mathbf{R}^{m} . \tag{11}
\end{equation*}
$$

Then (3),(4),(11) is controllable if and only if it is Lie-bracket generating at $(z, \zeta, R)=\left(0_{9}, \mathrm{Id}\right)$ and system (11) is controllable.

Proof. One direction of the equivalence being obvious, let us assume that system (11) is controllable and that $(3),(4),(11)$ is Lie-bracket generating at $(z, \zeta, R)=\left(0_{9}, \mathrm{Id}\right)$.

Notice that

$$
\begin{equation*}
\left(z^{\prime}, \zeta^{\prime}, R^{\prime}\right) \in \mathcal{A}_{(z, \zeta, R)} \quad \Longrightarrow \quad\left(z^{\prime}, \bar{\zeta}+\bar{R} \zeta^{\prime}, \bar{R} R^{\prime}\right) \in \mathcal{A}_{(z, \bar{\zeta}+\bar{R} \zeta, \bar{R} R)} \tag{12}
\end{equation*}
$$

for every $(\bar{\zeta}, \bar{R}) \in \mathbf{R}^{3} \times S O(3)$, where the letter \mathcal{A} is used here to denote attainable sets for system (3),(4),(11). Indeed, if $t \mapsto u(t)$ is an admissible control steering (z, ζ, R) to $\left(z^{\prime}, \zeta^{\prime}, R^{\prime}\right)$ and $t \mapsto$
$(z(t), \zeta(t), R(t))$ is the corresponding trajectory, then $t \mapsto(z(t), \bar{\zeta}+\bar{R} \zeta(t), \bar{R} R(t))$ is an admissible trajectory corresponding to the same control u.

Fix $\left(z_{0}, \zeta_{0}, R_{0}\right),\left(z_{1}, \zeta_{1}, R_{1}\right) \in \mathbf{R}^{9} \times S O(3)$. Since (11) is controllable, then there exist $\eta_{0}, \eta_{1} \in \mathbf{R}^{3}$ and $Q_{0}, Q_{1} \in S O(3)$ such that $\left(0_{6}, \eta_{0}, Q_{0}\right) \in \mathcal{A}_{\left(z_{0}, \zeta_{0}, R_{0}\right)}$ and $\left(z_{1}, \zeta_{1}, R_{1}\right) \in \mathcal{A}_{\left(0_{6}, \eta_{1}, Q_{1}\right)}$. We are left to prove that $\mathcal{A}_{\left(0_{6}, \eta_{0}, Q_{0}\right)}$ contains $\left\{0_{6}\right\} \times \mathbf{R}^{3} \times S O(3)$.

Since (11) is controllable and (3),(4),(11) is Lie-bracket generating at $(z, \zeta, R)=\left(0_{9}, \mathrm{Id}\right)$, then there exists an open nonempty subset V of $\mathbf{R}^{3} \times S O(3)$ such that $\left\{0_{6}\right\} \times V$ is contained in $\mathcal{A}_{(09, \mathrm{Id})}$.

Let

$$
G=\operatorname{Int}\left(\mathcal{A}_{\left(0_{9}, \mathrm{Id}\right)}\right)
$$

and notice the following consequence of (12): if $\left(0_{6}, \bar{\zeta}, \bar{R}\right) \in \mathcal{A}_{\left(0_{6}, \eta_{0}, Q_{0}\right)}$ and $\left(0_{6}, \zeta^{\prime}, R^{\prime}\right) \in G$, then

$$
\begin{equation*}
\left(0_{6}, \bar{\zeta}+\bar{R} \zeta^{\prime}, \bar{R} R^{\prime}\right) \in \mathcal{A}_{\left(0_{6}, \eta_{0}, Q_{0}\right)} \tag{13}
\end{equation*}
$$

Notice that for every nonempty open subset O of $S O(3)$

$$
\begin{equation*}
W=\left\{P_{1} P_{2} \cdots P_{k} \mid k \in \mathbf{N}, P_{1}, \ldots, P_{k} \in O\right\} \tag{14}
\end{equation*}
$$

is equal to $S O(3)$. Indeed, since O contains at least one element P_{0} of finite order, ie, an axial rotation of angle commensurable with π, then Id belongs to the interior of W. The completeness of $S O(3)$ guarantees that $W=S O(3)$.

Take as O the projection of V on $S O(3)$. Then for every $R \in S O(3)$ there exists $\zeta \in \mathbf{R}^{3}$ such that $\left(0_{6}, \zeta, R\right)$ belongs to G; this can be seen by noticing that there exist k elements $\left(0_{6}, \zeta_{1}, P_{1}\right), \ldots,\left(0_{6}, \zeta_{k}, P_{k}\right)$ in V such that $P_{i} \in O$ and $P_{1} P_{2} \cdots P_{k}=R$ and by applying repeatedly (13). In particular, without loss of generality, $Q_{0}=\mathrm{Id}$ and $Q_{1}=\mathrm{Id}$. Indeed, since there exists $\zeta_{0} \in \mathbf{R}^{3}$ such that $\left(0_{6}, \zeta_{0}, Q_{0}^{-1}\right) \in G$, equation (12) with $(\bar{\zeta}, \bar{R})=\left(\eta_{0}, Q_{0}\right)$ shows that $\left(0_{6}, \eta_{0}+Q_{0} \zeta_{0}, \mathrm{Id}\right) \in \mathcal{A}_{\left(0_{6}, \eta_{0}, Q_{0}\right)}$; similarly, the existence of $\zeta_{1} \in \mathbf{R}^{3}$ such that $\left(0_{6}, \zeta_{1}, Q_{1}\right) \in G$ implies that $\left(0_{6}, \eta_{1}, Q_{1}\right) \in \mathcal{A}_{\left(0_{6}, \eta_{1}-\zeta_{1}, \mathrm{Id}\right)}$. Moreover, for every element p of $\mathbf{R P}^{2}$, the Grassmannian of one-dimensional subspaces of \mathbf{R}^{3}, there exists $\zeta_{p} \in \mathbf{R}^{3}$ such that $\left(0_{6}, \zeta_{p}, R_{p}\right)$ lies in G, where R_{p} denotes the rotation of angle π around the axis p. Applying (13) to $(\bar{\zeta}, \bar{R})=\left(\zeta^{\prime}, R^{\prime}\right)=\left(\zeta_{p}, R_{p}\right)$, we obtain that $\left(0_{6}, \zeta_{p}+R_{p} \zeta_{p}, \mathrm{Id}\right)$ lies in G. Notice that $\zeta_{p}+R_{p} \zeta_{p}=2\left\langle\zeta_{p}, p\right\rangle p$ belongs to the axis p. Therefore, G intersects $\left\{0_{6}\right\} \times p \times\{\operatorname{Id}\}$ for every $p \in \mathbf{R P}^{2}$.

Of special interest will be for us the expression of (13) when $\bar{R}=R^{\prime}=\mathrm{Id}$, namely

$$
\begin{equation*}
\left(0_{6}, z^{\prime}, \text { Id }\right) \in G \quad \Longrightarrow \quad\left(0_{6}, \bar{\zeta}+\zeta^{\prime}, \text { Id }\right) \in \mathcal{A}_{\left(0_{6}, \bar{\zeta}, \text { Id }\right)} \tag{15}
\end{equation*}
$$

Let

$$
\Omega_{ \pm}=\left\{v \in \mathcal{S}^{2} \mid\left\{0_{6}\right\} \times \mathbf{R}_{\geq 0}(\pm v) \times\{\operatorname{Id}\} \cap \operatorname{Int} \mathcal{A}_{\left(0_{9}, \mathrm{Id}\right)} \neq \emptyset\right\}
$$

where \mathcal{S}^{2} denotes the unit sphere in \mathbf{R}^{3}. As we remarked above, Ω_{+}and Ω_{-}cover \mathcal{S}^{2} and, by construction, they are open. Moreover, both are nonempty, since $v \in \Omega_{ \pm}$implies that $-v \in \Omega_{\mp}$. Since \mathcal{S}^{2} is connected we have $\Omega_{+} \cap \Omega_{-} \neq \emptyset$, ie, there exist $v \in \mathbf{R}^{3}$ and two non-negative constants λ_{1}, λ_{2} such that both $\left(0_{6}, \lambda_{1} v\right.$, Id $)$ and $\left(0_{6},-\lambda_{2} v\right.$, Id $)$ lie in G; moreover, due to the openness of G, these constants can be assumed to be positive and commensurable and so there exist two positive integers n_{1} and n_{2} such that $n_{1} \lambda_{1}-n_{2} \lambda_{2}=0$. Applying repeatedly (15), we obtain that G contains $\left(0_{9}, \mathrm{Id}\right)$ and, therefore, $\left\{0_{6}\right\} \times \mathbf{R}^{3} \times\{\operatorname{Id}\}$.

Applying (15) again with $\bar{\zeta}=\eta_{0}$ we deduce that $\left(0_{6}, \eta_{1}, \mathrm{Id}\right)=\left(0_{6}, \eta_{1}, Q_{1}\right)$ is attainable from $\left(0_{6}, \eta_{0}\right.$, Id $)=\left(0_{6}, \eta_{0}, Q_{0}\right)$.

5 Generic properties

The expression generic is commonly used to denote a property of a system that is, in a suitable sense, stable under small perturbations and that, even when it fails to apply, can be forced to hold by applying to the system an arbitrary small perturbation.

In order to define precisely what a generic property means in the present context, define

$$
\Xi_{0}^{m}=\left\{(A, B, J) \in \mathscr{M}_{6 \times 6} \times \mathscr{M}_{6 \times m} \times \mathscr{M}_{3 \times 3} \mid J=J^{\mathrm{T}}>0, A \in \operatorname{Sym}_{J}^{-}\right\},
$$

where

$$
\operatorname{Sym}_{J}^{-}=\left\{A \in \mathscr{M}_{6 \times 6} \mid A \text { is symmetric and negative definite with respect to }\langle\cdot, \cdot\rangle_{J}\right\}
$$

and $\langle\cdot, \cdot\rangle_{J}$ is defined as in (9).
We say that a property is generic for system (2)-(4) when $m=m_{0}$ if there exists an open and dense set O in $\Xi_{0}^{m_{0}}$ such that the property holds for every system defined by a triple in O.

Such a definition of genericity, given in terms of the entries of the matrices A, J and B, is adapted to the finite-dimensional formulation (2)-(4) but can appear unsatisfactory from the point of view of the physical model. Section 5.3 discusses how to define the genericity directly in the space of configurations of the organism and provides a physically justified counterpart of the following result.

Theorem 5.1. (a) Generically when $m \geq 1$ the rank of \mathscr{L} is maximal at every point. (b) Generically when $m \geq 3$ system (2)-(4) is controllable.

