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P. Gil
University of Oviedo, Spain

November 15, 2007

Abstract

In this paper we deal with the problem of axiomatizing the preference relations modelled
through Choquet integral with respect to a k-additive capacity, i.e. whose Möbius trans-
form vanishes for subsets of more than k elements. Thus, k-additive capacities range from
probability measures (k = 1) to general capacities (k = n). The axiomatization is done
in several steps, starting from symmetric 2-additive capacities, a case related to the Gini
index, and finishing with general k-additive capacities. We put an emphasis on 2-additive
capacities. Our axiomatization is done in the framework of social welfare, and complete
previous results of Weymark, Gilboa and Ben Porath, and Gajdos.
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1 Introduction

Since the pioneering works of Schmeidler [Schmeidler (1986), Schmeidler (1989)] and of many
followers, capacities (otherwise called non-additive measures by Denneberg [Denneberg (1994)]
or fuzzy measures by Sugeno [Sugeno (1974)]) and the Choquet integral [Choquet (1953)] have
become an important tool in decision making, as a generalization of probability measures and ex-
pected value. The main concept underlying models based on capacities is the one of comonotonic
functions (or acts, alternatives), i.e. functions f, g such that (f(x) − f(x′))(g(x) − g(x′)) ≥ 0,
for any x, x′. For such functions, the Choquet integral becomes a linear operator, and many
axiomatic characterizations of decision making models based on capacities contain axioms re-
stricted to comonotonic acts, hence weakening corresponding axioms of probability-based mod-
els. This is the case for the axiomatic proposed by Schmeidler [Schmeidler (1986)], where
the famous independence axiom is restricted to comonotonic acts (see also e.g. Chateauneuf
[Chateauneuf (1994)], Wakker [Wakker (1989)]).

Capacities have also been widely used in decision under multiple criteria. Let X be a set of n
criteria. A capacity µ : P(X) −→ [0, 1] is defined on X, and for any subset of criteria A ⊆ X,
roughly speaking µ(A) represents the importance of the set A of criteria for the decision making
problem into consideration. Avoiding intricacies, an alternative can be viewed as a function
f : X −→ R, where f(x) stands for the score of alternative f w.r.t. criterion x ∈ X. Then
the Choquet integral of f represents the overall score of alternative f, taking into account the
importance of criteria, modelled by µ. The axiomatic justification and building of such a model
has been given in [Grabisch et al. (2003), Labreuche and Grabisch (2003)]. The major interest
of such models is that they enable a proper representation of interaction between criteria, a topic
of high importance in applications (see e.g. [Grabisch et al. (2002)]).

This flexibility of capacity-based models has to be however paid by an exponential complex-
ity, an important drawback in practice, since a capacity on a set of n elements needs 2n real
values to be defined. A solution to this problem is to work with some sub-families of capaci-
ties, requiring less coefficients to be defined. Among them, the sub-families of k-additive mea-
sures (which may be called also k-additive capacities), proposed by Grabisch [Grabisch (1996b),
Grabisch (1997b)] have the interest to be nested, starting with classical (additive) measures
(k = 1), and ending with non-additive measures in their full generality (k = n). The idea in fact
stems from pseudo-Boolean functions f : {0, 1}n −→ R, which are another view of set functions
[Hammer and Holzman (1992)]. It is known that they can be expressed under a polynomial form
of degree n, involving at most 2n terms. Hence, a k-additive measure µ is simply a non-additive
measure whose corresponding pseudo-Boolean function has a polynomial development of degree
at most k. Interestingly enough, this amounts to say that the Möbius transform of µ vanishes
for subsets of more than k elements, and also that there is no interaction among subsets of more
than k elements [Grabisch (1997b)]. k-additive measures (and especially 2-additive measures,
since being more general than additive ones, while remaining simple) have been successfully used
in multicriteria decision making (see e.g. [Grabisch et al. (2002)]).

One question remains however open: what about the axiomatic characterization of k-additive
measures? In decision making, and especially in decision under uncertainty or risk, the main issue
is to know the properties of preference structures underlying a given mathematical model. k-
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additive measures have proven their usefulness in practice, but it remains to know what precisely
they imply or allow for the representation of the preference of the decision maker. Our aim in
this paper is to fill this gap. We will see that our axiomatic has its roots in social welfare theory,
and is related to previous works by Weymark [Weymark (1981)], and Ben Porath and Gilboa
[Ben Porath and Gilboa (1994)].

The paper is organized as follows: We introduce some basic concepts in Section 2. Then,
in Section 3 we deal with the problem of characterizing the preference relation when µ is a
symmetric capacity; from this starting result, we characterize 2-additive symmetric capacities
(Section 4) and k-additive symmetric capacities (Section 5).

We deal with the same problem in Sections 6, 7 and 8 removing the symmetry condition. We
will prove that results from Section 3 can be straightforwardly applied to the general case, just
removing the symmetry axiom. However, for the 2-additive and the k-additive cases (Sections 7
and 8), we will be forced to modify the axioms obtained in Sections 4 and 5, respectively.

Finally, in Section 9 we give some conclusions.

2 Basic concepts and notations

In this paper, the universal set X = {1, ..., n} denotes a finite set of n elements (states of nature,
criteria, individuals, etc). The set of all subsets of X is denoted P(X). Subsets of X are denoted
by A, B, . . . . We will sometimes write i1 · · · ik instead of {i1, . . . , ik} in order to avoid heavy
notation, specially with singletons and subsets of two elements. We start by recalling some
definitions.

Definition 1 A capacity [Choquet (1953)] or non-additive measure [Denneberg (1994)] or
fuzzy measure [Sugeno (1974)] over X is a mapping µ : P(X) → [0, 1] such that

• µ(∅) = 0, µ(X) = 1 (boundary conditions).

• ∀A, B ∈ P(X) such that A ⊆ B, we have µ(A) ≤ µ(B) (monotonicity).

As a special case of capacities, we have symmetric capacities.

Definition 2 A capacity µ is said to be symmetric if for any A, B ∈ P(X) such that |A| = |B|,
we have µ(A) = µ(B).

The Möbius transform is an invertible linear transform of set functions, and is a fundamental
notion in capacity theory [Chateauneuf and Jaffray (1989)].

Definition 3 [Rota (1964)] Let µ : P(X) → R be a set function on X. The Möbius transform
(or inverse) of µ is defined by

m(A) :=
∑

B⊆A

(−1)|A\B|µ(B), ∀A ⊆ X.

The Möbius transform being given, µ is recovered by the Zeta transform

µ(A) =
∑

B⊆A

m(B). (1)
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It is trivial to see that a capacity µ is symmetric if and only if for any A, B ∈ P(X) such that
|A| = |B|, we have m(A) = m(B).

The monotonicity constraints in terms of m are given by:

Proposition 1 [Chateauneuf and Jaffray (1989)] A set of 2n coefficients m(A), A ⊆ X corre-
sponds to the Möbius representation of a capacity if and only if

(i) m(∅) = 0,
∑

A⊆X

m(A) = 1,

(ii)
∑

i∈B⊆A

m(B) ≥ 0, for all A ⊆ X, for all i ∈ A.

