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1 Introduction.

We gather in this manuscript some of the concepts in lattice modelling we de-
scribed during our talk at the ApplMath07 Conference, Brijuni Island, July
2007. In Section 2, we spend some time on the axiomatics of lattice mod-
elling. In Section 3, we summarize the discrete homogenization procedure; a
complete version of the results can be found in [2], [3] and [5]. In Sections 4
and 5, we investigate the symmetry properties of the limit constitutive law
both in the nonlinear and in the linear regimes.

2 Lattice modelling.

We consider lattices that may be one-dimensional, two-dimensional or three-
dimensional and that can deform into R

3. In the context of large deformation
mechanics, we consider that they consist of bars labelled by b ∈ B that are
supposed to remain straight and of nodes labelled by n ∈ N . Nodes and bars
are the lattice material elements. In the context of atomic networks, nodes
are replaced by atoms and bars are replaced by bonds. Both sets B and N are
discrete sets. Bars and nodes of a one-dimensional lattice are conveniently
numbered by subsets of N or Z. In the simplest example of a two-dimensional
lattice which is obtained by the repetition of a reference pattern consisting of
one node and of two bars, one can choose to number the nodes and the bars
by subsets of Z

2. More refined numbering systems are necessary to take into
account the structure repetitivity, in particular for two-dimensional (resp.
three-dimensional) lattices when the reference pattern contains more than
one node, or contains one node and more than two (resp. three) bars. Such
a numbering will be seen in Section 3.

2.1 Lattice balance equations.

It follows from the assumption that bars remain straight that once the actual
position ϕ : N 7→ R

3 of nodes is known, the placement of the overall structure
is known as well. The actual (or deformed) position results from external
loads fϕ : N 7→ R

3 that are applied on the nodes. The exponent ϕ recalls
that loads are applied in the actual configuration and that they may be live
loads. Let us derive the equilibrium equations of the structure from basic
concepts in mechanics. Each bar goes from an origin node O(b) ∈ N to an
end node E(b) ∈ N . Following usual axioms in basic mechanics, we postulate
that, when in the deformed position given by ϕ, each bar b is submitted to a
force Fϕ(b) ∈ R

3 exerted by its end node and to a force Gϕ(b) ∈ R
3 exerted

by its origin node. Conversely, by the action-reaction principle, a node n that
is the origin node of some bar b is submitted to the force −Gϕ(b) and, if it
is the end node of some bar b, it is submitted to −Fϕ(b). Therefore, the
equilibrium of node n reads

−
∑

{b|O(b)=n}
Gϕ(b) −

∑

{b|E(b)=n}
Fϕ(b) + fϕ(n) = 0. (1)
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Similarly, we admit from basic mechanics that two bars that meet in a lattice
node interact by moments. We number the set of bar interactions by a discrete
set I. In each interaction i ∈ I, that occurs at node n(i), we distinguish an
origin bar O(i) and an end bar E(i) where, with no risk of confusion, we keep
the same notation O and E as for origins and ends of bars. The end bar E(i)
exerts, in the actual position ϕ(n(i)) of n(i), a moment Mϕ(i) on the origin
bar O(i), and conversely the action of the origin bar onto the end bar is the
moment −Mϕ(i). The equilibrium of bar b consists of both the balance of
forces and the balance of moments. The force balance reads

Gϕ(b) + Fϕ(b) = 0, (2)

and the moment balance expressed in the deformed position of the origin
node of b reads

∑

{i|O(i)=b}
Mϕ(i) −

∑

{i|E(i)=b}
Mϕ(i) + [ϕ(E(b)) − ϕ(O(b))] ∧ Fϕ(b) = 0. (3)

Equation (2) gives Gϕ(b) = −Fϕ(b), and the set of above balance equations
becomes equivalent to the set of equations in R

3 given by

∀n ∈ N ,
∑

{b|O(b)=n}
Fϕ(b) −

∑

{b|E(b)=n}
Fϕ(b) + fϕ(n) = 0, (4)

∀b ∈ B,
∑

{i|O(i)=b}
Mϕ(i)−

∑

{i|E(i)=b}
Mϕ(i)+ [ϕ(E(b))−ϕ(O(b))]∧Fϕ(b) = 0.

(5)
We decompose Fϕ(b) into the sum of its component Tϕ(b) along the deformed
position of b and of the orthogonal component Tϕ⊥(b). The letter T in Tϕ(b)
reminds that it is a tension vector. As it is required that points O(b) and
E(b) cannot be mapped on a single point in R

3 – otherwise the bar length
would be set to 0 – equation (5) shows that if the deformation ϕ and the
moments are known, so are the transverse components Tϕ⊥(b). Actually, they
are given by

T
ϕ
⊥(b) =

(

∑

{i|E(i)=b}
Mϕ(i) −

∑

{i|O(i)=b}
Mϕ(i)

)

∧ ∆ϕ(b)

|∆ϕ(b)|2 , (6)

where we have set ∆ϕ(b) = ϕ(E(b)) − ϕ(O(b)) and where | · | denotes the
Euclidean norm in R

3. To be precise, equation (5) is equivalent to equation
(6) and to the fact that

∑

{O(i)=b}M
ϕ(i)−∑{E(i)=b}M

ϕ(i) is orthogonal to

∆ϕ(b). Finally, the lattice equilibrium is characterized by the set of equations
containing the unknowns ϕ, Tϕ(b) and Mϕ(i) that reads

∀n ∈ N ,
∑

{b|O(b)=n}
Tϕ(b) −

∑

{b|E(b)=n}
Tϕ(b)

+
∑

{b|O(b)=n}
T
ϕ
⊥(b) −

∑

{b|E(b)=n}
T
ϕ
⊥(b) + fϕ(n) = 0, (7)
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where Tϕ⊥(b) expresses in terms of ϕ and of Mϕ(i) by equations (6) and where
∑

{O(i)=b}M
ϕ(i) −∑{E(i)=b}M

ϕ(i) is orthogonal to ∆ϕ(b).