The generic conditions ensuring the Lie-bracket generating condition and the controllability of (2)-(4) are given explicitly in the Propositions 5.2 and 5.3. Notice that the techniques applied in this section are independent of the structure imposed on A by the physical motivations of the model, namely, the fact that $A \in \operatorname{Sym}_{J}^{-}$. Indeed, the conditions thatare obtained in the following sections define an open and dense set in

$$
\Xi_{1}^{m}=\left\{(A, B, J) \in \mathscr{M}_{6 \times 6} \times \mathscr{M}_{6 \times m} \times \mathscr{M}_{3 \times 3} \mid J=J^{\mathrm{T}}>0\right\}
$$

for $m \geq 1$ (for the Lie-bracket generating condition) or $m \geq 3$ (for the controllability) whose intersection with Ξ_{0}^{m} is open and dense in Ξ_{0}^{m}. In other words, Lie-bracket generating condition and controllability are generic properties (for $m=1$ and $m=3$, respectively) also in the class of systems of the form (2)-(4) for which the triple (A, B, J) is taken in Ξ_{1}^{m}.

5.1 Generic Lie-bracket generating condition for $m=1$

When $m=1$ the two matrices B_{1} and B_{2} are column vectors that we denote by b_{1} and b_{2} respectively. Then $X_{1}=\left(b_{1}, b_{2}, 0_{6}\right)$ and \mathscr{L} is the Lie algebra generated by X_{0} and X_{1}.

Proposition 5.2. Let $i=0$ or $i=1$. There exists an open and dense set of triples (A, B, J) in Ξ_{i}^{1} such that system (2)-(4) is Lie-bracket generating. More precisely, if J, b_{1}, and b_{2} satisfy the three following conditions

$$
\begin{align*}
\operatorname{det}\left(b_{1}, J b_{2}, J^{2} b_{2}\right) & \neq 0, \tag{16}\\
\operatorname{det}\left(b_{2}, J b_{2}, J^{2} b_{2}\right) & \neq 0, \tag{17}\\
\operatorname{det}\left(J-\frac{\left\|J b_{2}\right\|^{2}}{\left\langle J b_{2}, b_{2}\right\rangle} \mathrm{Id}\right) & \neq 0, \tag{18}
\end{align*}
$$

then \mathscr{L} is maximal at every point.

Proof. Let us prove, first of all, that if $C \in \mathscr{M}(3 \times 3)$ is symmetric and invertible, and if $b \in \mathbf{R}^{3}$ is such that $C b$ and $C^{2} b$ are linearly independent, then

$$
\begin{equation*}
C^{-1}(C b \times b)=\operatorname{det}\left(C^{-1}\right)\left(C^{2} b \times C b\right) \tag{19}
\end{equation*}
$$

Notice that $\left\langle C^{-1}(C b \times b), C b\right\rangle=0=\left\langle C^{-1}(C b \times b), C^{2} b\right\rangle$, and therefore

$$
\begin{equation*}
C^{-1}(C b \times b)=k\left(C^{2} b \times C b\right) \tag{20}
\end{equation*}
$$

for some $k \in \mathbf{R}$. For every $x \in \mathbf{R}^{3}$ we have $\operatorname{det}\left(C^{-1} x, C b, b\right)=\left(\operatorname{det} C^{-1}\right) \operatorname{det}\left(x, C^{2} b, C b\right)$ and also

$$
\operatorname{det}\left(C^{-1} x, C b, b\right)=\left\langle C^{-1} x, C b \times b\right\rangle=\left\langle x, C^{-1}(C b \times b)\right\rangle=k\left\langle x, C^{2} b \times C b\right\rangle=k \operatorname{det}\left(x, C^{2} b, C b\right)
$$

Therefore

$$
\left(\operatorname{det} C^{-1}\right) \operatorname{det}\left(x, C^{2} b, C b\right)=k \operatorname{det}\left(x, C^{2} b, C b\right)
$$

for every $x \in \mathbf{R}^{3}$, proving that (21) holds true. In particular, taking $J=C$ and $b=b_{2}$, we have

$$
\begin{equation*}
J^{-1}\left(J b_{2} \times b_{2}\right)=\operatorname{det}\left(J^{-1}\right)\left(J^{2} b_{2} \times J b_{2}\right) \tag{21}
\end{equation*}
$$

Denote by V_{1} the Lie bracket $\left[\left[X_{0}, X_{1}\right], X_{1}\right]$. According to (5) we have

$$
V_{1}=2\left(\left(b_{2} \times b_{1}\right), J^{-1}\left(J b_{2} \times b_{2}\right), 0_{6}\right)
$$

Similarly, the definition $V_{2}=\frac{1}{4}\left[\left[X_{0}, V_{1}\right], V_{1}\right]$ leads to the expression

$$
V_{2}=\left(-\left\langle J^{-1}\left(J b_{2} \times b_{2}\right), b_{2}\right\rangle b_{1}+\left\langle J^{-1}\left(J b_{2} \times b_{2}\right), b_{1}\right\rangle b_{2},-\left\langle J^{-1}\left(J b_{2} \times b_{2}\right), b_{2}\right\rangle b_{2}, 0_{6}\right)
$$

Since $\left\langle J^{-1}\left(J b_{2} \times b_{2}\right), b_{2}\right\rangle X_{1}+V_{2}=\left(\left\langle J^{-1}\left(J b_{2} \times b_{2}\right), b_{1}\right\rangle b_{2}, 0_{9}\right)$ we have that

$$
Z_{1}=\left(b_{2}, 0_{9}\right)
$$

belongs to \mathscr{L}, as it follows from (16) and from (21).
Let $Z_{2}=\frac{1}{2}\left[\left[X_{0}, Z_{1}\right], V_{1}\right]$. Applying again (5), we have that

$$
Z_{2}=\left(-b_{2} \times J^{-1}\left(J b_{2} \times b_{2}\right), 0_{9}\right)
$$

Equation (21) implies that

$$
Z_{2}=\left(\operatorname{det} J^{-1}\right) b_{2} \times\left(J b_{2} \times J^{2} b_{2}\right)
$$

Letting

$$
b_{3}=b_{2} \times\left(J b_{2} \times J^{2} b_{2}\right)
$$

we can represent $Z_{3}=\frac{1}{2}\left[\left[X_{0}, Z_{2}\right], X_{1}\right]$ as

$$
Z_{3}=\left(b_{2} \times b_{3}, 0_{9}\right)
$$

We have shown that the Lie algebra \mathscr{L} contains the vector fields

$$
Z_{1}=\left(b_{2}, 0_{9}\right), \quad Z_{2}=\left(b_{3}, 0_{9}\right), \quad Z_{3}=\left(b_{2} \times b_{3}, 0_{9}\right)
$$

Notice that

$$
b_{3}=\left\langle b_{2}, J^{2} b_{2}\right\rangle J b_{2}-\left\langle b_{2}, J b_{2}\right\rangle J^{2} b_{2}
$$

is not in $\operatorname{span}\left(b_{2}\right)$, since $\left\langle b_{2}, J b_{2}\right\rangle>0$ and because of (17). As a consequence, the vectors b_{2}, b_{3} and $b_{2} \times b_{3}$ are linearly independent.

Therefore, \mathscr{L} contains every constant vector field of the type $\left(v, 0_{9}\right)$, with v in \mathbf{R}^{3}. It follows that

$$
W_{1}=\left(0_{3}, b_{2}, 0_{6}\right)
$$

is in \mathscr{L}. As a consequence of $(5),\left[\left[X_{0}, W_{1}\right], W_{1}\right]=2\left(0_{3}, J^{-1}\left(J b_{2} \times b_{2}\right), 0_{6}\right)$ lies in \mathscr{L} as well. Due to (21), we deduce that

$$
W_{2}=\left(0_{3}, J^{2} b_{2} \times J b_{2}, 0_{6}\right)
$$

belongs to \mathscr{L}. Let

$$
b_{4}=J^{2} b_{2} \times J b_{2}
$$

and let $W_{3}=\left[\left[X_{0}, W_{1}\right], W_{2}\right]$; we have $W_{3}=\left(0_{3}, b_{5}, 0_{6}\right)$ with $b_{5}=J^{-1}\left(J b_{4} \times b_{2}+J b_{2} \times b_{4}\right)$. We are left to prove that the vectors b_{2}, b_{4} and b_{5} are linearly independent. Let $D=\operatorname{det}\left(b_{2}, b_{4}, b_{5}\right)$ and notice that

$$
\begin{aligned}
D & =\operatorname{det}\left(b_{2}, b_{4}, J^{-1}\left(J b_{4} \times b_{2}+J b_{2} \times b_{4}\right)\right) \\
& =\left(\operatorname{det} J^{-1}\right) \operatorname{det}\left(J b_{2}, J b_{4}, J b_{4} \times b_{2}+J b_{2} \times b_{4}\right) \\
& =\left(\operatorname{det} J^{-1}\right)\left\langle J b_{2}, J b_{4} \times\left(J b_{4} \times b_{2}\right)+J b_{4} \times\left(J b_{2} \times b_{4}\right)\right\rangle \\
& =\left(\operatorname{det} J^{-1}\right)\left\langle J b_{2},\left\langle J b_{4}, b_{4}\right\rangle J b_{2}-\left\langle J b_{4}, J b_{2}\right\rangle b_{4}+\left\langle J b_{4}, b_{2}\right\rangle J b_{4}-\left\|J b_{4}\right\|^{2} b_{2}\right\rangle .
\end{aligned}
$$

Since $\left\langle J b_{4}, J b_{2}\right\rangle=\left\langle b_{4}, J^{2} b_{2}\right\rangle=0$ and $\left\langle J b_{4}, b_{2}\right\rangle=\left\langle b_{4}, J b_{2}\right\rangle=0$ we have

$$
\begin{aligned}
D & =\left(\operatorname{det} J^{-1}\right)\left\langle J b_{2},\left\langle J b_{4}, b_{4}\right\rangle J b_{2}-\left\|J b_{4}\right\|^{2} b_{2}\right\rangle \\
& =\left(\operatorname{det} J^{-1}\right)\left(\left\|J b_{2}\right\|^{2}\left\langle J b_{4}, b_{4}\right\rangle-\left\|J b_{4}\right\|^{2}\left\langle J b_{2}, b_{2}\right\rangle\right)
\end{aligned}
$$

Now, taking $C=J^{-1}$ and $b=J^{2} b_{2}$ in (19), we have $J b_{4}=(\operatorname{det} J)\left(J b_{2} \times b_{2}\right)$, from which we deduce

$$
\left\langle J b_{4}, b_{4}\right\rangle=(\operatorname{det} J)\left(\left\langle J b_{2}, b_{2}\right\rangle\left\langle J b_{2}, J^{2} b_{2}\right\rangle-\left\|J b_{2}\right\|^{4}\right)
$$