Another well-known example of non-additive measures are belief functions:

Definition 4 [Dempster (1967), Shafer (1976)] A belief function is a capacity Bel : P(X) →
[0, 1] satisfying for any family A1, ..., Ak ⊆ X the following property:

Bel(
k

⋃

i=1

Ai) ≥
∑

∅6=I⊂{1,...,k}

(−1)|I|+1Bel(
⋂

i∈I

Ai),

for any k ≥ 2.

Related to belief functions, the following result can be proved:

Proposition 2 [Shafer (1976)] µ is a belief function if and only if its corresponding Möbius
inverse is non-negative.

Definition 5 [Grabisch (1996b)] A capacity µ is said to be k-order additive or k-additive
for short for some k ∈ {1, . . . , n} if its Möbius transform vanishes for any A ⊆ X such that
|A| > k, and there exists at least one subset A of exactly k elements such that m(A) 6= 0.

We call any function f : X → R an act or alternative, and we denote F := R
X the set of all

acts on X, while FM is the set of non decreasing acts. For convenience, we will often denote f(i)
by fi, and identify f with the vector (f1, . . . , fn) of its values. Constant acts fi = α for all i ∈ X
are denoted by α if no confusion occurs.

Definition 6 [Hardy et al. (1952)] A pair of acts f, g on F is said to be comonotone if and
only if

(f(i) − f(j))(g(i) − g(j)) ≥ 0, ∀i, j ∈ X.

Definition 7 [Choquet (1953)] Let µ be a capacity over X and an act f ∈ F . The Choquet
integral of f with respect to µ is defined by

Cµ(f) :=

∫ ∞

0

µ(f ≥ α)dα +

∫ 0

−∞

(µ(f ≥ α) − 1)dα,
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which, since X is finite, reduces to

Cµ(f) =

n
∑

i=1

(f(i) − f(i−1))µ(Bi),

where (·) stands for a permutation on X such that 0 =: f(0) ≤ f(1) ≤ · · · ≤ f(n), and Bi :=
{(i), . . . , (n)}.

Choquet integral in terms of Möbius transform is given by:

Proposition 3 [Walley (1991)] Let µ be a capacity and m its Möbius transform. Then, the
Choquet integral of f ∈ F with respect to µ in terms of m is expressed by:

Cµ(f) =
∑

A⊆X

m(A)
∧

i∈A

fi.

Definition 8 [Yager (1988)] An ordered weighted averaging operator (OWA) is an ope-
rator on F defined by

OWAw(f) :=

n
∑

i=1

wif(i),

where w = (w1, . . . , wn) ∈ [0, 1]n is such that
n

∑

i=1

wi = 1, (called a weight vector), and f(i) is

defined the same way as for Choquet integral.

OWA operators and symmetric capacities are related through the following result:

Proposition 4 [Grabisch (1995), Grabisch (1996a), Murofushi and Sugeno (1993)] Let µ be a
capacity on X. Then, the following statements are equivalent:

1. There exists a weight vector w such that Cµ(f) = OWAw(f), for any f ∈ F .

2. µ is a symmetric capacity.

Finally, we consider a preference relation � on F ×F , assumed to be reflexive, transitive and
complete. As usual, the symmetric part of � is denoted ∼, while ≻ denotes the asymmetric
part. We say that V : F → R is a representation of � if for any pair of acts f, g ∈ F , we have

f � g ⇔ V (f) ≥ V (g).

Our goal in next sections will be to find a set of axioms over � such that the Choquet integral
w.r.t. a k-additive capacity is a representation of �.
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3 Characterization of OWA operators

In this section we deal with the problem of characterizing the preference relation induced by an
OWA operator, i.e. the Choquet integral with respect to a symmetric capacity (Proposition 4).
Let us consider an OWAw operator, with weight vector w = (w1, . . . , wn), and the preference
relation defined on F by

f � g ⇔
n

∑

i=1

wif(i) ≥
n

∑

i=1

wig(i).

We introduce the following axioms, defined and interpreted in [Weymark (1981)], in the context
of social welfare:

• A1. Weak order: � is complete, reflexive and transitive.

• A2. Continuity: For every f ∈ F , if ≻ denotes the strict preference, the sets {g ∈ F|g ≻ f}
and {g ∈ F|g ≺ f} are open sets (in the topology of F induced by the natural topology
on R

n).

• A3. Symmetry: For every f, g ∈ F , if there is a permutation π on X such that f = πg,
then f ∼ g.

• A4. Weak independence of income source: For all acts f, g, h ∈ FM , f � g ⇔ f+h � g+h.

With these axioms, Weymark proved:

Theorem 1 [Weymark (1981)] Let � be a preference relation over F × F . Then, � satisfies
A1, A2, A3 and A4 if and only if ∃H : R

n −→ R which is a representation of �, such that

H(f) =
n

∑

i=1

wif(i),

where f(1) ≤ f(2) ≤ · · · ≤ f(n), and wi ∈ R.

Note that H is not an OWA operator, since w is not necessarily a weight vector. Then, it
suffices to add some axioms to Weymark’s system in a way such that they guarantee that the
operator obtained in Theorem 1 is an OWA operator. For the sake of simplicity, we will establish
our result in several propositions.

First, as a consequence of Proposition 4, the following can be proved:

Lemma 1 Let us suppose that we are given an operator defined for any f ∈ F by

H(f) =

n
∑

j=1

wjf(j).

Then, this operator is the Choquet integral with respect to a symmetric capacity if and only if the
following conditions hold:
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• C1. wi ≥ 0, ∀i.

• C2.
n

∑

i=1

wi = 1.

Proof: Remark that C1 and C2 are the conditions for w to be a weight vector. Then,
applying Proposition 4, it is clear that if we have a Choquet integral with respect to a symmetric
capacity, then C1 and C2 hold.

The reciprocal is also true. Just recall [Fodor et al. (1995)] that the capacity is defined as

µ({i}) = wn, ∀i
µ({i, j}) = wn + wn−1, ∀i, j
...

...
...

...

whence the result.

Let us consider the following axiom:

• A5. Monotonicity: Given f, g ∈ F , if fi ≥ gi, ∀i ⇒ f � g.

Axiom A5 states that if an act f is better or equal than another act g for all criteria, then
this act must be considered better or equal in our preference relation.

It is clear that the Choquet integral satisfies A5. We have the following proposition:

Proposition 5 Given a preference relation over F ×F , if A1, A2, A3 and A4 hold, then A5
is equivalent to C1.

Proof: As A1, A2, A3, A4 hold, applying Theorem 1 our binary relation can be represented
by

H(f) =
n

∑

i=1

wif(i).

⇒) Let us suppose that A5 holds and that there exists i such that wi < 0. Let f, g be defined
by gj = 0, ∀j ≤ i, gj = 1, ∀j > i, fj = 0, ∀j < i, fj = 1, ∀j ≥ i. Then, by A5, f � g.

On the other hand, if wi < 0, we have

H(f) =

n
∑

j=1

wjf(j) =

n
∑

j=1

wjg(j) + wi <

n
∑

j=1

wjg(j) = H(g) ⇒ f ≺ g,

a contradiction. Thus, wi ≥ 0.