In the above description, we have not dealt with boundary conditions.
Suppose the lattice is fixed in some points n ∈ N0 where N0 is a non empty
subset of N . Then, the deformation ϕ has to be prescribed in these points
and the balance of nodes is restricted to nodes belonging to N \ N0. Other
boundary conditions can be incorporated in the model as well.

Variational formulation. Let us momentarily denote by (LHS)(n) the left-
hand side of (7) for a given n. Then, the set of all equations (7) is equivalent
to

∀v : N 7→ R
3,
∑

n∈N
(LHS)(n) · v(n) = 0. (8)

Vectors v(n), which are arbitrary, are interpreted as virtual velocities in vir-
tual power formulations of mechanics. By introducing the R

3-vectors

ωϕ(b) =
∆ϕ(b)

|∆ϕ(b)|2 ∧
(

v(E(b)) − v(O(b))
)

, (9)

that are interpreted as bar angular velocities, and by reordering the sums,
equations (6) and (7) are equivalent to

∀v : N 7→ R
3,−

∑

b∈B
Tϕ(b) ·

(

v(E(b)) − v(O(b))
)

−
∑

i∈I
Mϕ(i) ·

(

ωϕ(E(i)) − ωϕ(O(i))
)

+
∑

n∈N
fϕ(n) · v(n) = 0.(10)

2.2 Constitutive laws.

For any b and for any i, the axial tension Tϕ(b) and the moment Mϕ(i)
that act in the actual position are functions of ϕ. They express the response
of the material to a deformation and their possible dependence on b and i
translates a possible non uniform – or non homogeneous – behavior of the
structure. In any case, constitutive laws which are defined as the mappings
that associate a tension or a moment with a deformation ϕ have to satisfy
frame indifference requirements.

Invariance principles. The action of the external world is balanced in the
configuration given by ϕ : N 7→ R

3 by forces Fϕ(b) and by moments Mϕ(i).
Let O(3) be the set of orthogonal transformations. Invariance principles state
that

∀q ∈ R
3,∀Q ∈ O(3), F q+Qϕ(b) = QFϕ(b) and Mq+Qϕ(i) = (detQ)QMϕ(i),

(11)
which, by (6), is equivalent to

∀q ∈ R
3,∀Q ∈ O(3), T q+Qϕ(b) = QTϕ(b) and Mq+Qϕ(i) = (detQ)QMϕ(i).

(12)
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It should be noted that, in contrast with the modelling of three-dimensional
continuous media, there is no reason in restricting the set in which Q may
vary to the set SO(3) of rotations.

Elastic laws. The lattice is said to be elastic if, on the one hand, the axial
tension in bar b depends only on b and on the positions ϕ(O(b)) and ϕ(E(b))
of the bar ends and if, on the other hand, the moment at interaction i depends
only on i, and on the positions ϕ(n(i)), ϕ(nO(i)) and ϕ(nE(i)) of the node
n(i) – where the interaction takes place – and of the two other nodes of the
bars involved in the interaction. To write this in a mathematical way, it is
useful to introduce a notation for the director vectors of the deformed bars
and we let

eϕ(b) =
∆ϕ(b)

|∆ϕ(b)| .

Assumptions on elasticity now read: there exist N̂ b : {(y1, y2) ∈ R
3×R

3; y1 6=
y2} 7→ R and M̂ i : {(y1, y2, y3) ∈ (R3)3; yi 6= yj , i 6= j} 7→ R

3 such that

Tϕ(b) = N̂ b
(

ϕ(O(b)), ϕ(E(b))
)

eϕ(b) (13)

and
Mϕ(i) = M̂ i

(

ϕ(n(i)), ϕ(nO(i)), ϕ(nE(i))
)

. (14)

Let us examine the consequences of the material indifference principles
on the possible forms of the elastic laws.

Proposition 1 Tension vectors Tϕ(b) defined in terms of N̂ b by (13) satisfy
the identity T q+Qϕ(b) = QTϕ(b) for all one-to-one ϕ : N 7→ R

3, for all q in

R
3 and all Q ∈ SO(3), if and only if the mapping N̂ b reduces to a function

of the distance between its two vector arguments. Then, the constitutive law
reads

Tϕ(b) = N̄ b
(

|ϕ(E(b)) − ϕ(O(b))|
)

eϕ(b) (15)

where N̄ b is a mapping from R
+∗ into R, and the invariance through matrices

in O(3) is automatically satisfied.