We also have

$$
\begin{aligned}
\left\|J b_{4}\right\|^{2} & =(\operatorname{det} J)^{2}\left\|J b_{2} \times b_{2}\right\|^{2} \\
& =(\operatorname{det} J)^{2}\left(\left\|J b_{2}\right\|^{2}\left\|b_{2}\right\|^{2}-\left\langle J b_{2}, b_{2}\right\rangle^{2}\right)
\end{aligned}
$$

Defining $\lambda=\left\|J b_{2}\right\|^{2} /\left\langle J b_{2}, b_{2}\right\rangle$ we get

$$
\begin{aligned}
D & =\left\|J b_{2}\right\|^{2}\left(\left\langle J b_{2}, b_{2}\right\rangle\left\langle J^{2} b_{2}, J b_{2}\right\rangle-\left\|J b_{2}\right\|^{4}\right)-(\operatorname{det} J)\left\langle J b_{2}, b_{2}\right\rangle\left(\left\|J b_{2}\right\|^{2}\left\|b_{2}\right\|^{2}-\left\langle J b_{2}, b_{2}\right\rangle^{2}\right) \\
& =\left\langle J b_{2}, b_{2}\right\rangle^{3}\left(\frac{\left\langle J^{3} b_{2}, b_{2}\right\rangle}{\left\langle J b_{2}, b_{2}\right\rangle} \lambda-\lambda^{3}-(\operatorname{det} J)\left(\frac{\left\|b_{2}\right\|^{2}}{\left\langle J b_{2}, b_{2}\right\rangle} \lambda-1\right)\right)
\end{aligned}
$$

Cayley-Hamilton theorem implies that

$$
J^{3}=a_{2} J^{2}+a_{1} J+(\operatorname{det} J) \operatorname{Id}, \quad a_{1}, a_{2} \in \mathbf{R}
$$

and thus

$$
\begin{aligned}
\frac{\left\langle J^{2} b_{2}, J b_{2}\right\rangle}{\left\langle J b_{2}, b_{2}\right\rangle} & =a_{2} \frac{\left\langle J^{2} b_{2}, b_{2}\right\rangle}{\left\langle J b_{2}, b_{2}\right\rangle}+a_{1}+(\operatorname{det} J) \frac{\left\|b_{2}\right\|^{2}}{\left\langle J b_{2}, b_{2}\right\rangle} \\
& =a_{2} \lambda+a_{1}+(\operatorname{det} J) \frac{\left\|b_{2}\right\|^{2}}{\left\langle J b_{2}, b_{2}\right\rangle}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
D & =\left\langle J b_{2}, b_{2}\right\rangle^{3}\left(\left(a_{2} \lambda+a_{1}+(\operatorname{det} J) \frac{\left\|b_{2}\right\|^{2}}{\left\langle J b_{2}, b_{2}\right\rangle}\right) \lambda-\lambda^{3}-(\operatorname{det} J)\left(\frac{\left\|b_{2}\right\|^{2}}{\left\langle J b_{2}, b_{2}\right\rangle} \lambda-1\right)\right) \\
& =\left\langle J b_{2}, b_{2}\right\rangle^{3}\left(-\lambda^{3}+a_{2} \lambda^{2}+a_{1} \lambda+\operatorname{det} J\right) \\
& =\left\langle J b_{2}, b_{2}\right\rangle^{3} \operatorname{det}(J-\lambda I d)
\end{aligned}
$$

which is different from zero because of (18).

5.2 Generic controllability in the case $m=3$

The aim of this section is to prove the genericity of the controllability of (2) in the case $m=3$. Let us introduce the notation

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

with each $A_{i j}$ belonging to $\mathscr{M}_{3 \times 3}$.
Proposition 5.3. Let $i=0$ or $i=1$. There exists an open and dense set of triples (A, B, J) in Ξ_{i}^{3} such that system (2) is controllable. More precisely, if B_{2} and $\tilde{A}_{11}+\tilde{A}_{11}^{\mathrm{T}}$ are invertible with $\tilde{A}_{11}=A_{11}-B_{1} B_{2}^{-1} A_{21}$ and if the sets of eigenvectors of $B_{1} B_{2}^{-1}$ and J are not equal, then system (2) is controllable.

Propositions 5.2 and 5.3 can be summed up in in the following statement, which follows from Proposition 4.1.
Corollary 5.4. For $m \geq 3$ and $i=0$ or $i=1$, there exists an open and dense set of triples (A, B, J) in Ξ_{i}^{3} such that system (2)-(4) is controllable.

The proof of Proposition 5.3 will be split in several steps. The following lemma allows us to study the controllability of (2) by investigating the controllability of an equivalent system in \mathbf{R}^{3} (instead of \mathbf{R}^{6}).
Lemma 5.5. Assume that B_{2} is invertible and define $\tilde{B}=B_{1} B_{2}^{-1}$ and $\tilde{A}_{11}=A_{11}-\tilde{B} A_{21}$. Then, the controllability of (2) is equivalent to the controllability of the system

$$
\begin{equation*}
\dot{x}=\tilde{A}_{11} x+v \times x+\left(\tilde{A}_{11} \tilde{B}+A_{12}-\tilde{B} A_{22}\right) v+v \times \tilde{B} v-\tilde{B} J^{-1}(J v \times v), \quad x \in \mathbf{R}^{3}, \tag{22}
\end{equation*}
$$

with the control v taking values in \mathbf{R}^{3}.
Proof. Suppose that system (2) is controllable. Let $x=\xi-\tilde{B} \omega$ and rewrite system (2) as

$$
\left\{\begin{array}{l}
\dot{x}=\tilde{A}_{11} x+\omega \times x+\left(\tilde{A}_{11} \tilde{B}+A_{12}-\tilde{B} A_{22}\right) \omega+\omega \times \tilde{B} \omega-\tilde{B} J^{-1}(J \omega \times \omega), \\
\dot{\omega}=A_{12} x+\left(A_{12} \tilde{B}+A_{22}\right) \omega+J^{-1}(J \omega \times \omega)+B_{2} u .
\end{array}\right.
$$

Given two points $\left(x_{0}, \omega_{0}\right)$ and $\left(x_{1}, \omega_{1}\right)$ in \mathbf{R}^{6}, there exists a control $u:[0, T] \rightarrow \mathbf{R}^{3}$ that steers $\left(x_{0}, \omega_{0}\right)$ to $\left(x_{1}, \omega_{1}\right)$. Thus, denoting by $(x(\cdot), \omega(\cdot))$ the corresponding trajectory, the control $v(t)=$ $\omega(t)$ steers system (22) from x_{0} to x_{1}.

Conversely, let system (22) be controllable and fix two pairs (ξ_{0}, ω_{0}) and $\left(\xi_{1}, \omega_{1}\right)$ in \mathbf{R}^{6}. Notice that (22) can be controlled by smooth controls $v:[0, T] \rightarrow \mathbf{R}^{3}$ satisfying

$$
\begin{equation*}
v(0)=\omega_{0}, \quad v(T)=\omega_{1} . \tag{23}
\end{equation*}
$$

(The result follows from the controllability of (22) and the density of $\left\{v \in \mathcal{C}^{\infty}\left([0, T], \mathbf{R}^{3}\right) \mid v(0)=\right.$ $\left.\omega_{0}, v(T)=\omega_{1}\right\}$ in $L^{\infty}(0, T)$ with respect to the L^{1}-norm. The proof can be easily adapted from [6] and [11, Theorem 4, p. 110].)

Therefore, if $v \in \mathcal{C}^{\infty}\left([0, T], \mathbf{R}^{3}\right)$ satisfies (23) and steers (22) from $\xi_{0}-\tilde{B} \omega_{0}$ to $\xi_{1}-\tilde{B} \omega_{1}$, then

$$
u(t)=B_{2}^{-1}\left(\dot{v}(t)-A_{12} x(t)-\left(A_{12} \tilde{B}+A_{22}\right) v(t)-J^{-1}(J v(t) \times v(t))\right)
$$

steers (2) from $\left(\xi_{0}, \omega_{0}\right)$ to $\left(\xi_{1}, \omega_{1}\right)$.
The following lemma establishes the controllability of system (22) in a first case.
Lemma 5.6. Assume that the matrix $\tilde{A}_{11}+\tilde{A}_{11}^{\mathrm{T}}$ has two nonzero eigenvalues with opposite signs. Then there exists an open and dense subset O of $\left\{(B, J) \in \mathscr{M}_{6 \times 3} \times \mathscr{M}_{3 \times 3} \mid J=J^{\mathrm{T}}>0\right\}$ such that system (22) is controllable if $(B, J) \in O$. More precisely, if B_{2} is invertible and if the sets of eigenvectors of $B_{1} B_{2}^{-1}$ and J are not equal, then system (22) is controllable.

For the proof of this lemma we shall use the following result, proven in [12], about the controllability of a family of affine vector fields in \mathbf{R}^{n}. An affine vector field X is a mapping from \mathbf{R}^{n} to \mathbf{R}^{n} of the form $X: x \mapsto C x+c$ where $C \in \mathscr{M}_{n \times n}$ and c is a constant vector in \mathbf{R}^{n}; the linear part of X, denoted by $\Lambda(X)$, is the linear vector field $x \mapsto C x$. If \mathscr{F} is a family of affine vector fields, we denote by $\Lambda(\mathscr{F})$ the set of linear parts of the vector fields in \mathscr{F} and we say that \mathscr{F} has no fixed point if there does not exist a point $x_{0} \in \mathbf{R}^{n}$ such that $X\left(x_{0}\right)=0$ for every $X \in \mathscr{F}$.
Theorem 5.7 (Jurdjevic and Sallet). Let \mathscr{F} be a family of affine vector fields given on \mathbf{R}^{n}. Assume that \mathscr{F} has no fixed point. If $\Lambda(\mathscr{F})$ is controllable on $\mathbf{R}^{n} \backslash\{0\}$ then \mathscr{F} is controllable on \mathbf{R}^{n}.

Proof of Lemma 5.6. From Lemma 5.5, we know that it is sufficient to prove the controllability of the system defined by the family of affine vector fields $\mathscr{F}=\left\{C(v) x+c(v) \mid v \in \mathbf{R}^{3}\right\}$ where

$$
C(v)=\tilde{A}_{11}+S(v), \quad c(v)=\left(\tilde{A}_{11} \tilde{B}+A_{12}-\tilde{B} A_{22}\right) v+v \times \tilde{B} v-\tilde{B} J^{-1}(J v \times v) .
$$

Because of the unboundedness of the parameter v, in order to check the controllability of $\Lambda(\mathscr{F})$ on $\mathbf{R}^{3} \backslash\{0\}$ it is enough to prove it for the family of linear vector fields $\mathscr{G}=\left\{\tilde{A}_{11}+S\left(v_{0}\right), S(v) \mid v \in \mathbf{R}^{3}\right\}$, where v_{0} is a fixed vector chosen in such a way that the matrix $\tilde{A}_{11}+S\left(v_{0}\right)$ is symmetric.