⇐) Suppose on the other hand wi ≥ 0. If fi ≥ gi, ∀i ⇒
n

∑

j=1

f(j)wj ≥
n

∑

j=1

g(j)wj ⇒ f � g, and

hence A5 holds.

Let us now consider the following axiom:
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• A6. Non-triviality: There exist f, g ∈ F such that f ≻ g.

Axiom A6 is just needed in order to avoid the trivial relation, i.e. the preference relation in
which all alternatives are considered equally good by the decision maker.

Then, the following proposition holds:

Proposition 6 Consider a preference relation over F ×F . If A1, A2, A3, A4, A5 hold, then

A6 is equivalent to

n
∑

i=1

wi > 0.

Proof: By Proposition 5 we know that our binary relation can be represented by

H(f) =

n
∑

i=1

wif(i), wi ≥ 0, ∀i.

⇒) Now, if wi = 0, ∀i ⇒ H(f) = 0, ∀f ∈ F , and then f ∼ g, ∀f, g ∈ F , contradicting our
hypothesis (A6).

⇐) If
n

∑

i=1

wi > 0 ⇒ H(1) > 0 = H(0) ⇒ 1 ≻ 0.

Now, we can normalize, and hence

n
∑

i=1

wi = 1. Then, applying Lemma 1 and Proposition 4 we

obtain the following:

Theorem 2 [Miranda and Grabisch (2000)] Let � be a binary relation on F×F . The following
statements are equivalent:

1. � satisfies A1, A2, A3, A4, A5 and A6.

2. There is a unique symmetric capacity µ such that � is represented by Cµ.

4 Characterization of 2-additive OWA

In this section we deal with the problem of characterizing preferences represented by the Choquet
integral with respect to a 2-additive symmetric capacity. In order to do this, we are going to use
a result proved by Ben Porath and Gilboa in [Ben Porath and Gilboa (1994)]. Let us consider
the following definition:

Definition 9 Let f be an act. We say that i f-precedes j if fi < fj and there is no k ∈ X
such that fi < fk < fj .

Ben Porath and Gilboa use the set of axioms of Weymark except A4 which is changed into
A4’; A5 is changed into a stronger version A5’. Finally they also add some other axioms.
Specifically:
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• A4’. Order-preserving gift: For every f, f ′, g, g′ in FM , for every i ∈ X, if fj = f ′
j and

gj = g′
j for every j 6= i and f ′

i = fi + t, g′
i = gi + t for some t ∈ R, then f � g if and only if

f ′ � g′.

• A5’. Strong monotonicity: For every f, g ∈ F , if fi ≥ gi for all i ∈ X, and there exists a j
such that fj > gj, then f ≻ g.

• A7. Order-preserving transfer: For every f, f ′, g, g′ in F , and for all i, j ∈ X, if i
f−, g−, f ′− and g′−precedes j, if f ′

i = fi + t, g′
i = gi + t, f ′

j = fj − t, g′
j = gj − t for

some t > 0, and f ′
k = fk, g

′
k = gk for all k 6= i, j, then f � g if and only if f ′ � g′.

• A8. Inequality aversion: For every f, f ′ in FM , for all i ∈ X, if f ′
i = fi + t, f ′

i+1 = fi+1 − t
for some t > 0, if f ′

j = fj for all j 6= i, i + 1, then f ′ ≻ f .

Ben Porath and Gilboa work in the field of social welfare; thus, they consider X as a set of
individuals, and acts are considered as the income profile distribution of a society. Then, they
try to find a society where individuals are all equally rich, i.e where inequalities are reduced by
sharing wealth. An explanation of the axioms can be found in [Ben Porath and Gilboa (1994)].

They proved the following:

Theorem 3 [Ben Porath and Gilboa (1994)] Let � be a binary relation on F×F . The following
statements are equivalent:

1. � satisfies A1, A2, A3, A4’, A5’, A7 and A8.

2. There is a unique number δ, 0 < δ < 1/(n− 1), such that � is represented by the following
functional:

H(f) =
∑

i∈X

fi − δ

[

∑

1≤i<j≤n

|fi − fj |

]

. (2)

Grabisch [Grabisch (1998)] has shown that Equation (2) is the Choquet integral with respect
to a 2-additive symmetric capacity. However, this result does not cover all of them. The problem
comes from the fact that for this result, the coefficient multiplying f(i) is 1 + (n− 2i)δ, and thus
the weights of the OWA operator are decreasing. We will prove below that A8 is equivalent
to have a strictly decreasing order in the weights of the OWA operator. As this is not always
the case for capacities, we have to remove it. Indeed, the functional in Theorem 3 gives more
importance to the smallest value (the poorest individual) than to the biggest value (the richest
one) and thus, it tries to penalize the differences among incomes in the sense that an increment
in the poorest individual from a gift of the richest one should lead to a better (preferred) income
distribution. Anyway, we can conclude that 2-additivity is given by A7, A8 or a mixture of
these two axioms.

We will use this set of axioms in order to characterize 2-additive symmetric capacities. As in
the previous section, we do it in several propositions.

Proposition 7 Let us consider the Choquet integral w.r.t. a symmetric capacity µ, and its
corresponding OWA operator with weight vector w. The following propositions are equivalent.
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(i) µ is at most 2-additive.

(ii) the weight vector has equidistant components

wi − wi+1 = w1 − w2, ∀i = 1, . . . , n − 1.

Proof: Since µ is symmetric, the Choquet integral can be written under its OWA form
(Proposition 4):

Cµ(f) =
n

∑

i=1

wif(i). (3)

(i) ⇒ (ii) since µ is a at most 2-additive, the Choquet integral w.r.t. the Möbius transform of
µ writes (Proposition 3)

Cµ(f) =

n
∑

i=1

m((i))f(i) +
∑

i<j

m((i), (j))f(i).

Applying symmetry we have m(A) = m(B) whenever |A| = |B|. Therefore,

Cµ(f) =

n
∑

i=1

[k1 + (n − i)k2]f(i), (4)

with k1 = m((i)), k2 = m((i), (j)). Identifying Equations (4) and (3), we conclude wi = k1 +
(n − i)k2 and thus the weights are equidistant.

(ii) ⇒ (i) Let us define k1 := wn, k2 := wn−1 −wn. Then, wn = k1, wn−1 = k1 + k2 and due to
the hypothesis of equidistance, we have wi = k1 + (n − i)k2. Thus,

n
∑

i=1

wif(i) =

n
∑

i=1

[k1 + (n − i)k2]f(i),

and this is the Choquet integral of the 2-additive symmetric capacity defined by m(i) = k1, m(i, j) =
k2 (a 1-additive capacity if k2 = 0). As this is the only symmetric capacity whose corresponding
Choquet integral has these weights, the result is proved.

In the case of 1-additive symmetric capacities, all coefficients are equal and thus w1 −w2 = 0.
Consequently, in order to characterize the preference relations over F×F that are represented

through the Choquet integral with respect to a 2-additive (at most) symmetric capacity, it suffices
to find an axiom leading to equidistance of the weights. This is solved in next proposition.