Proof. The identity T q+Qϕ(b) = QTϕ(b) is satisfied for all ϕ : N 7→ R
3

(one-to-one), for all q in R
3 and all Q ∈ SO(3), if and only if

∀ϕ,∀q ∈ R
3,∀Q ∈ SO(3), N̂ b

(

q +Qϕ(O(b)), q +Qϕ(E(b))
)

eq+Qϕ(b)

= N̂ b
(

ϕ(O(b)), ϕ(E(b))
)

Qeϕ(b). (16)

Obviously, eq+Qϕ(b) = Qeϕ(b) and the above equality amounts to

N̂ b
(

q +Qϕ(O(b)), q +Qϕ(E(b))
)

= N̂ b
(

ϕ(O(b)), ϕ(E(b))
)

.

By choosing Q = Id, we see that

∀y1, y2 ∈ R
3, y1 6= y2, N̂

b(y1, y2) = N̂ b(0, y2 − y1).
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By choosing q = 0, we obtain

∀y ∈ R
3, y 6= 0,∀Q ∈ SO(3), N̂ b(0, Qy) = N̂ b(0, y),

from which it follows that two vectors y and z such that |y| = |z| satisfy

N̂ b(0, y) = N̂ b(0, z). �

Proposition 2 Moment vectors Mϕ(i) defined in terms of M̂ i by (14) sat-
isfy the identity Mq+Qϕ(i) = detQQMϕ(i) for all one-to-one ϕ : N 7→ R

3,

for all q in R
3 and all Q ∈ O(3), if and only M̂ i assumes the following form

∀(y1, y2, y3) ∈ (R3)3 such that yi 6= yj , i 6= j, M̂ i(y1, y2, y3) =

m̄i
(

|y2 − y1|, |y3 − y1|, (y2 − y1) · (y3 − y1)
)

y2 − y1 ∧ y3 − y1 (17)

where m̄i : {(s, t, c) ∈ (R+∗)2 × R; |c| ≤ st} 7→ R. Equivalently, the moment
vectors can be written under the form

Mϕ(i) = m̄i
(

|∆ϕ(O(i))|, |∆ϕ(E(i))|,∆ϕ(O(i)) ·∆ϕ(E(i)
)

∆ϕ(O(i)) ∧∆ϕ(E(i)). (18)

Proof. The identity Mq+Qϕ(i) = (detQ)QMϕ(i) is satisfied for all one-to-one
ϕ : N 7→ R

3, for all q in R
3 and all Q ∈ O(3), if and only if

∀ϕ,∀q ∈ R
3,∀Q ∈ O(3), M̂ i

(

q +Qϕ(n(i)), q +Qϕ(nO(i)), q +Qϕ(nE(i))
)

= (detQ)QM̂ i
(

ϕ(n(i)), ϕ(nO(i)), ϕ(nE(i))
)

(19)

or else

∀(y1, y2, y3) ∈ (R3)3 such that yi 6= yj , i 6= j, ∀Q ∈ O(3),

M̂ i(q +Qy1, q +Qy2, q +Qy3) = (detQ)QM̂ i(y1, y2, y3). (20)

Obviously, if M̂ i satisfies (17), then it satisfies (20). Let us prove the converse
assumption. By choosing Q = Id in (20) and q = −y1, we obtain that

∀(y1, y2, y3) ∈ (R3)3, yi 6= yj , i 6= j, M̂ i(y1, y2, y3) = M̂ i(0, y2 − y1, y3 − y1).
(21)

Therefore, M̂ i can be expressed in terms of a function m̂i of two variables
defined on {(z2, z3) ∈ (R3∗)2); z2 6= z3}; indeed,

∀(y1, y2, y3) ∈ (R3)3, yi 6= yj , i 6= j, M̂ i(y1, y2, y3) = m̂i(y2−y1, y3−y1) (22)

where m̂i(z2, z3) = M̂ i(0, z2, z3). This function inherits the invariance prop-

erties of M̂ i so that

∀(z2, z3) ∈ (R3∗)2, z2 6= z3, ∀Q ∈ O(3),
m̂i(Qz2, Qz3) = (detQ)Qm̂i(z2, z3). (23)

Let us first chooseQ = −Id in (23). We obtain that m̂i(−z2,−z3) = m̂i(z2, z3).
Then, let Q = Rπ be the rotation with angle π around z2 ∧ z3, then (23)
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proves that m̂i(−z2,−z3) = Rπm̂
i(z2, z3) which by the previous equation

gives Rπm̂
i(z2, z3) = m̂i(z2, z3). Therefore m̂i(z2, z3) is an eigenvector of Rπ

associated with the eigenvalue 1. This means that it is colinear to z2 ∧ z3
from which we deduce that m̂i can now be written under the form

∀(z2, z3) ∈ (R3∗)2, z2 6= z3, m̂
i(z2, z3) = mi(z2, z3) z2 ∧ z3 (24)

where mi : {(z2, z3) ∈ (R3∗)2); z2 6= z3} 7→ R. Going back to (23), we obtain
the invariance property of mi

∀(z2, z3) ∈ (R3∗)2, z2 6= z3,∀Q ∈ O(3), mi(Qz2, Qz3) = mi(z2, z3). (25)

Suppose we are given two pairs of vectors z2, z3 and z′2, z
′
3 such that |z2| =

|z′2|, |z3| = |z′3| and z2 · z3 = z′2 · z′3. Then there exists Q ∈ O(3) such that
z′2 = Qz2 and z′3 = Qz3. Therefore,mi(z′2, z

