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Abstract 

 

Using low energy electron microscopy we observe that Pd deposited on Ru only attaches 

to small sections of the atomic step edges surrounding Pd islands. This causes a novel epitaxial 

growth mode in which islands advance in a snakelike motion, giving rise to labyrinthine patterns. 

Based on density functional theory together with scanning tunneling microscopy and low energy 

electron microscopy we propose that this growth mode is caused by a surface alloy forming 

around growing islands. This alloy gradually reduces step attachment rates, resulting in an 

instability that favors adatom attachment at fast advancing step sections. 

 

PACS numbers: 68.55.Ac, 61.72.Bb, 61.72.Ff, 68.37.Nq 
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At sufficiently high temperature, epitaxial growth is expected to occur by the flow of 

atomic steps: atoms deposited on flat terraces on the surface of a crystal diffuse across the surface 

until they encounter steps and are incorporated at low energy kink sites, causing the steps to 

advance. Since the utility of thin films grown in this way often depends on the surface step 

structure, much work has been devoted to characterizing the morphology of steps. For example, if 

diffusion along the step edges is fast step edges become smooth, whereas slow step diffusion 

produces dendritic step edges [1]. In single component systems the basic atomic processes 

governing the morphology of moving steps are increasingly well understood [2]. However, in 

heteroepitaxy, new types of cooperative behavior can arise [3-5]. In this work we report the 

discovery of a novel way in which surface alloying and step motion couple, leading to a 

distinctive labyrinthine island morphology during growth in which only fast moving step edges 

are good sinks for deposited atoms. By unraveling the cooperative atomic scale processes leading 

to these striking 100-nm-scale patterns we make an inroad into understanding the intricate 

connections between surface morphology and alloying. 

We use the complementary capabilities of real-time low energy electron microscopy 

(LEEM) and atomic resolution scanning tunneling microscopy (STM) to study the evolution and 

microscopic structure of Pd deposited on the Ru(0001) surface. Pd and Ru are somewhat soluble 

in each other (the maximum solubilities are a few percent at 900 K [6]) and thus at high enough 

temperature alloying during growth might be expected. We grow submonolayers of Pd by 

physical vapor deposition onto well cleaned Ru(0001) substrates at 840 K at base pressures below 

1×10-10 torr. Previous diffraction studies have shown that monolayer (ML) films of Pd on Ru are 

pseudomorphic [7]. A sequence of LEEM images [8] of the growing surface during Pd deposition 

at a substrate temperature of 840 K is shown in Fig. 1. Initially Pd starts to decorate the Ru 

substrate steps, forming a uniform narrow band at step edges. However this uniform step flow 

quickly stops and instead growth continues only from a few widely separated locations leading to 

a snakelike motion of islands, as shown in Fig. 1(a). These islands have an (approximately) 

constant width but grow longer as more Pd is deposited [see Figs. 1(b)-1(d)]. The direction of 

advance of the active end of an island occasionally changes, apparently randomly. The islands 

avoid connecting with themselves, other islands, and substrate steps - when the advancing active 

region comes close to an existing, inactive Pd layer, it turns away, and often splits in two [Figs. 

1(b)-1(d)]. This entire process leads to a labyrinthine structure of the submonolayer Pd. 
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FIG. 1. Sequence of LEEM images of the Pd growth process on Ru(0001) at 840 K. Field of view 

is 6 µm. The monoatomic Ru steps (the four parallel lines that cross the images) are separated by 

approximately 1.5 µm. The deposition rate is 1 ML in 421 s. After first uniformly decorating the 

step edges in (a), the Pd grows only from several distinct locations. In (b) and (c) the self-avoiding 

nature of different growth fronts is evident: Colliding growth fronts turn aside or split rather than 

coalesce. 

 

 

The observed growth mode is puzzling at first. All step edges should be good sinks for 

deposited Pd atoms, yet Pd is incorporated overwhelmingly at a few special regions of the step 

edge, causing them to advance. Also, growing islands should be easily able to coalesce. What 

atomic properties cause this growth behavior? One hypothesis is that the narrow islands are an 

example of a stress domain pattern; i.e., a narrow island width is chosen as a compromise 

between the energetic cost of creating step edges and the relaxation of surface stress at the island 

boundaries. For example, Pb overlayer islands grown on Cu(111) can exhibit a similar 

morphology [9], which has been characterized quantitatively as a stress domain pattern in 

thermodynamic equilibrium. We will show, however, that an entirely different, kinetic, 

mechanism is at work here. 
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To address the reasons for the snakelike growth we imaged the atomic structure of the 

surface with STM. We grew the Pd islands under the same conditions as in the LEEM 

experiments and then rapidly quenched the surface to room temperature before imaging it with 

STM. As seen in Fig. 2(a), the same meandering island shape was observed. Atomic resolution 

images with chemical contrast [10] show that there is a distinct difference between the atomic 

structure of the Ru terraces adjacent to steps that have apparently moved fast and those that have 

not: the terraces adjacent to the stationary step edges are heavily alloyed with Pd, with densities 

up to about 10%. On the other hand, very little alloying is observed adjacent to active, moving Pd 

step edges. These data immediately suggest that alloyed Ru regions have slowed the attachment 

of Pd adatoms on the Ru terraces to the edges of the Pd islands. 