Proposition 8 Let � be a preference relation over F ×F . If A1, A2, A3, A4, A5, A6 hold,
then A7 is equivalent to

w1 − w2 = wi − wi+1, ∀i = 1, . . . , n − 1.
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Proof: ⇒) This is Lemma 3.2.1 in [Ben Porath and Gilboa (1994)].
⇐) Let us consider f, g ∈ F and suppose that i f−, g− precedes j. Suppose that f � g.

Then, if fi is the if -th smallest income in f , and gi is the ig-th in g, defining f ′ and g′ as in A7
and assuming that i f ′−, g′− precedes j, we have

H(f ′) =

n
∑

j=1

wjf(j) + t[wif − w(i−1)f
].

H(g′) =

n
∑

j=1

wjg(j) + t[wig − w(i−1)g
].

But now, we know that wif − w(i−1)f
= wig − w(i−1)g

by hypothesis of equidistance, and thus
f ′ � g′. Therefore, A7 holds.

Then, we have proved the following:

Theorem 4 [Miranda and Grabisch (2000)] Let � be a binary relation on F×F . The following
statements are equivalent:

1. � satisfies A1, A2, A3, A4, A5, A6 and A7.

2. There is a unique 2-additive (or 1-additive) symmetric capacity µ such that � is represented
by Cµ.

Remark that we have not used A8. If we add A8, it follows that the weights are strictly
decreasing:

Lemma 2 Let � be a preference relation over F ×F . If A1, A2, A3, A4, A5, A6 hold, then
A8 is equivalent to

w1 > w2 > · · · > wn.

Proof: We already know that the aggregation operator satisfying A1, A2, A3, A4, A5, A6
is an OWA operator (Theorem 2). Then, it can be written as

H(f) =

n
∑

i=1

f(i)wi, wi ≥ 0,

n
∑

i=1

wi = 1.

Now, consider f and f ′ as in A8. It is easy to see that

H(f) −H(f ′) = wi+1t − wit.

Suppose A8 holds. Then, it follows that wi > wi+1.
Conversely, if wi > wi+1, A8 holds.

Then, if we add A8 in Theorem 4, we obtain a characterization of 2-additive symmetric
capacities with strictly decreasing weights in the OWA operator. But this means m(i, j) > 0 (as
m(i, j) = wi − wi+1). On the other hand, by monotonicity (Proposition 1) we have m(i) ≥ 0.
Hence, the 2-additive symmetric measure is also a belief function by Proposition 2. We write
down this result in next corollary:
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Corollary 1 Let � be a binary relation on F ×F . The following are equivalent:

1. � satisfies A1, A2, A3, A4, A5, A6, A7 and A8.

2. There is a unique 2-additive symmetric capacity µ such that � is represented by Cµ and the
weights of the OWA operator are strictly decreasing.

3. There is a unique 2-additive symmetric belief function µ such that � is represented by Cµ.

In [Ben Porath and Gilboa (1994)], Theorem B, it is proved that A1, A2, A3, A6, A7 and A8
characterize the Gini index. Consequently, a preference relation modelled through the Choquet
integral w.r.t. a 2-additive symmetric measure is a special case of the Gini index, just imposing
order preserving gift and monotonicity (A4, A5).

Remark that for this last result, we avoid the possibility of 1-additive belief functions (i.e.
probabilities), as m(i, j) 6= 0. If we want to allow this possibility, A8 should be changed into a
weaker version:

• A8’. Weak inequality aversion: For every f, f ′ in FM , for all i ∈ X, if f ′
i = fi + t, f ′

i+1 =
fi+1 − t for some t > 0, if f ′

j = fj for all j 6= i, i + 1, then f ′ � f .

5 Characterization of k-additive OWA

Let us now turn to the general k-additive symmetric case. From the precedent analysis, we just
have to replace A7 by another axiom for the k-additive case, which we call A7(k). We follow
the same sequence as in the previous section.

Proposition 9 [Grabisch (1997a)] Let µ be a symmetric capacity, m its Möbius transform, and
w the weight function of the corresponding OWA operator. If µ is at most k-additive, then

k−1
∑

j=0

(−1)j

(

k − 1

j

)

wi+j = ck, ∀i = 1, . . . , n − k + 1,

and moreover ck = m(A), with |A| = k.

The reciprocal result is given by:

Proposition 10 Let w be the weight vector of an OWA operator. If

k−1
∑

j=0

(−1)j

(

k − 1

j

)

wi+j =
k−1
∑

j=0

(−1)j

(

k − 1

j

)

wl+j, i, l = 1, . . . , n − k + 1,

then the corresponding capacity µ is at most k-additive.

Proof: We need a preliminary result:

12



Lemma 3 Let µ be a symmetric capacity, w the weight vector of the corresponding OWA, and
A ⊆ X. If |A| ≥ k, then ∀{i1, . . . , ik} ⊆ A, we have that

∑

B⊆{i1,...,ik}

µ(A \ B)(−1)|B| =
k−1
∑

j=0

(−1)j

(

k − 1

j

)

wn−|A|+j+1.

Proof: We know that the capacity associated to an OWA is given by (see the proof of Lemma
1):

µ(T ) =

n
∑

i=n−|T |+1

wi, T ⊆ X, T 6= ∅.

Let us fix j and compute how many times each wj appears. wj appears in any µ(T ) such that

n − |T | + 1 ≤ j ⇔ |T | ≥ n − j + 1.

In our case, T = A \ B, whence wj appears in any B such that

|B| ≤ |A| + j − n − 1. (5)

We have three different cases:

• If |A| + j − n − 1 < 0, i.e. j < n + 1 − |A|, then no B satisfies the conditions of (5). It
follows that wj never appears in the definition of µ(A \ B), whatever B considered.

• Our second case stands when |A|+j−n−1 ≥ k, i.e. j ∈ {n−|A|+k+1, . . . , n} (if |A| = k,
there is no j in these conditions). Then, any |B| satisfies (5), whence it follows that wj

appears in the definition of any µ(A \ B). Thus, wj appears

k
∑

i=0

(

k

i

)

(−1)i = (1 − 1)k = 0

times.

• Finally, assume 0 ≤ |A|+ j−n− 1 < k, i.e. j ∈ {n+1−|A|, . . . , n−|A|+ k}. In this case,
wj appears in the definition of all A \B satisfying such that |B| ≤ |A|+ j −n− 1 := l. For
each |B|, we have

(

k

|B|

)

subsets in these conditions, whence it suffices to prove

l
∑

p=0

(−1)p

(

k

p

)

= (−1)l

(

k − 1

l

)

, l ∈ {0, . . . , k − 1},

but this is a well-known result in Combinatorics (see e.g. [Berge (1971)]). Then, the
coefficient of wj (with j = n − |A| + 1 + l) is (−1)l

(

k−1
l

)

and the result holds.

Let us now prove the proposition. Suppose µ is not k-additive. Then, it must exist A such
that |A| > k and m(A) 6= 0. Let us choose such an A of minimal cardinality.