′
3) = mi(z2, z3). As a consequence,

there exists m̄i : {(s, t, c) ∈ (R+∗)2 × R; |c| ≤ st} 7→ R such that

∀(z2, z3) ∈ (R3∗)2, z2 6= z3, m
i(z2, z3) = m̄i(|z2|, |z3|, z2 · z3), (26)

and the result follows. �

Remark 1 (i) It follows from (18) that for a given b,
∑

{O(i)=b}M
ϕ(i) =

∆ϕ(b)∧V ϕ(b) where V ϕ(b) ∈ R
3. Therefore, it is orthogonal to ∆ϕ(b). So is

true for
∑

{E(i)=b}M
ϕ(i). As a consequence, the mandatory condition stating

that (
∑

{O(i)=b}M
ϕ(i)−∑{E(i)=b}M

ϕ(i)) should be orthogonal to ∆ϕ(b) is

satisfied when the principle of material indifference is.
(ii) It is worth mentioning that the specific form (18) cannot be obtained

if, in the invariance principle (12), the orthogonal group O(3) is replaced by
SO(3). Indeed,

Mϕ(i) = m̄i
O ∆ϕ(O(i)) + m̄i

E ∆ϕ(E(i)) + m̄i ∆ϕ(O(i)) ∧∆ϕ(E(i)), (27)

where m̄i
O is short-hand for m̄i

O

(

|∆ϕ(O(i))|, |∆ϕ(E(i))|,∆ϕ(O(i))·∆ϕ(E(i))
)

and similar simple writings are used for m̄i
E and m̄i, satisfies (12) with SO(3)

in place of O(3).

We conclude this section by writing the complete equilibrium problem of
an elastic network. It reads: Find ϕ : N 7→ R

3 such that

∀v : N 7→ R
3,−

∑

b∈B
Tϕ(b) ·

(

v(E(b)) − v(O(b))
)

−
∑

i∈I
Mϕ(i) ·

(

ωϕ(E(i)) − ωϕ(O(i))
)

+
∑

n∈N
fϕ(n) · v(n) = 0 (28)

where ωϕ(b) = ∆ϕ(b)
|∆ϕ(b)|2 ∧ (v(E(b)) − v(O(b))), and where Tϕ(b) and Mϕ(i)

are known in terms of ϕ by

Tϕ(b) = N̄ b(|∆ϕ(b)|) eϕ(b) (29)

and
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Mϕ(i) = m̄i
(

|∆ϕ(O(i))|, |∆ϕ(E(i))|,∆ϕ(O(i)) ·∆ϕ(E(i)
)

(

∆ϕ(O(i)) ∧∆ϕ(E(i))
)

. (30)

A special case that is in particular valid for networks of carbon atoms is
obtained when m̄i is such that for all s, t in R

+∗ and for all c in R such that
|c| ≤ st, m̄i(s, t, c) = 1

st
M̄ i( c

st
) where M̄ i : [−1, 1] 7→ R. Then,

Mϕ(i) = M̄ i(pϕ(i)) eϕ(O(i)) ∧ eϕ(E(i)) (31)

where pϕ(i) = eϕ(O(i)) · eϕ(E(i)) denotes the inner product between the
deformed unit bars at interaction i. Boundary conditions have to be added
to this system depending on the mechanical setting.

3 Lattice homogenization. Graphene sheets as a model example.

The description given in the previous section is valid for any kind of elastic
lattice, large or small, with a large number of nodes or a small number of
nodes, whatever the precise meaning of these terms may be. Of particular in-
terest are the lattices that are generated by the repetition of a given pattern.
For instance, a graphene sheet, which consists of carbon atoms that in a rest
position are located at the vertices of regular hexagons, can be generated by
an elementary pattern comprising two nodes and three bars, see Fig.1 where
the reference pattern is the bold Y-cell. The node labelling, the bar labelling
and the interaction labelling of these lattices can be made in a periodic way
that has been first explained in [7]. For the graphene sheet, for instance,
it suffices to translate the reference pattern along either ν1j1 or ν2j2 with
(ν1, ν2) ∈ Z

2 to generate all nodes and bars. A given node n in the overall
lattice is labelled by (m, ν): ν indicates in which translated pattern the node
is located, m = 1, 2 indicates whether n is the first or the second node in this
pattern. In this explanation of the numbering, we have identified the nodes
with their geometrical positions in the rest configuration. This makes the
labelling process easier to explain but this is not mandatory: One can stay
at an abstract level. Similar numberings (a, ν) and (j, ν) are used for bars
and bar interactions. In the graphene example again, a = 1, 2, 3 numbers the
bars locally (in a pattern) and j = 1, · · · , 6 numbers the interactions a local
pattern is involved in.

It is natural to expect that for loadings such that in the actual positions
a quasi-periodic structure can be seen and such that the size of the deformed
elementary cells is small with respect to the size of the overall deformed
structure – which means that the number of nodes is large – the equilib-
rium problem of the lattice can be approximated by a continuous model.
The words “small” or “large” used in the above sentence cannot be given a
priori a precise meaning: the process is valid or not depending on the scale
the phenomena one wants to describe occur at. Convergence results that –
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node 1

node 2

bar 3bar 1

bar 2

j
1

j
2

Fig. 1 Graphene sheet network. Y-shaped elementary cell in bold.

as far as we know –are not yet available in the case of interactions involving
moments will be useful for validating the method.