The trajectories of the vector field $S(v)$ are circles contained in planes orthogonal to v and whose centers are at the intersections of these planes with the line $\mathbf{R} v$. Let $x \in \mathbf{R}^{3} \backslash\{0\}$; thanks to the vector fields $S(v)$, the attainable set from x for \mathscr{G} contains the sphere of center 0_{3} passing through x. Now, as $\tilde{A}_{11}+S\left(v_{0}\right)$ has two eigenvalues with opposite sign, we can move (thanks to this vector field) along a direction towards the origin and along an half-line exiting the sphere and going to infinity. Therefore, using again the fact that the family $\left\{S(v) \mid v \in \mathbf{R}^{3}\right\}$ is transitive on every sphere, we proved that \mathscr{G}, and thus $\Lambda(\mathscr{F})$, is controllable on $\mathbf{R}^{3} \backslash\{0\}$.

Assume now that we can find a fixed point, denoted by x_{0}, which is common to all the vector fields in \mathscr{F}. For every vector $v \in \mathbf{R}^{3}$, we have

$$
C(v) x_{0}+c(v)=C(-v) x_{0}+c(-v)=0_{3}
$$

from which we deduce

$$
\begin{equation*}
\tilde{A}_{11} x_{0}+v \times \tilde{B} v-\tilde{B} J^{-1}(J v \times v)=0 . \tag{24}
\end{equation*}
$$

Taking $v=0_{3}$ gives $\tilde{A}_{11} x_{0}=0_{3}$ and therefore (24) cannot be identically satisfied if the sets of eigenvectors of \tilde{B} and J are not equal.

We are left to deal with the case where the eigenvalues of the symmetric part of \tilde{A}_{11} are all positive or all negative. Although in this case the linear part of the family \mathscr{F} is not controllable on $\mathbf{R}^{3} \backslash\{0\}$, we can nevertheless adapt the method introduced in [12] in order to prove the controllability of (22).

Lemma 5.8. Assume that the matrix $\tilde{A}_{11}+\tilde{A}_{11}^{\mathrm{T}}$ is invertible and that its eigenvalues have all the same sign. Then there exists an open and dense subset O of $\left\{(B, J) \in \mathscr{M}_{6 \times 3} \times \mathscr{M}_{3 \times 3} \mid J=J^{\mathrm{T}}>0\right\}$ such that system (22) is controllable if $(B, J) \in O$. More precisely, if B_{2} is invertible and if the sets of eigenvectors of \tilde{B} and J are not equal, then system (22) is controllable.

Notice that, together with Lemma 5.6, Lemma 5.8 concludes the proof of Proposition 5.3. In order to show Lemma 5.8 we need some definitions and have to prove some intermediate results.

Let \mathscr{F} and $\Lambda(\mathscr{F})$ be defined as above. When the eigenvalues of A^{s} are of the same sign, the set $\mathcal{A}(x, \Lambda(\mathscr{F}))$ is easy to describe:

$$
\mathcal{A}(x, \Lambda(\mathscr{F}))= \begin{cases}\{x\} \cup\left\{y \in \mathbf{R}^{3} \mid 0<\|y\|<\|x\|\right\} & \text { if } A^{s}<0, \\ \{x\} \cup\left\{y \in \mathbf{R}^{3} \mid\|y\|>\|x\|\right\} & \text { if } A^{s}>0 .\end{cases}
$$

In the sequel, we shall need the notion of normal accessibility, which is recalled below.
Definition 5.9. Let \mathscr{V} be a family of complete vector fields on a manifold M. The point y is said to be normally \mathscr{V}-accessible from x if there exist X^{1}, \ldots, X^{p} in \mathscr{V} and $t_{1}, \ldots, t_{p}>0$ such that

$$
y=e^{t_{1} X^{1}} \circ \cdots \circ e^{t_{p} X^{p}}(x)
$$

and the mapping

$$
\left(\tau_{1}, \ldots, \tau_{p}\right) \longmapsto e^{\tau_{1} X^{1}} \circ \cdots \circ e^{\tau_{p} X^{p}}(x),
$$

defined in a neighborhood of $\left(t_{1}, \ldots, t_{p}\right)$, is of rank equal to $\operatorname{dim} M$ at $\left(t_{1}, \ldots, t_{p}\right)$.
In [12] the authors exploit the fact that if a family of vector fields is controllable, then every point y is normally accessible from every point x. As the family $\Lambda(\mathscr{F})$ is not controllable on $\mathbf{R}^{3} \backslash\{0\}$, we are lead to prove directly the following normal accessibility property.
Lemma 5.10. Assume that the eigenvalues of $\tilde{A}_{11}+\tilde{A}_{11}^{T}$ have all the same sign. Then we can extract from \mathscr{F} a finite family \mathscr{F}^{0} such that there exists a sphere of center 0_{3} and radius r of points normally $\Lambda\left(\mathscr{F}^{0}\right)$-accessible from every point of the unit sphere.

Proof. Let $v_{0} \in \mathbf{R}^{3}$ be such that the matrix $A^{s}=\tilde{A}_{11}+S\left(v_{0}\right)$ is proportional to $\tilde{A}_{11}+\tilde{A}_{11}^{\mathrm{T}}$. Let, moreover, w_{1} be an eigenvector of A^{s} and take $w_{2}, w_{3} \in \mathbf{R}^{3}$ such that the family $\left(w_{1}, w_{2}, w_{3}\right)$ is an orthogonal basis of \mathbf{R}^{3}. Consider now the family

$$
\Lambda\left(\mathscr{F}^{0}\right)=\left\{A^{s}, A^{s}+k_{2} S\left(w_{2}\right), A^{s}+k_{3} S\left(w_{3}\right)\right\}
$$

extracted from $\Lambda(\mathscr{F})$. The quantities k_{2} and k_{3} can be chosen in such a way that the two last matrices in $\Lambda\left(\mathscr{F}^{0}\right)$ have a pair of non-real eigenvalues. By projecting the vector fields $A^{s}+k_{2} S\left(w_{2}\right)$ and $A^{s}+k_{3} S\left(w_{3}\right)$ on the unit sphere, it is easy to see that the family $\Lambda\left(\mathscr{F}^{0}\right)$ is transitive on the directions, that is, from any half-line starting from the origin, one can reach any other half-line. Moreover, thanks to the eigendirection w_{1} of the vector field A^{s} we can go as far as we want (case $A^{s}>0$) or as close as we want to the origin (case $A^{s}<0$). Hence, for every $x \in \mathbf{R}^{3} \backslash\left\{0_{3}\right\}$, $\mathcal{A}\left(x, \Lambda\left(\mathscr{F}^{0}\right)\right)$ contains a set of the form $\mathbf{R}^{3} \backslash B(0, r)\left(\right.$ case $\left.A^{s}>0\right)$ or $B(0, r) \backslash\left\{0_{3}\right\}\left(\right.$ case $\left.A^{s}<0\right)$. The interior of $\mathcal{A}\left(x, \Lambda\left(\mathscr{F}^{0}\right)\right)$ being nonempty, there exists at least one point, denoted by y, that can be normally $\Lambda\left(\mathscr{F}^{0}\right)$-accessed from x (see [18]). Notice that since y is normally $\Lambda\left(\mathscr{F}^{0}\right)$-accessible from x, then y is also normally $\Lambda\left(\mathscr{F}^{0}\right)$-accessible from every point in a (sufficiently small) neighborhood of x. Moreover, all the points in $\mathcal{A}\left(y, \Lambda\left(\mathscr{F}^{0}\right)\right)$ are normally $\Lambda\left(\mathscr{F}^{0}\right)$-accessible from x.

We conclude by using the compactness of the unit sphere: for every $x \in S^{2}$, there exists a neighborhood V_{x} of x and a set $\mathbf{R}^{3} \backslash B\left(0, r_{x}\right)$ (case $A^{s}>0$) or $B\left(0, r_{x}\right) \backslash\left\{0_{3}\right\}$ (case $A^{s}<0$) whose points are normally $\Lambda\left(\mathscr{F}^{0}\right)$-accessible from every point of V_{x}. As we can include the unit sphere in a finite union of neighborhoods V_{x}, we can claim the existence of a sphere of radius r whose points are normally $\Lambda\left(\mathscr{F}^{0}\right)$-accessible from every point of the unit sphere.

The following lemma guarantees the unboundedness of the sets $\mathcal{A}(x, \mathscr{F})$ and $\mathcal{A}(x,-\mathscr{F})$.
Lemma 5.11. If B_{2} is invertible and if the sets of eigenvectors of \tilde{B} and J are not equal, then for every $x \in \mathbf{R}^{3}$ both sets $\mathcal{A}(x, \mathscr{F})$ and $\mathcal{A}(x,-\mathscr{F})$ are unbounded.
Proof. Take $v \in \mathbf{R}^{3}$ such that $q(v)=v \times \tilde{B} v-\tilde{B} J^{-1}(J v \times v) \neq 0_{3}$; this is possible since J and \tilde{B} have different sets of eigenvectors. For every $\alpha \in \mathbf{R}$ the vector field $x \mapsto C(\alpha v) x+c(\alpha v)$ is in \mathscr{F} and

$$
\lim _{\alpha \rightarrow \infty} \frac{C(\alpha v) x+c(\alpha v)}{\alpha^{2}}=q(v) .
$$

This proves that, given a time $T>0$, the solution of $\dot{x}=C(\alpha v) x+c(\alpha v)$ on the interval $\left[-T \alpha^{-2}, T \alpha^{-2}\right]$ is as close as we want to the solution of $\dot{x}=q(v)$ on $[-T, T]$ (with the same initial condition) provided that α is large enough. Now, the solution of $\dot{x}=q(v), x(0)=x_{0}$, leaves any fixed bounded set both in time T and in time $-T$, provided that T is large enough.