 

 
FIG. 2. STM images after deposition of 0.2 ML of Pd. (a) View of an entire Pd island. (b),(c) 

Atomic resolution images of particular regions of the islands shown in (a). Close to the step 

section (b) the Pd island is alloyed with Ru atoms (circled) and the Ru terrace is alloyed with Pd 

atoms (one is marked by a square). The degree of alloying is much lower at the active step section 

(c). 
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This suggestion raises two questions: By what mechanism does the alloying impede Pd 

incorporation at steps, and why is the alloying restricted to the region adjacent to the stationary 

island edge? To answer these questions we performed density functional theory (DFT) 

calculations [11] within the Perdew-Burke-Ernzerhof [12] generalized gradient approximation of 

the energetics of Pd on Ru(0001) using the VASP code [13]. 

First, we explain why alloying is rare on terraces far away from Pd step edges. Consider 

the energetics of the process labeled “A” in Fig. 3(a). The calculated energy difference between 

dispersed Pd substitutional atoms on the Ru terraces and Pd atoms in the overlayer is Ef = 0.24 

eV. At the experimental temperature of 840 K this formation energy would give an equilibrium 

alloy density of approximately exp(-Ef / kT) = 0.04. However, the lowest energy barrier we could 

find for a Pd adatom to exchange with a Ru atom in the top substrate layer [process “C” in Fig. 

3(a)] is 2.48 eV. The resulting substitutional Pd and Ru adatom is 1.01 eV higher in energy than 

the Pd adatom initial state. Consequently, it is likely that the Ru adatom reexchanges with a 

substitutional Pd, because of the 1.01 eV energy gain and a barrier that is only 2.48 eV - 1.01 eV 

= 1.47 eV. The reexchange is avoided only if the Ru adatom is trapped at a step instead, where it 

ultimately gains the Ru adatom formation energy of 1.38 eV [process “B” in Fig. 3(a)]. Thus the 

alloying of Pd into the Ru surface by the adatom process is much more likely near steps than far 

away [14]. Consistent with this picture is the observation by STM of Ru atoms embedded in the 

Pd overlayer [Fig. 2(b)] with a density that parallels the density of alloyed Pd on the nearby Ru 

terrace. Furthermore, the density of Pd in the Ru terraces adjacent to the step edges is about 5%, 

on the order of what one would expect on the basis of the DFT formation energy. 

We identify two mechanisms by which the existence of a step edge alloy can hinder the 

attachment of Pd adatoms at Pd step edges. First, the alloy on the terraces might impede the 

diffusion of Pd toward steps. Supporting this scenario, our calculations show a repulsion between 

Pd adatoms and Pd atoms substituted into the Ru substrate: only three of the six threefold hollow 

sites adjacent to an embedded Pd are local minima with a binding energy that is reduced by 0.14 

eV over clean Ru(0001). This repulsion impedes diffusion of Pd near Pd islands. The alloy 

concentration ρ near the step edges observed in STM is, at most, 10%. Our calculations [15] for 

this density give a decrease in the diffusion coefficient D by a factor of 2. If the alloying region is 

only a few nm wide as observed in STM, this decrease in D is by itself not sufficient to 

effectively block the step edges. 
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FIG. 3. (a) Various processes involved in the PdRu alloy formation. (b) Schematic of the 

instability of Pd step attachment caused by variations in alloy concentration in front of the step 

edges. The dotted lines represent lines of equal concentration of Pd alloyed into the Ru terraces. 

Regions with locally less alloy (left) become better sinks of Pd, leading to larger growth rates 

(right) and a further decrease in alloy concentration. 

 

 

A second alloying effect that slows the Pd step advancement is that covering alloyed Pd 

atoms by the advancing Pd layer costs energy compared to advancing over the pure Ru substrate. 

The energy penalty is 0.5 eV per embedded Pd, almost equal to the typical binding energy of Pd 

to the Pd step of 0.61 eV. Given the low Pd adatom diffusion barrier of 0.19 eV it is reasonable to 

expect that local equilibrium along steps can be established: Pd adatoms that attach to a Pd island 

step located over a heavily alloyed substrate region are more likely to detach because of their 

higher energy; i.e., the Pd adatom density in equilibrium with a step edge section advancing over 

an alloyed terrace would be higher than over a clean Ru terrace. This would cause concentration 

gradients on the terraces leading to a Pd flux away from alloyed step edges and toward the edges 

that are in clean regions. Thus growth of Pd over alloyed regions will be avoided. Notice that the 

higher Pd adatom concentration produced by this mechanism would reinforce the mechanism 

discussed above by promoting the alloying of Pd atoms into the Ru substrate. 