The formal homogenization process has been described at length in [2] and
in [5], and particularized to graphenes in [3]. We concentrate on this latter
case and we recall both the assumptions necessary to the asymptotic process
and the limit problem. The graphene equilibrium problem is commonly seen,
see [6] for instance, as the minimization of a global energy I = W −L where
L : N 7→ R is due to external loads and where W : N 7→ R is the interatomic-
interbond energy given by

W (ϕ) =
∑

b∈B

kl

2
[|∆ϕ(b)| − r]2 +

∑

i∈I

kp

2
[arccos pϕ(i) − 2π

3
]2 (32)

or, more generally, by

W (ϕ) =
∑

b∈B

kl

2
[|∆ϕ(b)| − r]2 +

∑

i∈I

kp

2
[h(pϕ(i)) − 2π

3
]2 (33)

with r the rest length of interatomic bonds, kl and kp positive stiffness coeffi-
cients, and h a mapping from [−1, 1] into R such that h(− 1

2 ) = 0, h′(− 1
2 ) 6= 0.
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Classical values, see [1], [6], are r = 0.14 × 10−9 which means that the rest
length is 0.14 nm, and kl = 652, kp = 8.76 × 10−19 which means that the
values of the respective stiffnesses are 652 N.m−1 and 8.76× 10−19 N.m. Let
h̄ = hh′. The Euler equations of the minimization problem are nothing but
equations (28), (29) and (31) with

N̄ b(|∆ϕ(b)|) = kl [|∆ϕ(b)| − r] and M̄ i(pϕ(i) = −kph̄(pϕ(i)). (34)

The discrete homogenization process consists in introducing a sequence
of lattices with geometrical constants εr, kl and ε2kp, with node loadings
fε(m, ν) = ε2g(m, νε) and in letting ε go to 0. Such choices lead to a limit
continuous problem which is a membrane problem. We give hereunder a de-
scription of this model where it is worth being aware at once that the contin-
uous constitutive law is defined in an implicit way. For a detailed derivation,
the interested reader is referred to [3].

The coordinates the limit problem is naturally expressed in are the coor-
dinates λ1 and λ2 corresponding to the oblique basis (j1, j2) of Fig. 1 given

by j1 =
√

3 i1, j2 =
√

3( 1
2 i1 +

√
3

2 i2) where (i1, i2) is the standard orthonor-
mal basis. In the formal derivation, we assume that, for any m = 1, 2 and for
any ν ∈ Z

2, the actual positions of nodes (m, ν) can be written with νε kept
fixed and equal to λ as

ϕε(m, ν) = ψ0(λ) + εψ1
m(λ) + · · · (35)

when ε goes to 0. The equilibrium continuous limit problem on a subset Ω
of R

2 reads

∀v : λ ∈ Ω 7→ v(λ) ∈ R
3,

∫

Ω

S0
β · ∂v

∂λβ
dλ−

∫

Ω

g · v dλ = 0 (36)

where S0
1 and S0

2 interpret as the first Piola-Kirchhoff stress vectors of the
continuous medium equivalent to the lattices, and the subscript β belongs
to {1,2}. Obtaining a complete limit problem requires being able to express
the first Piola-Kirchhoff stress vectors that appear in (36) in terms of the
limit deformation ψ0 : λ ∈ Ω 7→ ψ0(λ) ∈ R

3. In other words, this means
identifying the constitutive law of the equivalent medium. Because of the
homogenization procedure, this is done in an implicit way. First, we have an
explicit expression of S0

1 and S0
2 in terms of the auxiliary unknown functions

B0
1 = −∂ψ

0

∂λ1
+ ψ1

2 − ψ1
1 , B

0
2 = −∂ψ

0

∂λ2
+ ψ1

2 − ψ1
1 , B

0
3 = ψ1

2 − ψ1
1 (37)

that contain both the limit deformation ψ0 and the next terms ψ1
1 and ψ1

2 in
the expansions. For ease of notation, let

e01 =
B0

1

|B0
1 |
, e02 =

B0
2

|B0
2 |
, e03 =

B0
3

|B0
3 |
. (38)

Pure formal identification of the leading order terms in the scaled equations
(28) provides (36) with

S0
1 = −N0

1 + 2 (M0
3 −M0

2 ) ∧ e01
|B0

1 |
, S0

2 = −N0
2 + 2 (M0

1 −M0
3 ) ∧ e02

|B0
2 |
, (39)
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where
N0
a = kl (|B0

a| − r) e0a, a = 1, 2, 3, (40)

and
M0
j = −kp h̄(e0j+1 · e0j+2) e

0
j ∧ e0j+1, j = 1, 2, 3. (41)

In order to express S0
1 and S0

2 in terms of ψ0 only, we need an expres-
sion of ψ1

2 − ψ1
1 in terms of ψ0. This is achieved by choosing test-functions

of a specific form in the scaled equations (28): namely, we take v(1, ν) =
εθ(λ) v1, v(2, ν) = εθ(λ) v2 where v1, v2 belong to R

3. This gives rise to the
identity

3
∑

a=1

N0
a + 2

3
∑

j=1

M0
j ∧ (

e0j+2

|B0
j+2|

−
e0j+1

|B0
j+1|

) = 0. (42)

This equality means that the sum of several functions with variable λ and
values in R

3 is equal to 0. By equations (40) and (41) and definition (38),
this is a nonlinear equation that is explicit in terms of B0