We consider now, as in [12], the family $\left\{h_{\lambda, w} \mid \lambda>0, w \in \mathbf{R}^{n}\right\}$ of affine diffeomorphisms of \mathbf{R}^{n} defined by $h_{\lambda, w}(x)=w+\lambda(x-w)$. An easy computation shows that, for every $X \in \mathscr{F}$,

$$
\left(h_{\lambda, w_{*}} X\right)(x)=\Lambda(X)(x-w)+\lambda X(w)
$$

and in particular

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0}\left(h_{\lambda, w_{*}} X\right)(x)=\Lambda(X)(x-w) \tag{25}
\end{equation*}
$$

Denote by $\mathscr{F}_{\lambda, w}$ the image of the family \mathscr{F} by $h_{\lambda, w_{*}}$, that is, the transformation of \mathscr{F} under the change of coordinates $h_{\lambda, w}$.
Proof of Lemma 5.8. Let $\Lambda\left(\mathscr{F}^{0}\right)$ and r be as in the statement of Lemma 5.10. Consider the finite family $\Lambda\left(\mathscr{F}_{w}^{0}\right)=\left\{\Lambda(X)(x-w) \mid X \in \mathscr{F}^{0}\right\}$ and notice that each point of the sphere of center w and radius r is normally $\Lambda\left(\mathscr{F}_{w}^{0}\right)$-accessible from every point of the sphere of center w and radius 1 . Let $\mathscr{F}_{\lambda, w}=\left\{h_{\lambda, w_{*}} X \mid X \in \mathscr{F}\right\}$. Thanks to formula (25) we can assert that, if λ is chosen sufficiently small, the sphere of center w and radius r is contained in the reachable set for $\mathscr{F}_{\lambda, w}$ from every point of the sphere of center w and radius 1 (see [18, Lemma 3.2]). Fix such a $\lambda>0$.

Given w in \mathbf{R}^{3} we claim that $\mathcal{A}(w, \mathscr{F})$ contains a neighborhood of w. Indeed, since the sets $\mathcal{A}(x, \mathscr{F})$ and $\mathcal{A}(x,-\mathscr{F})$ are unbounded, the same is true for the sets $\mathcal{A}\left(x, \mathscr{F}_{\lambda, w}\right)$ and $\mathcal{A}\left(x,-\mathscr{F}_{\lambda, w}\right)$, for every $x \in \mathbf{R}^{3}$. This implies in particular that there exists $y \in \mathcal{A}\left(w, \mathscr{F}_{\lambda, w}\right)$ such that $\|y-w\|=1$. Let $\rho<r$ and fix $z \in B(w, \rho)$. Since $\mathcal{A}\left(z,-\mathscr{F}_{\lambda, w}\right)$ is unbounded, there exists $z^{\prime} \in \mathcal{A}\left(z,-\mathscr{F}_{\lambda, w}\right)$ such that $\left\|z^{\prime}-w\right\|=r$. Since from every point of the sphere of center w and radius 1 , we can reach any point of the sphere of center w and radius r, the point z^{\prime} is reachable from y by the family $\mathscr{F}_{\lambda, w}$. Finally, every point $z \in B(w, \rho)$ belongs to $\mathcal{A}\left(w, \mathscr{F}_{\lambda, w}\right)$ (see Figure 1). Since $\mathscr{F}_{\lambda, w}$ is the transformation of \mathscr{F} by a diffeomorphism preserving w, we deduce that $\mathcal{A}(w, \mathscr{F})$ contains a neighborhood of w. Therefore, every attainable set $\mathcal{A}(x, \mathscr{F})$ is open.

Since the control system defined by $-\mathscr{F}$ has the same form as that defined by \mathscr{F} and verifies the hypotheses of both Lemmas 5.10 and 5.11, the reasoning above proves also that every attainable set $\mathcal{A}(x,-\mathscr{F})$ is open. Take now y in the closure of $\mathcal{A}(x, \mathscr{F})$. The set $\mathcal{A}(y,-\mathscr{F})$ being open, there exists $z \in \mathcal{A}(y,-\mathscr{F}) \cap \mathcal{A}(x, \mathscr{F})$ which proves that y is reachable from x by the family \mathscr{F}. Every attainable set $\mathcal{A}(x, \mathscr{F})$ is therefore both open and closed; thus it is equal to \mathbf{R}^{3}.

Figure 1: z belongs to $\mathcal{A}\left(w, \mathscr{F}_{\lambda, w}\right)$ (the case $r<1$).

5.3 Generic controllability: physical interpretation

The scope of this section is to provide a better physical insight of Theorem 5.1. More precisely, we want to check that for $m \geq 3$ there exists an open and dense set in the (suitably defined) space of microscopic organisms modeled here such that the corresponding control system (2)-(4) is controllable.

The space of organisms, denoted by $\Sigma^{(m)}$, will be identified with the set of pairs (S, Ψ), where $S \subset \mathbf{R}^{3}$ is open, connected, bounded, and of class \mathcal{C}^{2}, while Ψ is the m-uple of functions in $\mathcal{C}^{2}\left(\partial S, \mathbf{R}^{3}\right)$ determining the action of the controls (see Section 3). The topology on $\Sigma^{(m)}$ can be defined assigning the basis of open subsets defined by

$$
\begin{aligned}
\mathscr{N}_{\varepsilon}(S, \Psi)=\{ & ((\operatorname{Id}+v)(S), \Phi) \mid v \in W^{3, \infty}\left(S, \mathbf{R}^{3}\right), \Phi \in\left(\mathcal{C}^{2}\left(\partial S, \mathbf{R}^{3}\right)\right)^{m}, \\
& \left.\|v\|_{3, \infty}<\varepsilon,\|\Phi \circ(\operatorname{Id}+v)-\Psi\|_{\mathcal{C}^{2}(S)}<\varepsilon\right\}
\end{aligned}
$$

for all $\varepsilon \in(0,1 / 2)$ and all $(S, \Psi) \in \Sigma^{(m)}$ (see [17] or, for a different approach, [8]). Similarly, let $\bar{\Sigma}$ be the topological space of \mathcal{C}^{2} domains.
Theorem 5.12. Assume that $m \geq 3$. There exists an open and dense set \mathcal{O} in $\Sigma^{(m)}$ such that (2)-(4) is controllable if (S, Ψ) belongs to \mathcal{O}. Moreover, there exists an open and dense set \mathcal{P} in $\bar{\Sigma}$ such that $\mathcal{O} \cap\left(\{S\} \times\left(\mathcal{C}^{2}\left(\partial S, \mathbf{R}^{3}\right)\right)^{m}\right)$ is dense in $\{S\} \times\left(\mathcal{C}^{2}\left(\partial S, \mathbf{R}^{3}\right)\right)^{m}$ for every S in \mathcal{P}.

Proof. Denote by $F(S, \Psi)$ the triple (A, B, J) associated to an element (S, Ψ) of Σ through (6), (8) and (10). We want to show that each condition appearing in the statement of Propositions 5.2 and 5.3 is satisfied by the elements of the image through F of an open and dense subset of Σ.

Notice that the map $\Psi \mapsto B$ is onto when considered from $\left(\mathcal{C}^{2}\left(\partial S, \mathbf{R}^{3}\right)\right)^{m}$ to $\mathscr{M}_{6 \times m}$ (S fixed). Indeed, according to [16, Lemma 4.1], $g^{(1)}, g^{(2)}, g^{(3)}, G^{(1)}, G^{(2)}, G^{(3)}$ are linearly independent in $L^{2}\left(\partial S, \mathbf{R}^{3}\right)$. Therefore, since the orthogonal to a smooth function in $\mathcal{C}^{2}\left(\partial S, \mathbf{R}^{3}\right)$ with respect to the L^{2}-product has infinite codimension, the relation (10) defines a surjective map. In particular, the pre-image of an open and dense set in $\mathscr{M}_{6 \times m}$ is open and dense in $\left(\mathcal{C}^{2}\left(\partial S, \mathbf{R}^{3}\right)\right)^{m}$.

Let us now take into account the dependence on S. It is easy to check by using axially symmetric perturbations that the map from the space of \mathcal{C}^{2} bounded sets to \mathbf{R}^{3} that associates to S the spectrum of J-with eigenvalues repeated according to their multiplicity- is a submersion (i.e., its differential is onto at every point). In particular, the eigenvalues of J are simple for an open and dense subset of the space of bounded \mathcal{C}^{2} subsets of \mathbf{R}^{3}, independently of Ψ. If b_{2} does not belong to any of the three planes generated by pairs of eigenvectors of J, then (17) is automatically verified.

Similarly, one notices that all the assumptions appearing in the statements of Propositions 5.2 and 5.3 can be represented in the form $G(S, \Psi) \in O$ where O is an open and dense subset of a finite-dimensional vector space V, the $\operatorname{map} G: \Sigma \rightarrow V$ is continuous and for S in an open and dense subset of $\bar{\Sigma}$ we have that $G(S, \Psi)$ belongs to \mathcal{O} if B belongs to an open and dense subset of $\mathscr{M}_{6 \times m}$ (possibly depending on S). Therefore, $G^{-1}(\mathcal{O})$ is open and dense in Σ.

Remark 5.13. As recalled above it follows from [16] that, once S is fixed, the linear map associating to the m-uple Ψ the matrix B through (10) is onto as a map from $\left(L^{2}\left(\partial S, \mathbf{R}^{3}\right)\right)^{m}$ to $\mathscr{M}_{6 \times m}$. Thanks to this result, and to the remark that (2)-(4) is controllable if $m=6$ and B is invertible, the authors prove that for $m \geq 6$, for an open and dense subset of m-uples in $\mathcal{C}^{2}\left(\partial S, \mathbf{R}^{3}\right)$ (S fixed) the corresponding system is controllable (see [16, Theorem 1.1]). In the language adopted here the result of [16] says that, for every fixed S and for $m \geq 6$, controllability is a generic property with respect to Ψ.

6 Swimming spherical microscopic organisms

When the microscopic organism happens to be spherical, the equations presented in the previous sections have a very special form. As described in [16], general results in hydrodynamics (see, e.g., [10]) show that the matrix A corresponding to a spherical organism is diagonal and, more precisely, of the form

$$
A=\left(\begin{array}{cc}
-\rho_{1} \mathrm{Id} & 0 \\
0 & -\rho_{2} \mathrm{Id}
\end{array}\right)
$$

with

$$
\begin{equation*}
\rho_{2}>\rho_{1}>0 \tag{26}
\end{equation*}
$$

Moreover, since the inertia matrix J is proportional to the identity (assuming that the mass distribution is homogenous inside S), the nonlinear term E appearing in (2) is given by

$$
E(z)=\binom{\omega \times \xi}{0_{3}}
$$

Notice that in the spherical case ω satisfies a well-defined control subsystem, ie,

$$
\begin{equation*}
\dot{\omega}=-\rho_{2} \omega+B_{2} u \tag{27}
\end{equation*}
$$

We are going to prove the following result.
Theorem 6.1. Let S be a ball and assume that the mass distribution of S is homogenous. Then the control system (2)-(4) is controllable if and only if the rank of B_{2} is equal to three and B_{1} is different from $0_{3 \times m}$.