13



Consider {i1, ..., ik}. Then, by Lemma 3, we know that

∑

B⊆{i1,...,ik}

µ(i1, . . . , ik \ B)(−1)|B| =
k−1
∑

j=0

(−1)j

(

k − 1

j

)

wn−k+j+1.

For a fixed C ⊆ {i1, . . . , ik}, let us find the coefficient of m(C) in
∑

B⊆{i1,...,ik}
µ(i1, . . . , ik \

B)(−1)|B| expressed with the Möbius transform through Eq. (1). For this, we have to count the
number of times each m(C) appears. Given C ⊆ {i1, . . . , ik}, the corresponding m(C) appears
in the definition of any µ(i1, . . . , ik \ B) such that C ⊆ {i1, . . . , ik} \ B. For fixed |B| we have
(

k−|C|
|B|

)

subsets in these conditions. Consequently, if |C| < k, it follows that m(C) appears

k−|C|
∑

|B|=0

(

k − |C|

|B|

)

(−1)|B| = 0

times. If C = {i1, . . . , ik}, then m(C) appears once (when B = ∅), whence
∑

B⊆{i1,...,ik}

µ(i1, . . . , ik \ B)(−1)|B| = m(i1, . . . , ik).

Let us now prove that ∀{i1, . . . , ik} ⊂ A, we have that
∑

B⊆{i1,...,ik}

µ(A \ B)(−1)|B| = m(A) + m(i1 · · · ik).

Let us consider C ⊆ A. Then, m(C) appears in the expression of µ(A \ B) in terms of the
Möbius transform for all B such that C ⊆ A \B. Then, it follows that B ⊆ {i1, . . . , ik} \C. We
have the following cases:

• If |{i1, . . . , ik} \ C| 6= 0, the coefficient of m(C) is

|{i1,...,ik}\C|
∑

i=0

(−1)i

(

|{i1, . . . , ik} \ C|

i

)

= (1 − 1)k−|C∩{i1,...,ik}| = 0.

• When |{i1, . . . , ik} \C| = 0, the only possible B is B = ∅ and in this case the coefficient is
1.

On the other hand, if |C| > k, C 6= A, then m(C) = 0 as A is of minimal cardinality satisfying
m(A) 6= 0, |A| > k. Thus, the only possible non-null summands are m(A) and m(i1, . . . , ik), both
of them multiplied by 1. As a conclusion, we obtain

∑

B⊆{i1,...,ik}

µ(A \ B)(−1)|B| = m(A) + m(i1 · · · ik).

Therefore,

k−1
∑

j=0

(−1)j

(

k − 1

j

)

wn−|A|+j+1 is not constant in A and this contradicts our hypoth-

esis, whence the result holds.

Let us now consider the following axiom [Miranda and Grabisch (2000)]:
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• A7(k) k-dimensional order preserving transfer: ∀f, g, f ′, g′ ∈ F and i ∈ X such that i
precedes i + 1, which precedes i + 2,. . . , which precedes i + k, for f, f ′, g and g′, if

1. f ′ and g′ are defined for some t > 0 by

f ′
i+j = fi+j + (−1)j

(

k − 1

j

)

t, j = 0, . . . , k − 1, f ′
k = fk, k 6= i, i + 1, . . . , i + k − 1.

g′
i+j = gi+j + (−1)j

(

k − 1

j

)

t, j = 0, . . . , k − 1, g′
k = gk, k 6= i, i + 1, . . . , i + k − 1.

2. f, f ′ and g, g′ are comonotone,

then f � g ⇔ f ′ � g′.

Remark that this axiom, despite being a generalization of A7, is rather difficult to translate
into natural language. We will deal with the problem of interpretation at the end of this section.

The following proposition holds:

Proposition 11 Let � be a binary relation on F × F . If � satisfies A1, A2, A3, A4, A5,
A6, then A7(k) is equivalent to

k−1
∑

j=0

(−1)j

(

k − 1

j

)

wi+j =

k−1
∑

j=0

(−1)j

(

k − 1

j

)

wi′+j, ∀i, i′ = 1, . . . , n − k + 1,

i.e.

k−1
∑

j=0

(−1)j

(

k − 1

j

)

wi+j does not depend on i.

Proof: ⇒) The proof is an adaptation of the one of Lemma 3.2.1 in [Ben Porath and Gilboa (1994)]:
First, it will prove useful to focus on the interior of FM , denoted (FM)o and given by

(FM)o = {f ∈ FM | f1 < f2 < · · · < fn}.

Let f ∈ (FM)o and take ǫ > 0. Consider the auxiliary acts ei defined by ei(j) = 1 if j = i and
ei(j) = 0 otherwise. We define

f ′ = f +

k−1
∑

j=0

ǫei+j(−1)j−1

(

k − 1

j − 1

)

.

Here ǫ > 0 is small enough to maintain the order. Remark that we can take ǫ > 0 because
f ∈ (FM)o, i.e. we are in the set of strictly increasing acts. Now, for fixed i, let π be the
permutation on X defined by

1. If i > k, π(1) = i, π(2) = i + 1, . . . , π(k) = i + k − 1, π(i) = 1, π(i + 1) = 2, . . . ,

π(i + k − 1) = k, π(l) = l, l /∈ {1, . . . , k, i, . . . , i + k − 1}.
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2. If i ≤ k, π(1) = k + 1, π(2) = k + 2, . . . , π(i − 1) = i + k, π(i) = 1, π(i + 1) = 2, . . . ,

π(i + k − 1) = k, π(l) = l, l /∈ {1, . . . , i + k − 1}.

Consider g = πf. Then, g′ in the conditions of A7(k) is given by

g′ = g +

k
∑

j=1

ǫej(−1)j−1

(

k − 1

j − 1

)

.

By symmetry A3, we have g ∼ f. Then, by A7(k), we get f ′ ∼ g′ and thus

H(f ′) −H(f) = H(g′) −H(g).

Consequently, as H is indeed an OWA operator,

H(f ′) −H(f) =
k

∑

j=1

ǫwj(−1)j−1

(

k − 1

j − 1

)

=
k

∑

j=1

ǫwi+j−1(−1)j−1

(

k − 1

j − 1

)

= H(g′) −H(g),

whence the result.
⇐) Consider f, g, f ′, g′ ∈ F in the conditions of A7(k), and let us suppose that f � g. Then,

we have

H(f ′) =
n

∑

i=1

f(i)wi + t

[

k−1
∑

j=0

(−1)j

(

k − 1

j

)

wi+j

]

.

H(g′) =

n
∑

i=1

g(i)wi + t

[

k−1
∑

j=0

(−1)j

(

k − 1

j

)

wi′+j

]

.

By hypothesis, we know that

k−1
∑

j=0

(−1)j

(

k − 1

j

)

wi+j =
k−1
∑

j=0

(−1)j

(

k − 1

j

)

wi′+j.

Then, we obtain that f ′ � g′ and A7(k) holds.

Summarizing, we have proved the following:

Theorem 5 [Miranda and Grabisch (2000)] Let � be a binary relation on F×F . The following
are equivalent:

1. � satisfies A1, A2, A3, A4, A5, A6 and A7(k).