1 , B0
2 , B0

3 . Calling

to the definition (37) of B0
a, a = 1, 2, 3 in terms of ∇λψ

0 = (∂ψ
0

∂λ1

, ∂ψ
0

∂λ2

) and of

ψ1
2 − ψ1

1 , it is considered as an implicit equation that provides (ψ1
2 − ψ1

1)(λ)
in terms of ∇λψ

0(λ) for any λ. This being done, equations (40) and (41)
provide N0

a (λ), a = 1, 2 and M0
j (λ), j = 1, 2, 3 in terms of ∇λψ

0(λ). Then

equations (39) provide in turn S0
β(λ), β = 1, 2, in terms of ∇λψ

0(λ). In this

way, the constitutive relationship has been obtained. It is a mapping Ŝ that
associates with a set of two vectors G = (G1, G2) in R

3 × R
3, standing for

the derivatives with respect to λ1 and to λ2 of the position, a set of two
vectors Ŝ(G) = (Ŝ1(G), Ŝ2(G)) in R

3 × R
3, standing for the stress vectors

with respect to λ. In particular, we have

S0
1(λ) = Ŝ1(∇λψ

0(λ)), S0
2(λ) = Ŝ2(∇λψ

0(λ)). (43)

As it only makes use of the first derivative of ψ0, we can say that the limit
continuous problem is a membrane problem.

Expressions with respect to an orthonormal basis. In the above derivation, we
have worked with the first Piola-Kirchhoff stress tensor S0 associated with
the coordinates λ. We can perfom a change of variables in order to recover
coordinates (x1, x2) associated with the orthonormal basis (i1, i2). It is easily
checked that the change of coordinates is given by the linear transformation

x = (x1, x2) = χ(λ1, λ2) where χ(λ1, λ2) = (r
√

3λ1 + r
√

3
2 λ2, r

3
2λ2). We

denote by Σ0 = (Σ0
1 , Σ

0
2) the first Piola-Kirchhoff stress tensor associated

with x. It is related to S0 by the formula

Σ0(x) = (detK)−1 S0(λ) KT (44)

where K = r

(√
3

√
3

2
0 3

2

)

, or else by,

Σ0
1(x) =

1

3r
(2S0

1(λ) + S0
2(λ)), Σ0

2(x) =
1√
3r
S0

2(λ). (45)
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Naturally, Σ0 satisfies the equilibrium equation

−divxΣ
0 = f, (46)

where f(x) = (det K)−1 g(λ). Let us now turn to the expression of the po-
sition of the lattice in terms of the x variable. Define ϕ0 by ϕ0(x) = ψ0(λ)
where x = χ(λ) and let ∇xϕ

0(x) = (∂x1
ϕ0(x), ∂x2

ϕ0(x)). Then we have
∇λψ

0(λ) = ∇xϕ
0(x)K and by (43)

Σ0
1(x) =

1

3r
(2 Ŝ1 + Ŝ2)(∇xϕ

0(x)K), Σ0
2(x) =

1√
3r
Ŝ2(∇xϕ

0(x)K). (47)

In other words, the constitutive relationship of the first Piola-Kirchhoff stress
tensor is the mapping that associates with any 3×2 matrix F the two vectors

Σ̂1(F ) =
1

3r
(2 Ŝ1 + Ŝ2)(F K), Σ̂2(F ) =

1√
3r
Ŝ2(F K). (48)

4 Graphene material symmetries.

We recall that for an elastic solid the symmetry group at point P of a ref-
erence configuration is the set of rotations q that do not change the Cauchy
stress tensor at P when applied prior to an arbitrary deformation. When the
material is homogeneous in the reference configuration under consideration
– which is actually the case for graphenes – point P does not matter. By
representing a planar rotation q with angle θ by matrices R in the x coor-
dinates and Q in the λ coordinates, we can express this property in terms
of the constitutive relationship corresponding either to λ or to x. We obtain
the two equivalent conditions

∀F = (F1, F2) ∈ (R3)2, (Σ̂1(FR), Σ̂2(FR)) = (Σ̂1(F ), Σ̂2(F ))R, (49)

∀G = (G1, G2) ∈ (R3)2, (Ŝ1(GQ), Ŝ2(GQ)) = (Ŝ1(G), Ŝ2(G))Q−T , (50)

where for any two vectors A1, A2 and any 2 × 2 matrix M , the product
(A1, A2)M is defined by (A1, A2)M = (m11A1 + m21A2,m12A1 + m22A2),
and where

R =

(

c −s
s c

)

, Q =

(

c− s√
3

−2s√
3

2s√
3

c+ s√
3

)

, (51)

with c = cos θ and s = sin θ. Let us recall the way the constitutive relation-
ships have been constructed in Section 3. For (B1, B2, B3) in (R3∗)3, let

Š1(B1, B2, B3) = −kl(|B1| − r) B1

|B1|
−2kp

[

h̄( B1

|B1| ·
B2

|B2| )
B1

|B1| ∧
B2

|B2| + h̄( B1

|B1| ·
B3

|B3| )
B1

|B1| ∧
B3

|B3|
]

∧ B1

|B1|2 , (52)

and let Š2(B1, B2, B3) and Š3(B1, B2, B3) be defined analogously by incre-
menting the subscripts. Then, we have seen that