The easier part of the proof is to show that the controllability of (2)-(4) implies that

$$
\begin{equation*}
\operatorname{rank} B_{2}=3, \quad B_{1} \neq 0_{3 \times m} \tag{28}
\end{equation*}
$$

Indeed, the linear control system (27) is, as it is well known, controllable if and only if rank $B_{2}=3$. Moreover, if $B_{1}=0_{3 \times m}$, then the space $\left\{0_{3}\right\} \times \mathbf{R}^{3}$ is invariant for the dynamics of the control system (2), which is therefore non-controllable.

The converse implication will be proven in several steps.

6.1 The case where B_{1} and B_{2} are linearly independent

In this section we study the case where the organism is spherical and

$$
\begin{equation*}
\operatorname{rank} B_{2}=3, \quad B_{1} \notin \operatorname{span}\left(B_{2}\right) \tag{29}
\end{equation*}
$$

Assumption (29) guarantees that there exists an m-by- 3 matrix Γ such that

$$
B_{1} \Gamma v=\sum_{i=1}^{3} v_{i} c_{i}, \quad B_{2} \Gamma v=\sum_{i=1}^{3} v_{i} d_{i}
$$

with $c_{1} \times d_{1} \neq 0_{3}$ and $\left\{d_{1}, d_{2}, d_{3}\right\}$ an orthonormal basis of \mathbf{R}^{3}.
Notice now that for every $Q \in S O(3)$, the change of coordinates $\xi^{\prime}=Q \xi, \omega^{\prime}=Q \omega, \zeta^{\prime}=\zeta, R^{\prime}=$ $R Q^{-1}$ preserves the dynamics of (2)-(4). This is equivalent to say that, up to a change of coordinates, we can replace $\left(B_{1}, B_{2}\right)$ by $\left(Q B_{1}, Q B_{2}\right)$, for every choice of $Q \in S O(3)$. Choose Q such that $Q d_{i}=$ e_{i} for $i=1,2,3$ (where we recall that $\left(e_{i}\right)_{i=1,2,3}$ denotes the canonical basis in \mathbf{R}^{3}). The above transformations show that without loss of generality $m=3, B_{2}=\mathrm{Id}$, and the first column of B_{1} is not proportional to e_{1}.

Denote by b_{1}, b_{2}, b_{3} the columns of B_{1}. Accordingly, the controlled vector fields are the three constant vector fields $X_{i}=\left(b_{i}, e_{i}, 0_{6}\right), i=1,2,3$.
Lemma 6.2. If (29) holds then system (2)-(4) is Lie-bracket generating.
Proof. Applying (5) in the case $J=\mathrm{Id}$ we obtain that for every $v_{1}, v_{2} \in \mathbf{R}^{3}$ the constant vector field $V=\left(v_{1}, v_{2}, 0_{6}\right)$ satisfies

$$
\begin{equation*}
\left[\left[X_{0}, X_{i}\right], V\right]=\left(e_{i} \times v_{1}-b_{i} \times v_{2}, 0_{9}\right) \tag{30}
\end{equation*}
$$

In particular, taking $i=1$ and $V=X_{1}$ in (30), we deduce that $Z=\left(e_{1} \times b_{1}, 0_{9}\right)$ belongs to \mathscr{L}. Applying again (30) to $V=Z$ we get that, for $i=1,2,3, Z_{i}=\left(e_{i} \times\left(e_{1} \times b_{1}\right), 0_{9}\right)$ belongs to \mathscr{L}. Since Z, Z_{1}, Z_{2}, and Z_{3} span $\mathbf{R}^{3} \times\left\{0_{9}\right\}$, it follows that \mathscr{L} contains

$$
\operatorname{span}\left(X_{1}, X_{2}, X_{3}\right)+\mathbf{R}^{3} \times\left\{0_{9}\right\}=\mathbf{R}^{6} \times\left\{0_{6}\right\}
$$

As noticed in Remark 3.1 this proves the lemma.
The controllability of system (2) follows from Proposition 5.3: indeed, $\tilde{A}_{11}=\rho_{1} \mathrm{Id}$ is symmetric and invertible and hypothesis (29) implies that $B_{1}=B_{1} B_{2}^{-1}$ has not the same set of eigenvectors as $J=$ Id. Theorem 6.1 is therefore proven, because of Proposition 4.1, under the stronger assumption that (29) holds true.

6.2 The proportional case

In order to complete the proof of Theorem 6.1, we have to prove that system (2)-(4) is controllable when

$$
\begin{equation*}
\operatorname{rank} B_{2}=3, \quad B_{1}=\lambda B_{2}, \quad \lambda \neq 0 \tag{31}
\end{equation*}
$$

Using the same normalization argument as in the previous section, we can assume that $m=3$ and $B_{2}=$ Id. Moreover, we can take $\lambda=1$ by performing the change of coordinates $\xi^{\prime}=\xi / \lambda, \omega^{\prime}=$ $\omega, \zeta^{\prime}=\zeta / \lambda, R^{\prime}=R$. Therefore, without loss of generality, $X_{i}=\left(e_{i}, e_{i}, 0_{6}\right)$ for $i=1,2,3$.

Let us prove the Lie-bracket generating condition. We have

$$
\left[X_{0}, X_{i}\right]=\left(-\rho_{1} e_{i},-\rho_{2} e_{i}, R e_{i}, R S\left(e_{i}\right)\right)
$$

and

$$
\left[\left[X_{0}, X_{i}\right],\left[X_{0}, X_{j}\right]\right]=\left(0_{6}, 2 R\left(e_{j} \times e_{i}\right), R S\left(e_{j} \times e_{i}\right)\right)
$$

A further computation yields

$$
\left[\left[\left[X_{0}, X_{i}\right],\left[X_{0}, X_{j}\right]\right],\left[X_{0}, X_{k}\right]\right]=\left(0_{6}, 3 R\left(e_{k} \times\left(e_{j} \times e_{i}\right)\right), R S\left(e_{k} \times\left(e_{j} \times e_{i}\right)\right)\right)
$$

Therefore, the Lie algebra \mathscr{L} contains the following vector fields

$$
\left(\begin{array}{c}
e_{i} \\
e_{i} \\
0_{3} \\
0_{3}
\end{array}\right), \quad\left(\begin{array}{c}
-\rho_{1} e_{j} \\
-\rho_{2} e_{j} \\
R e_{j} \\
R S\left(e_{j}\right)
\end{array}\right), \quad\left(\begin{array}{c}
0_{3} \\
0_{3} \\
2 R e_{k} \\
R S\left(e_{k}\right)
\end{array}\right), \quad\left(\begin{array}{c}
0_{3} \\
0_{3} \\
3 R e_{l} \\
R S\left(e_{l}\right)
\end{array}\right)
$$

for $i, j, k, l=1,2,3$. As a consequence, \mathscr{L} contains also

$$
\left(\begin{array}{c}
\left(\rho_{2}-\rho_{1}\right) e_{i} \\
0_{3} \\
R e_{i} \\
R S\left(e_{i}\right)
\end{array}\right), \quad\left(\begin{array}{c}
0_{3} \\
\left(\rho_{1}-\rho_{2}\right) e_{j} \\
R e_{j} \\
R S\left(e_{j}\right)
\end{array}\right), \quad\left(\begin{array}{c}
0_{3} \\
0_{3} \\
R e_{k} \\
0_{3}
\end{array}\right), \quad\left(\begin{array}{c}
0_{3} \\
0_{3} \\
0_{3} \\
R S\left(e_{l}\right)
\end{array}\right)
$$

for $i, j, k, l=1,2,3$. These vector fields form a moving frame on the manifold $\mathbf{R}^{9} \times \mathrm{SO}(3)$ (since $\left.\rho_{1} \neq \rho_{2}\right)$.

In order to conclude the proof of Theorem 6.1 we need to show that (2) is controllable. Applying Lemma 5.5 this turns out to be equivalent to the controllability of the following system,

$$
\begin{equation*}
\dot{x}=-\rho_{1} x+v \times x+\left(\rho_{2}-\rho_{1}\right) v, \quad x \in \mathbf{R}^{3} \tag{32}
\end{equation*}
$$

with the control v taking values in \mathbf{R}^{3}. Decomposing the control as $v=w x+W$ with $w \in \mathbf{R}$ and W orthogonal to x, equation (32) rewrites as

$$
\dot{x}=\left(-\rho_{1}+\left(\rho_{2}-\rho_{1}\right) w\right) x+W \times x
$$

Clearly, choosing $W=0_{3}$ allows to move as desired along $\operatorname{span}(x)$, while the choice $w=\rho_{1} /\left(\rho_{2}-\rho_{1}\right)$ permits to attain the sphere of radius $\|x\|$ centered at the origin. The controllability of (2) is thus proven and the proof of Theorem 6.1 completed.

7 The case where the densities of the microscopic organism and of the fluid have the same order of magnitude

As pointed out in [16, Section 2], the assumption that the densities of the microscopic organism and of the fluid have the same order of magnitude leads to stronger simplifications than in the general case studied in the previous sections. In particular, according to the remarks of page 6 the control
system (2.18)-(2.27) presented in [16] reduces in this case to

$$
\begin{align*}
-\Delta v+\nabla p=0 & \text { on } F \times(0, T), \tag{33}\\
\operatorname{div} v=0 & \text { on } F \times(0, T), \tag{34}\\
v(y, t)=\xi(t)+\omega(t) \times y+\sum_{i=1}^{m} u_{i}(t) \psi_{i}(y) & \text { for }(y, t) \in \partial S \times(0, T), \tag{35}\\
\lim _{|y| \rightarrow \infty} v(y, t)=0 & \text { for } t \in(0, T), \tag{36}\\
\int_{\partial S} \sigma(v, p) n d s=0 & \text { on }(0, T), \tag{37}\\
\int_{\partial S} y \times \sigma(v, p) n d s=0 & \text { on }(0, T), \tag{38}\\
\dot{\zeta}=R \xi & \text { on }(0, T), \tag{39}\\
\dot{R}=R S(\omega) & \text { on }(0, T) \tag{40}
\end{align*}
$$

Physically, v represents the field of velocities of the fluid in F (the coordinates are attached to the body), p is the pressure, ξ and ω are the linear and angular velocities of the organism and finally ζ and R give its position and orientation with respect to a fixed frame. Recall that $\psi_{1}, \ldots, \psi_{m}$ are the functions characterizing the control actions and that σ is the Cauchy stress defined in (7).