In any case, the degree of alloying near a stationary step edge, and hence the barrier to Pd 

attachment, depends on time. We checked experimentally the time dependence of the Pd 

attachment barrier by starting the growth of narrow Pd islands and then interrupting the Pd dosing 

for different periods of time. Stopping the deposition causes the growth to cease immediately. If 
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we restart deposition three or more minutes later, none of the existing active regions resume 

growing. Instead, new islands are nucleated and new active step edges emerge from them, much 

as during the early state of the experiments. With shorter interruptions the original active regions 

of the step edges resume growth. This suggests that the alloy concentration necessary to block 

step edges takes some time to build up. 

Can this time dependent alloy concentration profile near step edges account for the 

observed growth mode? When step edges are moving slowly, the alloy concentration should 

behave similarly to stationary steps: the alloy concentration next to the step edges increases until 

it reaches a relatively large (close-to-equilibrium) value of about 5% and then gradually extends 

onto the adjoining terraces. As shown schematically in Fig. 3(b), this situation leads to an 

instability in the growth front: the flux of Pd attaching at the step edge will be largest where the 

alloy concentration is (by random fluctuations, initially) the smallest. This increased attachment 

and higher step velocity causes the alloy concentration in front of the step to be even lower 

(because the time spent by the step in any one position is less) and Pd attachment to be even 

faster. If the speed of the steps becomes sufficiently large, one can envision a steady-state 

situation where the alloy concentration near the step edge remains at a constant low value below 

the equilibrium density. We propose that these slow and fast regimes are separated by a distinct 

critical speed. Below the critical speed, attachment at the Pd step edges becomes increasingly 

unfavorable with time as the alloy concentration builds up. Above the critical speed, the step edge 

moves faster than the speed at which the increased alloy concentration spreads onto the terrace, 

so that concentration remains low and Pd attachment stays easy. 

The existence of such a critical velocity has direct experimental support. In Fig. 1 for 

example, no step propagates at a velocity less than 45 nm/s. Remarkably, the propagation speed is 

always very close to this minimum velocity, despite strong variations in the environment and size 

of the moving front. To rationalize this result we note that moving more quickly than the critical 

speed (given that the local flux remains constant) would result in a narrowing of the growth front 

(to conserve mass). This shrinking would be resisted by various effects. For example, a narrow 

growth front would require adatom concentration gradients perpendicular to the growth direction. 

These gradients would be unstable and would broaden (and thus slow) the growth front. The 

increased energy associated with large step curvatures would also oppose narrowing. Thus the 

growth front appears to propagate at the slowest possible sustainable speed [16]. 
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In this scenario, the critical velocity should only depend on the rate of alloying but not on 

the overall deposition flux. This prediction is tested in LEEM experiments that use different Pd 

deposition rates. We have measured the growth velocity of deposition rates of 1/650, 1/1400, and 

1/6300 ML/s. The measured active step velocities are 50, 44, and 30 nm/s, respectively. So, an 

order of magnitude change in flux leads only to a relatively small change in velocity, roughly 

consistent with our proposed model. Given approximately the same number of active regions per 

unit area, mass conservation then requires that the higher the flux, the wider the active regions. 

This effect is clearly observed in Fig. 4. Also the active regions tend to get narrower, but move at 

the same speed, at the late stages of growth when there are more active regions and the flux per 

active region is less. Notice that the flux dependence of the width rules out that the labyrinthine 

patterns can be explained in terms of equilibrium surface stress domains. 

 
FIG. 4. LEEM images of Pd deposited on Ru(0001) at deposition rates and times of (a) 1/650 

ML/s and 42 s and (b) 1/6300 ML/s and 190 s. The deposition temperature is 840 Κ; the field of 

view is 6 µm. The averaged speed of the advancing active regions is 50 nm/s and 30 nm/s, 

respectively. 

 

 

Corroboration that surface alloying is responsible for the novel growth process comes by 

codepositing Ru with the Pd. According to the DFT calculations described above, one would 

expect the blocking Pd atoms embedded in the Ru substrate to be displaced by deposited Ru 

adatoms [17]. Consistent with this we find that even small simultaneous codeposition of Ru [with 

rates of 1/650 ML/s (Pd) and 1/1500 ML/s (Ru)] causes Pd to be uniformly incorporated into all 

step edges. 

In summary, we have found strong evidence that surface alloying can impede step-flow 

growth during Pd/Ru epitaxy at around 840 K, leading to distinctive snakelike motion that gives 
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rise to labyrinth patterns. The conclusion that an instability causes the observed growth mode 

might be applicable to other heteroepitaxial systems with surface alloying, in particular if the 

deposited species has weaker bonds and lower surface energy than the substrate species. In this 

general case the higher adatom formation energy of the substrate species should kinetically limit 

alloying on substrate terraces to regions close to step edges with all its consequences. The kinetic 

mechanism for this pattern formation is very different from the explanation of similar patterns in 

terms of surface stress domains, as in, e.g., Pb/Cu(111). It is plausible that labyrinthine growth 

also could occur in systems where impurity gas adsorption [18] creates step attachment barriers. 

This research was partly supported by the Office of Basic Energy Sciences, Division of 

Materials Sciences, U.S. Department of Energy under Contracts No. DE-AC04-94AL85000 and 

No. DE-AC02-05CH11231, and by the Spanish Ministry of Science and Technology through 

Project No. MAT2006-13149-C02-02. 
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