2. There is a unique at most k-additive symmetric capacity µ such that � is represented by
Cµ.
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Let us come back to the problem of interpreting A7(k). The fact that this axiom is much
more difficult to deal with than A7 constitutes a weakness in this characterization. A possible
interpretation has been given by T. Gajdos in [Gajdos (2002)], using an equivalent axiom which
reads:

• A7’(k). ∀f ∈ FM , ∀i, j ∈ {1, . . . , n − k + 1}, ∀t > 0,

1. Define f i and f j by

f i
i+r = fi+r + (−1)r

(

k − 1

r

)

t, r = 0, . . . , k − 1, f i
l = fl, l 6= i, i + 1, . . . , i + k − 1.

f j
j+r = fj+r + (−1)r

(

k − 1

r

)

t, r = 0, . . . , k − 1, f j
l = fl, l 6= j, j + 1, . . . , j + k − 1.

2. If f, f i, f j are comonotone,

then f i ∼ f j.

Proposition 12 Consider a preference relation over F×F . If A1, A2, A3, A4, A5, A6 hold,
then A7’(k) is equivalent to

k−1
∑

j=0

(−1)j

(

k − 1

j

)

wi+j =

k−1
∑

j=0

(−1)j

(

k − 1

j

)

wi′+j, ∀i, i′ = 1, . . . , n − k + 1.

Proof: If A1, A2, A3, A4, A5, A6 hold, we already know (Theorem 2) that the functional
H representing � is the Choquet integral with respect to a symmetric capacity µ. Let us denote
by w the corresponding weight vector. Then,

H(f) =

n
∑

i=1

f(i)wi, ∀f ∈ F .

Consider f, f i, f j fulfilling A7’(k). It follows that

H(f i) = H(f) +
k−1
∑

r=0

(−1)rt

(

k − 1

r

)

wi+r, H(f j) = H(f) +
k−1
∑

r=0

(−1)rt

(

k − 1

r

)

wj+r.

Then, f i ∼ f j if and only if

k−1
∑

j=0

(−1)j

(

k − 1

j

)

wi+j =

k−1
∑

j=0

(−1)j

(

k − 1

j

)

wi′+j, ∀i, i′ = 1, . . . , n − k + 1,

whence the result.

Then, by Proposition 11, we can interchange A7(k) and A7’(k) if A1, A2, A3, A4, A5, A6
hold. In [Gajdos (2002)], Gajdos also showed the equivalence of these two axioms.
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In A7’(k) the quantities added to individuals can be interpreted as a reward scheme. With
this interpretation in mind, let us consider first a reward of ǫ to an individual. Now, we ask the
following question: Does the decision maker cares about which individual receives this reward?
If not, then the decision maker does not care about equality as for him it is the same to give a
reward to the richest individual as to give a reward to the poorest one. But if the answer is yes,
the decision maker cares about inequality. Since f is strictly increasing, we may think that if
the decision maker cares about inequality, then f i � f i+1, or equivalently,

(f1, . . . , fi + ǫ, fi+1, . . . , fn) � (f1, . . . , fi, fi+1 + ǫ, . . . , fn)

which is in turn equivalent to

(f1, . . . , fi + ǫ, fi+1 − ǫ, . . . , fn) � (f1, . . . , fi, fi+1, . . . , fn),

provided the order in the incomes has not changed. But now, we can go a step further and ask
the decision maker if he cares about which individual i is considered in this new reward scheme.
If he does not care, then the decision maker satisfies A7’ (or A7’(2)). In other case, he is quite
sensitive to inequalities and we may think that

(f1, . . . , fi + ǫ, fi+1 − ǫ, fi+2 . . . , fn) � (f1, . . . , fi, fi+1 + ǫ, fi+2 − ǫ, . . . , fn),

or in other words, it is

(f1, . . . , fi + ǫ, fi+1 − 2ǫ, fi+2 + ǫ, . . . , fn) � (f1, . . . , fi, fi+1, fi+2, . . . , fn),

provided the order in the incomes has not changed. We can repeat the process for this scheme
of rewards to sharpen the degree in which the decision maker cares about inequalities. Then,
A7’(k) for different choices of k can be seen as a scale to measure the sensitivity to inequalities
of the decision maker.

Another possibility of characterization for k-additive symmetric measures could be derived
from the results of Calvo and De Baets [Calvo and De Baets (1998)] and Cao-Van and De Baets
[Cao-Van and De Baets (2001)], in which they introduce the concept of binomial OWA operators.

Definition 10 Let k ∈ {1, . . . , n}. The k-binomial OWA operator is the OWA operator with
weight vector w := (wk1, . . . , wkn) defined by

wki =

(

n−i

k−1

)

(

n

k

) .

Then, they prove the following:

Theorem 6 Let k ∈ {1, . . . , n}. Consider an aggregation operator H; then, the following equiv-
alence holds:

1. H is the Choquet integral with respect to a symmetric k-additive capacity on X.

2. H is a weighted sum of the first k-binomial OWA operators.

18



This result characterizes k-additive symmetric capacities from a mathematical point of view.
We feel that this result can help to characterize k-additive symmetric measures. However, a wide
study of the binomial OWA operators must be done. Besides, we need an axiom leading to a
representation in terms of a weighted sum.

We have to remark as a conclusion that the properties that characterize the k-additive symme-
tric case are rather special. For the general k-additive case, it can be seen that these properties
do not hold. In fact, the most important tool that we have used in the proofs of the results was
the fact that m(A) = m(B) whenever |A| = |B|, and this property comes from the symmetry.
This implies that even if these results can give us some information about the general case, this
one is much more difficult to handle.

This will not be the case for general measures. We will prove in the next section that removing
the symmetry axiom, we can obtain a characterization of Choquet integral.

6 Characterization of Choquet integral for the general

case

¿From an interpretational point of view, the difference between the symmetric case and the
general case is given by the fact that for the symmetric case, the importance of an individual
when computing Choquet integral comes from its relative position, while for the general case its
importance depends also on its index.

To clarify this idea, suppose that we are in the symmetric case and we have an income dis-
tribution f . Then, if we give a reward of t to an individual i so that the order in the income
distribution does not change, the amount of welfare is determined by the relative position of the
income of i, but we do not really care about which individual is considered. This is not true in
general for the non-symmetric situation. If we are in the general case, a gift of t to individual
i determines an increment of welfare depending on the relative position of individual i and the
concrete individual who has received the gift.

To characterize such preference relations, it is obvious that the symmetry axiom A3 must be
removed. In order to prove our result we need the following result due to Schmeidler in which
we obtain the mathematical conditions that characterize Choquet integral:

Theorem 7 [Schmeidler (1986)] Let X be a universal set (finite or infinite) and X be a σ-
algebra over X. Consider B(X,X ) (or B for short) the set of bounded, real valued, σ-measurable
functions on X (i.e. the set of random variables). Let H : B → R satisfying H(1X) = 1 be given.
Suppose also that the functional H satisfies

1. Comonotonic additivity: f and g comonotonic implies H(f + g) = H(f) + H(g).

2. Monotonicity: f(x) ≥ g(x), ∀x ∈ X implies H(f) ≥ H(g).

Then, defining µ(A) = H(1A), ∀A ∈ X we have

H(f) =

∫ ∞

0

µ(f ≥ α)dα +

∫ 0

−∞

(µ(f ≥ α) − 1)dα.
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This expression is the Choquet integral for real functions (Definition 7). In our case, in
which we are treating with finite universal sets, we can consider X = P(X) and thus any act is
measurable; and as X is finite, any act is also bounded.