Ŝ1(G) = Š1(−G1 + Z,−G2 + Z, Z),
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Ŝ2(G) = Š2(−G1 + Z,−G2 + Z, Z),

where Z is given in terms of G1 and G2 by

(Š1 + Š2 + Š3)(−G1 + Z,−G2 + Z, Z) = 0. (53)

Equation (53) cannot be solved explicitly which makes the computation of
the stress vectors as well as the verification of their properties uneasy. In
order to check that a given rotation q belongs to the symmetry group we
have to check (50) where

Ŝ1(GQ) = Š1(−(GQ)1 + Y,−(GQ)2 + Y, Y ),

Ŝ2(GQ) = Š2(−(GQ)1 + Y,−(GQ)2 + Y, Y ),

with
(Š1 + Š2 + Š3)(−(GQ)1 + Y,−(GQ)2 + Y, Y ) = 0. (54)

Lemma 1 The rotation with angle π belongs to the symmetry group.

Proof. In this particular case, Q = −Id. Therefore, GQ = −G for any G.
Choose Z such that (53) is satisfied and let Y = −Z. Then, −(GQ)1 + Y =
G1−Z, −(GQ)2+Y = G2−Z. From the trivial identity Šj(−B1,−B2,−B3) =

−Šj(B1, B2, B3) for any (B1, B2, B3), and for any j = 1, 2, 3, it follows that

Y satisfies (54). Therefore Ŝ1(GQ) = −Ŝ1(G) and Ŝ2(GQ) = −Ŝ2(G) which
means that condition (50) is satisfied. �

Lemma 2 The rotation with angle 2π
3 belongs to the symmetry group.

Proof. As c = − 1
2 and s =

√
3

2 , we have

Q =

(

−1 −1
1 0

)

. (55)

Hence, (GQ)1 = −G1+G2, (GQ)2 = −G1. We leave it to the reader to check
that Y = Z −G1 allows to satisfy (54). Indeed,

−(GQ)1 + Y = −G2 + Z, −(GQ)2 + Y = Z, Y = −G1 + Z

and the result follows from the symmetry of (Š1 + Š2 + Š3) in terms of its
arguments. Now we have to show that (50) is satisfied, which means here
that

Ŝ1(GQ) = Ŝ2(G), Ŝ2(GQ) = −Ŝ1(G) − Ŝ2(G). (56)

First,

Ŝ1(GQ) = Š1(−(GQ)1 + Y,−(GQ)2 + Y, Y ) = Š1(−G2 + Z, Z,−G1 + Z).
(57)

Upon comparing expressions of Š1 and of Š2, we obtain

Ŝ1(GQ) = Š2(−G1 + Z,−G2 + Z, Z) = Ŝ2(G)
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which is the first assertion in (56). For proving the second part of (56), on
the one hand, we have

Ŝ2(GQ) = Š2(−(GQ)1 + Y,−(GQ)2 + Y, Y )

= Š2(−G2 + Z, Z,−G1 + Z) = Š3(−G1 + Z,−G2 + Z, Z)

and, on the other hand, we have

−Ŝ1(G) − Ŝ2(G) = −(Š1 + Š2)(−G1 + Z,−G2 + Z, Z)
= Š3(−G1 + Z,−G2 + Z, Z)

from (53). Thus we have shown that (56) is satisfied. �

Proposition 3 All rotations the angle of which is a multiple of π3 belongs to
the symmetry group.

Proof. From Lemma 2, the rotation with angle 4π
3 belongs to the symmetry

group. Then from Lemma 1, by composing with −Id, the rotation with angle
π
3 belongs to the symmetry group, as well. The result follows. �

The questions arises whether all rotations would actually belong to the
symmetry group in which case the material would be isotropic. Let us restrict
our analysis and our computations to the planar case with the additional
assumption that kp = 0.

Proposition 4 For the planar model with kp = 0, the symmetry group is
the group generated by the rotation with angle π

3 .

Proof. LetG1 andG2 be given byG1 = (2r, 0),G2 = (r, r) in the orthonormal
basis (i1, i2). For those two vectors we are able to solve (53). Indeed, the
three circles of the horizontal plane with centers G1, G2 and 0 intersect at
Z = (r, 0). Therefore (53) is satisfied and Ŝ1(G) = Ŝ2(G) = 0. For (50) to be

satisfied by a rotation q, it is necessary that Ŝ1(GQ) = Ŝ2(GQ) = 0, i.e., that
|Y − (GQ)1| = |Y − (GQ)2| = r and from (54) that |Y | = r as well. Vectors
(GQ)1 and (GQ)2 are immediately computed from the general expression of
Q:

(GQ)1 = (c− s√
3
)G1 +

2s√
3
G2 = r

(

2c i1 +
2s√
3
i2

)

,

(GQ)2 = − 2s√
3
G1 + (c+

s√
3
)G2 = r

(

(c− s
√

3) i1 + (c+
s√
3
) i2

)

.

We search for Y under the form Y = r(y1 i1 + y2 i2). Then

Y − (GQ)1 = r
(

(y1 − 2c) i1 + (y2 −
2s√
3
) i2

)

,

Y − (GQ)2 = r
(

(y1 − c+ s
√

3) i1 + (y2 − c− s√
3
) i2

)

.

