Axiomatic structure of k-additive capacities - Archive ouverte HAL
Article Dans Une Revue Mathematical Social Sciences Année : 2005

Axiomatic structure of k-additive capacities

Résumé

In this paper we deal with the problem of axiomatizing the preference relations modelled through Choquet integral with respect to a $k$-additive capacity, i.e. whose Möbius transform vanishes for subsets of more than $k$ elements. Thus, $k$-additive capacities range from probability measures ($k=1$) to general capacities ($k=n$). The axiomatization is done in several steps, starting from symmetric 2-additive capacities, a case related to the Gini index, and finishing with general $k$-additive capacities. We put an emphasis on 2-additive capacities. Our axiomatization is done in the framework of social welfare, and complete previous results of Weymark, Gilboa and Ben Porath, and Gajdos.
Fichier principal
Vignette du fichier
mss02.pdf (260.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00188165 , version 1 (15-11-2007)

Identifiants

Citer

Pedro Miranda, Michel Grabisch, Pedro Gil. Axiomatic structure of k-additive capacities. Mathematical Social Sciences, 2005, 49 (2), pp.153-178. ⟨10.1016/j.mathsocsci.2004.06.001⟩. ⟨hal-00188165⟩
202 Consultations
280 Téléchargements

Altmetric

Partager

More