Now, the following can be proved:

Theorem 8 [Miranda and Grabisch (2000)] Let � be a binary relation on F×F . The following
statements are equivalent:

1. � satisfies A1, A2, A4, A5 and A6.

2. There is a unique capacity µ such that � is represented by Cµ.

Proof: It is clear that Choquet integral satisfies all these axioms. Let us see that this is the
only functional for which these conditions hold.

Thus, let H be a functional satisfying A1, A2, A4, A5, A6. We will denote by Hπ the
restriction of H to a simplex Hπ, which is defined as follows: for a given permutation π of
the indices, Hπ = {(x1, . . . , xn) | xπ(1) ≤ xπ(2) ≤ . . . ≤ xπ(n)}. Now, we extend Hπ to R

n
+ by

symmetry, i.e. given (x1, . . . , xn), we take a permutation α such that (xα(1), . . . , xα(n)) ∈ Hπ and
we define H̄(x1, . . . , xn) = Hπ(xα(1), . . . , xα(n)). Thus, H̄ is a symmetric functional. Symmetry
axiom, together with A1, A2 and A4 is the set of axioms used by Weymark in [Weymark (1981)]
(Theorem 1). Then, we know that H̄ is given by

H̄(f) =

n
∑

i=1

pif(i),

for some pi ∈ R, i = 1, . . . , n, and therefore H̄ satisfies comonotonic additivity.
Then, H̄ is linear in each simplex. In particular (H̄)π is linear. But (H̄)π = Hπ. Since this is

valid for any π, H itself is linear in each simplex.
Now, we define µ(A) = H(1A).
By A5 and A6 we know that µ is a capacity. Then, we have the conditions of the result

of Schmeidler (Theorem 7) characterizing the Choquet integral. So that � is represented by a
Choquet integral and thus the result holds.

Remark that this result is just a version of the conditions of Schmeidler while having a prefer-
ence relation over the set of acts. In fact, A4 is a version for acts of the comonotonic additivity.

This result is very similar to the one proved by Chateauneuf in [Chateauneuf (1994)].
He uses the following set of axioms:

• B1 � is a non-trivial weak order.

• B2 Continuity with respect to monotone uniform convergence

1. fn, f, g ∈ F , fn � g, fn ↓u f ⇒ f � g.

2. fn, f, g ∈ F , g � fn, fn ↑u f ⇒ g � f.

• B3 Monotonicity fi ≥ gi + ǫ, ∀i (where ǫ > 0 is a constant) ⇒ f ≻ g.
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• B4 Comonotonic independence f, g, h ∈ F , f and h comonotonic, g and h comonotonic,
then f ∼ g ⇒ f + h ∼ g + h.

and then he proves the following:

Theorem 9 Let � be a binary relation on F ×F . The following are equivalent:

1. � satisfies B1, B2, B3 and B4.

2. there is a unique capacity µ such that � is represented by Cµ.

It is easy to see that B1 is equivalent to A1 and A6, B2 is equivalent to A2, B3 is similar
to A5 and finally B4 is implied by A4. However, Theorem 9 is not restricted to finite sets and
he only imposes f to be a bounded measurable function.

7 Characterization of 2-additive capacities

Now, we deal with the problem of characterizing preference relations on F × F that can be
represented by the Choquet integral with respect to a 2-additive capacity. Of course, we only
need to add an axiom to the set of axioms found in last section for the general case. However, A7
does not suffice to characterize 2-additivity and therefore our new axiom must be a generalization
of it.

Then, we have to find a new property characterizing 2-additive capacities. This property is
obtained in next proposition.

Proposition 13 A capacity µ is at most 2-additive if and only if ∀A ⊆ X, and ∀i, j ∈ A,

µ(A) − µ(A \ i) − µ(A \ j) + µ(A \ i, j) = µ(i, j) − µ(i) − µ(j).

Proof: Let us suppose that µ is not a 2-additive capacity (at most). Then, there exists A
such that |A| > 2 and m(A) 6= 0.

Let us consider A of minimal cardinality in these conditions and let us take i, j ∈ A. This is
always possible as |A| > 2. Then, we have the following:

µ(A) − µ(A \ i) − µ(A \ j) + µ(A \ ij) =
∑

B⊆A

m(B) −
∑

B⊆A\i

m(B) −
∑

B⊆A\j

m(B) +
∑

B⊆A\ij

m(B)

=
∑

i∈B⊆A

m(B) −
∑

i∈B⊆A\j

m(B) = m(A) + m(ij),

by hypothesis on A.
On the other hand, µ(ij) − µ(i) − µ(j) = m(ij) and thus the expression does not remain

constant.
Reciprocally, proceeding the same way, we obtain that if m(A) = 0, ∀A s.t. |A| > 2, then

µ(A) − µ(A \ i) − µ(A \ j) + µ(A \ ij) = m(ij) = µ(ij) − µ(i) − µ(j),
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whence the result.

Let us introduce the following notation: Given an act f ∈ F , for a fixed real value t, we define
the act fB ∈ F by

fB
i =

{

fi + t if i ∈ B
0 otherwise

Consider now the following axiom:

• A9. Let f, g ∈ F be acts such that fi = fj , gi = gj. Consider the acts fB, gB for all
B ⊆ {i, j}, with t > 0 so that fB, f and gB, g are comonotone for all B. Let H : F → R

be any functional representing the preference relation �. Then,

∑

B⊆{i,j}

H(fB)(−1)|B| =
∑

B⊆{i,j}

H(gB)(−1)|B|.

This axiom can be interpreted as follows: Suppose that we have an income distribution such
that two individuals i, j are equally rich. Now, we give a gift t > 0 to both of them. Next step
is to ask one of these individuals for this gift to be returned. This individual can be either i or
j. Then, we obtain four income distributions and the global welfare with these operations could
have changed. If the amount (or decrease) in the welfare just depend on individuals i, j but not
on their relative position, then the decision maker acts following A9.

Let us introduce the following notation: For any h ∈ F we denote by Ai
h the set

Ai
h := {l ∈ X | hl > hi}.

The following can be proved:

Proposition 14 Let � be a preference relation on F ×F . If � satisfies A1, A2, A4, A5 and
A6, then A9 is equivalent to

µ(A) − µ(A \ i) − µ(A \ j) + µ(A \ i, j) = µ(i, j) − µ(i) − µ(j), ∀A ⊆ X, i, j ∈ A.

Proof: As A1, A2, A4, A5 and A6 hold, we know from Theorem 8 that our preference
relation is modelled by the Choquet integral with respect to a capacity µ.

Consider f, g ∈ F fulfilling the conditions of A9. Then, it can be easily seen that

Cµ(f {i,j}) = Cµ(f) + t[µ(Ai
f ∪ i, j) − µ(Ai

f )].