The set of three conditions on the norms is

y2
1 +y2

2 = 1, (y1−2c)2 +(y2−
2s√
3
)2 = 1, (y1−c+s

√
3)2 +(y2−c−

s√
3
)2 = 1

(58)
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and is equivalent to y2
1 + y2

2 = 1 supplemented by the linear system

cy1 +
s√
3
y2 = c2 +

1

3
s2,

(c− s
√

3)y1 + (c+
s√
3
)y2 =

1

2

(

(c− s
√

3)2 + (c+
s√
3
)2
)

,

the solution of which is

y1 = c− 4

3
√

3
s3, y2 =

s√
3

+
4

3
cs2.

Therefore,

y2
1 + y2

2 = 1 − 2

3
s2 +

16

9
s4 − 32

27
s6

and condition y2
1 + y2

2 = 1 cannot be satisfied unless s = 0 or s = ±
√

3
2 . This

means that θ is equal to 0, or to π, π3 , 2π
3 , 4π

3 , 5π
3 . �

Remark 2 (i) it is easily seen that if a vector Z satisfies (53) for G1 and
G2, so does QZ for QG1 and QG2 for any Q in O(3). Therefore, it follows

that Ŝ1(QG) = QŜ1(G), Ŝ2(QG) = QŜ2(G). This can be used to prove
directly Lemma 1. Moreover by restricting Q to SO(3), this shows that the
homogenized constitutive law is frame-indifferent.

(ii) it can be proved as well that the homogenized law is hyperelastic, see
for instance [5].

5 Planar linear case.

We refer to [3] for a detailed derivation of the linearized models: by lineariz-
ing around a prestressed configuration, we obtain the usual linearly elastic
membrane model. If we restrict the deformations to be planar, we linearize
around the identity and we recover the classical two-dimensional linearized
elasticity model with Lamé constants

λ̄ =
1

2
√

3

kl (klr
2 − 9a

2 kp)

klr2 + 9a
2 kp

, µ̄ =
3
√

3a

2

kl kp

klr2 + 9a
2 kp

, (59)

where a = h̄′(− 1
2 ). A comparison of the homogenized values λ̄ and µ̄ with

values given in the experimental literature is performed in [3].

We remark that the two-dimensional linear Hooke’s model is isotropic
although the two-dimensional nonlinear model is not, since we have proved
that its symmetry group is restricted to rotations whose angle is a π

3 multiple.
This leads to proving the general following result.

Proposition 5 Consider a planar hyperelastic frame-indifferent constitutive
law such that the reference configuration is a zero-stress configuration and
such that the symmetry group contains a rotation with angle other than 0,
π
2 , π or 3π

2 . Then its linearized law is isotropic.
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Proof. Let C be the linearized tensor. Because it is linear, its action on 2× 2
matrices takes the form

∀H ∈ M
2,∀α, β = 1, 2, Cαβ(H) = cαβγδ(Hγδ).

First, by its very definition, C takes values in the set of symmetric matrices.
Second, from [4] for instance, the equality C(H) = C(HT ) holds true because
the frame-indifferent principle is satisfied. This allows to write the well-known
formulas

∀α, β, γ, δ = 1, 2, cαβγδ = cβαγδ, cαβγδ = cαβδγ .

Finally, from the hyperelasticity assumption, C is a symmetric operator in
the set of symmetric matrices, which provides

∀α, β, γ, δ = 1, 2, cαβγδ = cγδαβ .

Altogether, we are left with six coefficients: c1111, c1112, c1122, c1212, c1222, c2222.
Following [4] again, it can be shown that if a rotation with angle θ belongs
to the symmetry group of the nonlinear law, then

∀H ∈ S
2, C(RHRT ) = RC(H)RT , (60)

where R has been defined in (51). The remaining part of the proof is devoted
to proving that c1112 = 0, c1222 = 0, c1111 = c2222 = c1122 + 2c1212. Let H =
(

0 0
0 1

)

. Then RHRT =

(

s2 −cs
−cs c2

)

, and by equating entries of C(RHRT )

and of RC(H)RT with subscript 22, we obtain

c1122 s
2 − 2c1222 c s+ c2222 c

2 = s2 c1122 + c2 c2222 + 2 c s c1222.

In other words
c s c1222 = 0. (61)

As cs 6= 0 because θ 6= 0, π2 , π,
3π
2 , we have c1222 = 0. Let H =

(

1 0
0 0

)

,

then RHRT =

(

c2 cs
cs s2

)

. By equating all coefficients of C(RHRT ) and of

RC(H)RT , we obtain

c1111 c
2 + 2c1112 c s+ c1122 s

2 = c2 c1111 + s2 c1122 − 2 c s c1112,
c1112 c

2 + 2c1212 c s+ c1222 s
2 = (c2 − s2) c1112 + c s (c1111 − c1122),

c1122 c
2 + 2c1222 c s+ c2222 s

2 = s2 c1111 + c2 c1122 + 2 c s c1112,

which, taking into account (61), implies that

c s c1112 = 0,
s2 c1112 + c s (c1122 − c1111 + 2c1212) = 0,
s2 (c2222 − c1111) − 2c s c1112 = 0.

As cs 6= 0 again, we obtain c1112 = 0, then c2222 = c1111 = c1122 + 2c1212,
which are the equalities we aimed at. By letting λ = c1122, µ = c1212, we
recover the usual writing

C11(H) = λHγγ + 2µH11, C22(H) = λHγγ + 2µH22,
C12(H) = C12(H) = 2µH12.

�
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