Given a time-interval $[0, T]$ and a control $u \in L^{\infty}\left([0, T], \mathbf{R}^{m}\right)$ there exists a unique solution $(v, p, \xi, \omega, \zeta, R)$ of (33)-(40) satisfying

$$
\begin{gathered}
v \in H^{1}\left([0, T], L^{s}(F) \cap D^{1, r}(F) \cap D^{2, \theta}(F) \cap \mathcal{C}^{\infty}(F)\right), \\
\sup _{y \in F}(1+\|y\|)\|v(y, t)\|<\infty \quad \text { for almost every } t \in[0, T] \\
p \in H^{1}\left([0, T], L^{r}(F) \cap D^{1, \theta}(F) \cap \mathcal{C}^{\infty}(F)\right), \\
\xi \in H^{1}\left([0, T], \mathbf{R}^{3}\right), \omega \in H^{1}\left([0, T], \mathbf{R}^{3}\right), \zeta \in \mathcal{C}^{1}\left([0, T], \mathbf{R}^{3}\right), R \in \mathcal{C}^{1}([0, T], \operatorname{SO}(3)),
\end{gathered}
$$

for $s \in(3, \infty], r \in(3 / 2, \infty]$ and $\theta \in(1, \infty)$ (see $[9,16])$.
The finite-dimensional reduction of system (33)-(40) can be obtained following the procedure proposed in [16]. To this extent, as in Section 3, define the fundamental solutions $\left(h^{(i)}, p^{(i)}\right)$ and $\left(H^{(i)}, P^{(i)}\right)$ of the Stokes system and associate to them the matrices $\Theta^{k}, \Upsilon^{k}, \kappa, \mathcal{K}$. Let L be the $n \times m$ matrix

$$
L=-\left(\begin{array}{cc}
\Theta^{1} & \Theta^{2} \\
\Upsilon^{1} & \Upsilon^{2}
\end{array}\right)^{-1}\binom{\kappa}{\mathcal{K}}
$$

Lemma 7.1. For almost every $t \in(0, T)$ we have

$$
\binom{\xi(t)}{\omega(t)}=L u(t)
$$

Proof. According to [16, Lemma 3.4] we have

$$
\begin{gathered}
\int_{\partial S} g^{(i)} \cdot v d s=\left[\int_{\partial S} \sigma(v, p) n d s\right]_{i}=0 \\
\int_{\partial S} G^{(i)} \cdot v d s=\left[\int_{\partial S} y \times \sigma(v, p) n d s\right]_{i}=0
\end{gathered}
$$

where the equalities in the right-hand sides follow from (37) and (38).

On the other hand, for almost every $t \in(0, T)$,

$$
\int_{\partial S} g^{(i)} \cdot v d s=\int_{\partial S} g^{(i)} \cdot\left(\xi+\omega \times y+\sum_{j=1}^{m} u_{j} \psi_{j}\right) d s=-\left(\Theta^{1} \xi+\Theta^{2} \omega+\kappa u\right)_{i}
$$

and, similarly

$$
\int_{\partial S} G^{(i)} \cdot v d s=-\left(\Upsilon^{1} \xi+\Upsilon^{2} \omega+\mathcal{K} u\right)_{i}
$$

Therefore,

$$
\binom{\kappa}{\mathcal{K}} u=-\left(\begin{array}{cc}
\Theta^{1} & \Theta^{2} \\
\Upsilon^{1} & \Upsilon^{2}
\end{array}\right)\binom{\xi}{\omega}
$$

which proves the lemma.
System (33)-(40) therefore reduces to the control system

$$
\left\{\begin{align*}
\dot{\zeta} & =R L^{1} u, \tag{41}\\
\dot{R} & =R S\left(L^{2} u\right),
\end{align*} \quad u \in \mathbf{R}^{m}\right.
$$

where $L^{1}, L^{2} \in \mathscr{M}_{3 \times m}$ are such that

$$
L=\binom{L^{1}}{L^{2}}
$$

By homogeneity, since the set of admissible controls is the whole \mathbf{R}^{m}, the controllability in arbitrary small time of system (41) is equivalent to the controllability of the control system whose admissible velocities are given by the family of vector fields $\mathcal{F}=\left\{ \pm X_{i} \mid 1 \leq i \leq m\right\}$ defined by

$$
\begin{equation*}
X_{i}(\zeta, R)=\left(R b_{i}, R S\left(c_{i}\right)\right) \tag{42}
\end{equation*}
$$

where the b_{i} 's denote the columns of L^{1} and the c_{i} 's those of L^{2}. Moreover, since \mathcal{F} is symmetrical, the controllability of this family is equivalent to the fact that the Lie algebra generated by \mathcal{F}, denoted by \mathscr{L}, is of rank 6 at every point of $\mathbf{R}^{3} \times \mathrm{SO}(3)$.

Theorem 7.2. The control system (41) is controllable in arbitrary small time if and only if one of the following conditions is satisfied:

1. $\operatorname{rank}\left(L^{2}\right) \geq 2$ and $\left(L^{1}\right)^{\mathrm{T}} L^{2}+\left(L^{2}\right)^{\mathrm{T}} L^{1} \neq 0_{m \times m}$;
2. $\operatorname{rank}\left(L^{2}\right)=2$ and $\operatorname{rank}(L) \geq 3$.

Proof. First of all notice that the Lie bracket between two vector fields of the form $Z_{i}(\zeta, R)=$ $\left(R v_{i}, R S\left(w_{i}\right)\right), i=1,2$, is given by

$$
\begin{equation*}
\left[Z_{1}, Z_{2}\right](\zeta, R)=\left(R\left(w_{1} \times v_{2}-w_{2} \times v_{1}\right), R S\left(w_{1} \times w_{2}\right)\right) \tag{43}
\end{equation*}
$$

Let us prove the "if" part of the theorem. Suppose that we can find in \mathscr{L} two vector fields Y_{1}, Y_{2} of the form

$$
Y_{i}(\zeta, R)=\left(R \beta_{i}, R S\left(\gamma_{i}\right)\right), \quad i=1,2
$$

such that the vectors γ_{1} and γ_{2} are linearly independent and that the inner product $\left\langle\beta_{1}, \gamma_{1}\right\rangle$ is nonzero. We prove here below that, in this case, the Lie algebra \mathscr{L} is of full rank at every point of $\mathbf{R}^{3} \times \mathrm{SO}(3)$. Then we show that both 1. and 2. guarantee that, without loss of generality, such Y_{1} and Y_{2} can be found.

Let $Y_{3}=\left[Y_{1}, Y_{2}\right]$ whose expression can be obtained using (43). Define the vector field W_{1} as the bracket between Y_{3} and Y_{1}. Applying again (43) we obtain that

$$
W_{1}(\zeta, R)=\left[Y_{3}, Y_{1}\right](\zeta, R)=\binom{R\left(2\left\langle\beta_{1}, \gamma_{1}\right\rangle \gamma_{2}-\left(\left\langle\beta_{1}, \gamma_{2}\right\rangle+\left\langle\beta_{2}, \gamma_{1}\right\rangle\right) \gamma_{1}-\left\langle\gamma_{1}, \gamma_{2}\right\rangle \beta_{1}+\left\|\gamma_{1}\right\|^{2} \beta_{2}\right)}{R S\left(-\left\langle\gamma_{1}, \gamma_{2}\right\rangle \gamma_{1}+\left\|\gamma_{1}\right\|^{2} \gamma_{2}\right)}
$$

Let W_{2} be the vector field obtained adding $\left\langle\gamma_{1}, \gamma_{2}\right\rangle Y_{1}-\left\|\gamma_{1}\right\|^{2} Y_{2}$ to W_{1}, ie,

$$
W_{2}(\zeta, R)=\binom{R\left(2\left\langle\beta_{1}, \gamma_{1}\right\rangle \gamma_{2}-\left(\left\langle\beta_{1}, \gamma_{2}\right\rangle+\left\langle\beta_{2}, \gamma_{1}\right\rangle\right) \gamma_{1}\right)}{0_{3}}
$$

Since W_{2} is in \mathscr{L}, then the vector field $Y_{4}=\left[W_{2}, Y_{1}\right]$ belongs to \mathscr{L} as well and we have that $Y_{4}(\zeta, R)=\left(R\left(2\left\langle\beta_{1}, \gamma_{1}\right\rangle \gamma_{1} \times \gamma_{2}\right), 0_{3}\right)$. Consider now the vector fields $Y_{5}=\left[Y_{4}, Y_{1}\right]$ and $Y_{6}=\left[Y_{4}, Y_{2}\right]$, both belonging to \mathscr{L}, and whose expressions are $Y_{5}(\zeta, R)=\left(R\left(2\left\langle\beta_{1}, \gamma_{1}\right\rangle \gamma_{1} \times\left(\gamma_{1} \times \gamma_{2}\right)\right), 0_{3}\right)$ and $Y_{6}(\zeta, R)=\left(R\left(2\left\langle\beta_{1}, \gamma_{1}\right\rangle \gamma_{2} \times\left(\gamma_{1} \times \gamma_{2}\right)\right), 0_{3}\right)$. Since each matrix R in $S O(3)$ is invertible, and because $\left\langle\beta_{1}, \gamma_{1}\right\rangle \neq 0$, the vector fields Y_{1}, \ldots, Y_{6} span $T_{(\zeta, R)} \mathbf{R}^{3} \times S O(3)$ at every $(\zeta, R) \in \mathbf{R}^{3} \times S O(3)$ if and only if the matrix

$$
\Delta=\left(\begin{array}{cccccc}
\beta_{1} & \beta_{2} & \gamma_{2} \times \beta_{1}-\gamma_{1} \times \beta_{2} & \gamma_{1} \times \gamma_{2} & \gamma_{1} \times\left(\gamma_{1} \times \gamma_{2}\right) & \gamma_{2} \times\left(\gamma_{1} \times \gamma_{2}\right) \\
\gamma_{1} & \gamma_{2} & \gamma_{2} \times c_{1} & 0_{3} & 0_{3} & 0_{3}
\end{array}\right)
$$

is full-rank. The non-degeneracy of Δ follows easily from the assumption that the vectors γ_{1} and γ_{2} are linearly independent.

We shall prove now that the hypotheses 1. and 2. imply the existence of two vector fields Y_{1} and Y_{2} as above.