Cµ(f {i}) = Cµ(f) + t[µ(Ai
f ∪ i) − µ(Ai

f)].

Cµ(f {j}) = Cµ(f) + t[µ(Ai
f ∪ j) − µ(Ai

f)].

The same can be done for g. Consequently,

∑

B⊆{i,j}

Cµ(fB)(−1)|B| = (µ(Ai
f ∪ i, j) − µ(Ai

f ∪ i) − µ(Ai
f ∪ j) + µ(Ai

f))t,
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∑

B⊆{i,j}

Cµ(gB)(−1)|B| = (µ(Ai
g ∪ i, j) − µ(Ai

g ∪ i) − µ(Ai
g ∪ j) + µ(Ai

g))t,

whence A9 holds for any f, g if and only if

µ(Ai
f ∪ i, j) − µ(Ai

f ∪ i) − µ(Ai
f ∪ j) + µ(Ai

f) = µ(Ai
g ∪ ij) − µ(Ai

g ∪ i) − µ(Ai
g ∪ j) + µ(Ai

g),

whence the result.

Then, we have proved:

Theorem 10 Let � be a binary relation on F × F . The following are equivalent:

1. � satisfies A1, A2, A4, A5, A6 and A9.

2. There is a unique 2-additive capacity µ such that � is represented by Cµ.

8 Characterization of k-additive capacities

In this section we deal with the general k-additive case. We will follow the same line as for
the symmetric case. Then, we will use the results characterizing preference relations modelled
through Choquet integral with respect to a capacity and change A9 for another axiom A9(k)
for the general k-additive case.

For the k-additive case, we have the following result:

Proposition 15 A capacity µ is (at most) k-additive if and only if

∑

B⊆{i1,...,ik}

i1,...,ik∈A

µ(A \ B)(−1)|B| =
∑

B⊆{i1,...,ik}

µ(i1, . . . , ik \ B)(−1)|B|, ∀A such that i1, . . . , ik ∈ A.

Proof: Suppose that µ is not k-additive. Then, there exist A such that |A| > k and m(A) 6= 0.
Let us consider A of minimal cardinality in these conditions. Let us prove that ∀{i1, . . . , ik} ⊆ A,
we have

∑

B⊆{i1,...,ik}

µ(A \ B)(−1)|B| = m(A) + m({i1, . . . , ik}).

Consider C ⊆ A such that |C| = j. We have the following cases:

• If {i1, . . . , ik} 6⊆ C, then m(C) appears (1 − 1)k−|C∩{i1,...,ik}| = 0 times.

• If |C| > k, C 6= A, then m(C) = 0 by hypothesis and the coefficient is not important.

• If C = A, then m(A) appears once (when B = ∅).

• Finally, if C = {i1, . . . , ik}, then m(C) appears once (only in µ(A)).
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On the other hand, repeating the process for {i1, . . . , ik}, we have
∑

B⊆{i1,...,ik}

µ(i1, . . . , ik \ B)(−1)|B| = m(i1, . . . , ik).

Thus, the expression is constant if and only if µ is a k-additive measure.

We consider the axiom:

• A9(k) k-dimensional asymmetric order-preserving transfer: Consider f, g ∈ F such that
fi1 = · · · = fik , gi1 = · · · = gik . We consider fB, gB for all B ⊆ {i1, . . . , ik}, with t > 0
so that fB, f and gB, g are comonotone for all B. Let H : F → R be any functional
representing the preference relation �. Then,

∑

B⊆{i1,...,ik}

H(fB)(−1)|B| =
∑

B⊆{i1,...,ik}

H(gB)(−1)|B|.

Axiom A9(k) could be interpreted from A9 the same way as A7’(k) is interpreted from A7’.
Starting with the conditions of A9, if the decision maker does not care about the relative position
of i, j, then he follows A9; otherwise he cares about the position, and then we turn to A9(3)
and we restart again. The process finishes when we find the value of k. Then, A9(k) measures
again the sensitivity of the decision maker to the relative positions of individuals.

The following can be proved:

Proposition 16 Let � be a preference relation on F × F . If � verifies A1, A2, A4, A5 and
A6, then A9(k) is equivalent to

∑

B⊆{i1,...,ik}

i1,...,ik∈C

µ(C \ B)(−1)|B| =
∑

B⊆{i1,...,ik}

µ(B)(−1)k−|B|, ∀C such that i1, . . . , ik ∈ C.

Proof: As A1, A2, A4, A5 and A6 hold, we know from Theorem 8 that our preference
relation is modelled by the Choquet integral with respect to a capacity µ.

Let us take f, g ∈ F in the conditions of A9(k). Given i1, . . . , ik, consider Aik
f (resp. Aik

g ).
Then,

Cµ(fB) = Cµ(f) + t
[

µ(B ∪ Aik
f ) − µ(Aik

f )
]

, Cµ(gB) = Cµ(g) + t
[

µ(B ∪ Aik
g ) − µ(Aik

g )
]

.

Now,
∑

B⊆{i1,...,ik}

H(fB)(−1)|B| = t
∑

B⊆{i1,...,ik}

µ(B ∪ Aik
f )(−1)|B|,

∑

B⊆{i1,...,ik}

H(gB)(−1)|B| = t
∑

B⊆{i1,...,ik}

µ(B ∪ Aik
g )(−1)|B|,

and thus, A9(k) holds if and only if
∑

B⊆{i1,...,ik}

µ(B ∪ Aik
f )(−1)|B| =

∑

B⊆{i1,...,ik}

µ(B ∪ Aik
g )(−1)|A|, ∀f, g,
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whence the result holds.

Then, we have proved:

Theorem 11 Let � be a binary relation on F × F . The following statements are equivalent:

1. � satisfies A1, A2, A4, A5, A6 and A9(k).

2. There is a unique k-additive capacity µ such that � is represented by Cµ.

9 Conclusions

We have proposed a characterization of preference relations represented by the Choquet integral
with respect to different types of capacities, from symmetric capacities to general k-additive
measures, with an emphasis on 2-additive capacities.

Axioms for 2-additive measures (in the symmetric and in the general case) can be interpreted
from an economical point of view and the theory of social welfare. Axioms for the k-additive case
are just a generalization of those from the 2-additive case. For the symmetric case, an interesting
interpretation of the axioms was given by Gajdos, but to our knowledge, no interpretation has
been given for the general case. For this case an additional problem arises, as the relative
strength of each individual is not the same. Then, we have to work with families of acts or
income distributions, that make the resulting axioms rather difficult to handle and to translate
into natural language (axioms A9(k)).

A drawback considering these last axioms is that the aggregation function H intervenes into
them. This could be overcome at the price of introducing difference measurement [Krantz et al. (1971)]
(instead of relying on ordinal measurement), requiring from the decision maker to express a cer-
tain kind of intensity of preferences.

Another possible way to find a characterization would be to consider the Shapley interaction
index [Grabisch (1996b)] instead of the Möbius transform; however, the Choquet integral in
terms of Shapley interaction is rather complicated [Grabisch (1997c)], and thus a deep study
should be done.
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