Let $r=\operatorname{rank}\left(L^{2}\right)$. Notice that for every matrix $\Gamma \in G L(m)$ the reparamerization $u \rightarrow \Gamma u$ transforms the matrix $\left(L^{1}, L^{2}\right)$ into $\left(L^{1} \Gamma, L^{2} \Gamma\right)$. The condition $\left(L^{1}\right)^{\mathrm{T}} L^{2}+\left(L^{2}\right)^{\mathrm{T}} L^{1} \neq 0_{m \times m}$ is preserved by this transformation, since, $\left(L^{1} \Gamma\right)^{\mathrm{T}} L^{2} \Gamma+\left(L^{2} \Gamma\right)^{\mathrm{T}} L^{1} \Gamma=\Gamma^{T}\left(\left(L^{1}\right)^{\mathrm{T}} L^{2}+\left(L^{2}\right)^{\mathrm{T}} L^{1}\right) \Gamma$. Thus, without loss of generality, we can assume that $L^{2}=\left(L^{2,1} \mid 0_{3 \times(m-r)}\right)$ where $L^{2,1} \in \mathscr{M}_{3 \times r}$ is of rank r. Let us write L^{1} as $\left(L^{1,1} \mid L^{1,2}\right)$ where $L^{1,1} \in \mathscr{M}_{3 \times r}$ and $L^{1,2} \in \mathscr{M}_{3 \times(m-r)}$.

Suppose that 1. holds. If $\left(L^{1,1}\right)^{\mathrm{T}} L^{2,1}+\left(L^{2,1}\right)^{\mathrm{T}} L^{1,1} \neq 0_{r \times r}$, then we can find $1 \leq j_{1}, j_{2} \leq r$ such that $\left\langle b_{j_{1}}, c_{j_{1}}\right\rangle \neq 0$, or $\left\langle b_{j_{2}}, c_{j_{2}}\right\rangle \neq 0$, or $\left\langle b_{j_{1}}, c_{j_{2}}\right\rangle+\left\langle b_{j_{2}}, c_{j_{1}}\right\rangle \neq 0$. If $\left\langle b_{j_{1}}, c_{j_{1}}\right\rangle=\left\langle b_{j_{2}}, c_{j_{2}}\right\rangle=0$, then the inner product $\left\langle b_{j_{1}}+b_{j_{2}}, c_{j_{1}}+c_{j_{2}}\right\rangle=\left\langle b_{j_{1}}, c_{j_{2}}\right\rangle+\left\langle b_{j_{2}}, c_{j_{1}}\right\rangle$ is nonzero, and thus the vector fields $Y_{1}=X_{j_{1}}+X_{j_{2}}$ and $Y_{2}=X_{j_{2}}$ fulfill the required conditions. Otherwise, $\left(L^{2,1}\right)^{\mathrm{T}} L^{1,2} \neq 0_{r \times(m-r)}$ and we can fix $1 \leq j_{1}, j_{2} \leq r$ and $j_{3}>r$ such that $j_{1} \neq j_{2},\left\langle b_{j_{1}}, c_{j_{1}}\right\rangle=0$ and $\left\langle b_{j_{3}}, c_{j_{1}}\right\rangle \neq 0$. Then $Y_{1}=X_{j_{1}}+X_{j_{3}}$ and $Y_{2}=X_{j_{2}}$ fulfill the required conditions.

Assume now that 2. holds and 1. does not. Then c_{1} and c_{2} are linearly independent and

$$
\left\langle b_{1}, c_{1}\right\rangle=\left\langle b_{2}, c_{2}\right\rangle=\left\langle b_{1}, c_{2}\right\rangle+\left\langle b_{2}, c_{1}\right\rangle=0
$$

Moreover, there exists $j>r=2$ such that $b_{j} \neq 0_{3}$ and $\left\langle b_{j}, c_{1}\right\rangle=\left\langle b_{j}, c_{2}\right\rangle=0$. Therefore, there exists a real number $\alpha \neq 0$ such that $b_{3}=\alpha\left(c_{1} \times c_{2}\right)$. Then, according to (43),

$$
\left[X_{1}, X_{j}\right](\zeta, R)=\left(R\left(\alpha c_{1} \times\left(c_{1} \times c_{2}\right)\right), 0_{3}\right)
$$

As $\left\langle c_{2}, c_{1} \times\left(c_{1} \times c_{2}\right)\right\rangle \neq 0$ the vector fields $Y_{1}=X_{1}$ and $Y_{2}=X_{2}+\left[X_{1}, X_{j}\right]$ fulfill the required conditions.

Let us prove now the "only if" part of the statement. First notice that if $r \leq 1$ then there exists a vector $x_{0} \in \mathbf{R}^{3} \backslash\left\{0_{3}\right\}$ such that $L^{2} u \times x_{0}=0$ for every control u. Multiplying equation (41) by x_{0}, we get that $\dot{R} x_{0}=0$ and so $R(t) x_{0}=R(0) x_{0}$ for every time t. Therefore, system (41) is not controllable.

Assume now that $r=\operatorname{rank}(L)=2$ and $\left(L^{1}\right)^{\mathrm{T}} L^{2}+\left(L^{2}\right)^{\mathrm{T}} L^{1}=0_{m \times m}$. Let $Y=\left[X_{1}, X_{2}\right]$, whose expression, according to (43), is given by

$$
Y(\zeta, R)=\left(R\left(c_{1} \times b_{2}-c_{2} \times b_{1}\right), R S\left(c_{1} \times c_{2}\right)\right) .
$$

Since $\left\langle b_{i}, c_{i}\right\rangle=0$ for $i=1,2$ and $\left\langle b_{1}, c_{2}\right\rangle+\left\langle b_{2}, c_{1}\right\rangle=0$, we obtain that

$$
\begin{aligned}
{\left[Y, X_{1}\right] } & =-\left\langle c_{1}, c_{2}\right\rangle X_{1}+\left\|c_{1}\right\|^{2} X_{2} \\
{\left[Y, X_{2}\right] } & =-\left\|c_{2}\right\|^{2} X_{1}+\left\langle c_{1}, c_{2}\right\rangle X_{2}
\end{aligned}
$$

Therefore, the Lie algebra \mathscr{L}, which is generated by X_{1} and X_{2}, is equal to the linear space of vector fields spanned by X_{1}, X_{2} and Y and cannot be of full rank.

Let now $r=3$ and $\left(L^{1}\right)^{\mathrm{T}} L^{2}+\left(L^{2}\right)^{\mathrm{T}} L^{1}=0_{m \times m}$. The condition $\left(L^{2,1}\right)^{\mathrm{T}} L^{1,2}=0_{3 \times(m-3)}$ implies that the columns of $L^{1,2}$ are orthogonal to all the elements of a basis of \mathbf{R}^{3}. Therefore, $L^{1,2}=$ $0_{3 \times(m-3)}$. As for the columns of $L^{1,1}$, we easily obtain from $\left(L^{1,1}\right)^{\mathrm{T}} L^{2,1}+\left(L^{2,1}\right)^{\mathrm{T}} L^{1,1}=0_{3 \times 3}$ that

$$
\begin{aligned}
& b_{1}=-\alpha_{12} c_{2}-\alpha_{13} c_{3}, \\
& b_{2}=\alpha_{12} c_{1}-\alpha_{23} c_{3}, \\
& b_{3}=\alpha_{13} c_{1}+\alpha_{23} c_{2},
\end{aligned}
$$

for some $\alpha_{12}, \alpha_{13}, \alpha_{23} \in \mathbf{R}$. Without loss of generality we can assume that $\left(c_{1}, c_{2}, c_{3}\right)$ is a positively oriented orthonormal basis and an easy computation gives

$$
\begin{aligned}
& {\left[X_{1}, X_{2}\right]=X_{3},} \\
& {\left[X_{1}, X_{3}\right]=-X_{2},} \\
& {\left[X_{2}, X_{3}\right]=X_{1},}
\end{aligned}
$$

which proves that \mathscr{L} is equal to the linear space of vector fields spanned by X_{1}, X_{2} and X_{3} and cannot be of full rank.

Acknowledgments. It is a pleasure for us to thank M. Tucsnak for fruitful discussions while preparing this manuscript.

References

[1] Andrei A. Agrachev and Yuri L. Sachkov. Control theory from the geometric viewpoint, volume 87 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2004. , Control Theory and Optimization, II.
[2] François Alouges, Antonio DeSimone, and Aline Lefebvre. Optimal strokes for low raynolds number swimmers: an example. Preprint SISSA 11/2007/M, 2007.
[3] H. C. Berg and R. Anderson. Bacteria swim by rotating their flagellar filaments. Nature, 245:380-382, 1973.
[4] J. Blake. A finite model for ciliated micro-organisms. J. Biomech., 6:133-140, 1973.
[5] C. Brennen. An oscil lating-boundary-layer theory for ciliary propulsion. J. Fluid Mech., 65:799824, 1974.
[6] Pavol Brunovský and Claude Lobry. Controlabilité Bang Bang, controlabilité différentiable, et perturbation des systèmes non linéaires. Ann. Mat. Pura Appl. (4), 105:93-119, 1975.
[7] Stephen Childress. Mechanics of swimming and flying, volume 2 of Cambridge Studies in Mathematical Biology. Cambridge University Press, Cambridge, 1981.
[8] Yacine Chitour, Jean-Michel Coron, and Mauro Garavello. On conditions that prevent steadystate controllability of certain linear partial differential equations. Discrete Contin. Dyn. Syst., 14(4):643-672, 2006.
[9] Giovanni P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I, volume 38 of Springer Tracts in Natural Philosophy. Springer-Verlag, New York, 1994. Linearized steady problems.
[10] John Happel and Howard Brenner. Low Reynolds number hydrodynamics with special applications to particulate media. Prentice-Hall Inc., Englewood Cliffs, N.J., 1965.
[11] Velimir Jurdjevic. Geometric control theory, volume 52 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997.
[12] Velimir Jurdjevic and Gauthier Sallet. Controllability properties of affine systems. SIAM J. Control Optimization, 22:501-508, 1984.
[13] S. Keller and T. Wu. A porous prolate-spheroidal model for ciliated micro- organisms. J. Fluid Mech., 80:259-278, 1977.
[14] James Lighthill. Mathematical biofluiddynamics. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975. Based on the lecture course delivered to the Mathematical Biofluiddynamics Research Conference of the National Science Foundation held from July 1620, 1973, at Rensselaer Polytechnic Institute, Troy, New York, Regional Conference Series in Applied Mathematics, No. 17.
[15] E. M. Purcell. Life at low raynolds numbers. Am. J. Phys., 45:3-11, 1977.
[16] Jorge San Martín, Takéo Takahashi, and Marius Tucsnak. A control theoretic approach to the swimming of microscopic organisms. Quart. Appl. Math., 65:405-424, 2007.
[17] Jacques Simon. Différentiation de problèmes aux limites par rapport au domaine. Lecture notes, University of Seville, 1991.
[18] Hector J. Sussmann. Some properties of vector field systems that are not altered by small perturbations. J. Differ. Equations, 20:292-315, 1976.
[19] G. Taylor. Analysis of the swimming of microscopic organisms. Proc. Roy. Soc. London. Ser. A., 209:447-461, 1951.

