
HAL Id: hal-00187985
https://hal.science/hal-00187985v1

Submitted on 27 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polaron formation and symmetry breaking
Libéro Zuppiroli, André Bieber, Didier Michoud, Giulia Galli, Francois Gygi,

Marie-Noëlle Bussac, Jean Jacques André

To cite this version:
Libéro Zuppiroli, André Bieber, Didier Michoud, Giulia Galli, Francois Gygi, et al.. Polaron for-
mation and symmetry breaking. Chemical Physics Letters, 2003, 374 (1-2), pp.7. �10.1016/S0009-
2614(03)00646-8�. �hal-00187985�

https://hal.science/hal-00187985v1
https://hal.archives-ouvertes.fr


Polaron formation and symmetry breaking

L. Zuppiroli a,b,*, A. Bieber b, D. Michoud a, G. Galli c, F. Gygi c,
M.N. Bussac a,d, J.J. Andr�ee b

a Laboratoire d’Opto�eelectronique des mat�eeriaux mol�eeculaires, Institut des Mat�eeriaux, Ecole Polytechnique F�eed�eerale de Lausanne,

1015 Lausanne, Switzerland
b Institut Charles Sadron, UPR 22, CNRS, 6, rue Boussingault, 67043 Strasbourg Cedex, France

c Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
d Centre de Physique Th�eeorique, Ecole Polytechnique, 91128 Palaiseau, France

In a molecular semiconductor, a charged molecule experiences a lattice relaxation which reorganizes it into a cation

or an anion-radical. This species is not, in general, a polaron. By using calculations of the geometry and the electronic

structure both ab initio and at the semi-empirical levels, we have explored the conditions of polaron formation in a

molecular model system: oligophenylene–vinylenes, PVs of increasing sizes. The symmetry breaking occurs at sizes

larger than five monomers for the anion and six monomers for the cation. The driving force for this process is primarily

the charge–lattice coupling through the stretching mode at 1600 cm�1.

1. Introduction

Very early in the development of conducting

polymers, Su, Schrieffer and Heeger introduced the

concept of the self-trapped carrier, arising as a

consequence of the strong electron–lattice cou-

pling in these systems. This idea provided a series

of coherent and powerful explanations of the op-

tical, vibrational and electronic properties of

doped polymers [1]. More recently a few clear and

reproducible experiments have provided evidence

for the existence of polarons even in the absence of

doping counterions:

(1) Transient excited state absorption in the

spectral region spanning the infrared active, vi-

brational active (IRAV) modes, (7–9 lm) in

poly(paraphenylene–vinylene)-PPV and poly(2-

methoxy, 5-(2-ethyl-hexyloxy) paraphenylene–

vinylene)-MEH–PPV reveal polaron formation

within 100 fs (to 3 ps) after photoexcitation

[2,3].

(2) The optical spectroscopy of the field induced

charge in a polymer transistor based on regio

regular poly(3-hexylthiophene)-P3HT also dem-

onstrates the polaronic character of the carrier

[4].
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(3) The electron nuclear double resonance (EN-

DOR) signal in undoped PPV is also attributed

to polarons [5,6].

One of the important aspects of self-trapping is

symmetry breaking. This effect is particularly clear

in the IRAV experiment which detects a forbidden

infrared mode due to a local loss of symmetry. The

polaron formation on a chain of conjugated

polymer is a non-linear process which breaks the

symmetry. Empirical hamiltonians, like Holstein�s

[7] or Su, Schrieffer and Heeger�s [1] are built on

purpose to introduce such a non-linearity into the

Schr€oodinger�s equation, and provoke the occur-

rence of a bifurcation [8].

The problem is more complicated when other

computational approaches are used which go be-

yond empirical, non-linear hamiltonians. Several

first principle calculations of the spectra of charged

oligomers have been published concerning oligo-

phenylene–vinylenes (PVs) [9,10] and oligothioph-

enes [11–14]. The density functional calculations

(DFT) performed on oligomers containing 1–9

monomers exhibit no features characteristic of a

formation of self-localized states either in PVs [10]

or PTs [12,13] while semi-empirical calculations

[9,11], Hartree–Fock [13] and hybrid DFTmethods

[14] yielded the formation of well-defined polarons

either in PVs or PTs. In this Letter, we have ex-

plored polaron formation in PVs of increasing sizes

at both the semi-empirical (AM1) and DFT levels.

We show that the difficulties of pure DFT methods

to account for the existence of a well-defined po-

laron are not only related to the tendency of the

pure DFT calculations to overestimate the delo-

calization of a charge on a conjugated chain

[10,14], but also to the tendency of this method to

underestimate the electron–phonon coupling. Our

study also emphasizes the role of the symmetry

breaking in the polaron formation, by showing a

sudden increase in the relaxation (or the reorgani-

zation) energy of the radical at a given size. We

have finally achieved a mapping of the quantum-

chemistry results on an Holstein�s hamiltonian [7]

with parameters that we have determined com-

pletely and consistently in the case of PVs. They

provide the non-linear description of the electronic

states which is useful in calculations of the charge

transport through assemblies of oligomers or

polymer chains. Other first principle calculations

concerning the exciton formation in organic con-

jugated oligomers are of some interest for the

present work although they do not deal with

charged molecules and radicals [15,16].

2. Computational methods

Two different methods were used and their re-

sults compared. In the first approach, the elec-

tronic system was described within the DFT on the

local density approximation (LDA) level. Norm-

conserving pseudopotentials [17] were used along

with plane wave expansions of the electron orbitals

with a kinetic energy cutoff at 40 Ry. The mole-

cules were placed in supercells large enough to

ensure negligible interaction between neighboring

molecules while the atomic relaxation at T ¼ 0 was

obtained through the standard Car–Parinello

molecular dynamics scheme [18].

In the second method, both the electronic

structure and the vibration spectra were deter-

mined through semi-empirical calculations based

on the neglect of diatomic differential overlap

(NDDO) type of approximation [19] with the

Austin�s Model 1 (AM1) parametrization scheme

[20]. The anions, the cations and the neutral mol-

ecules were fully optimized separately within both

the unrestricted and the restricted Hartree–Fock

framework including a small amount of configu-

ration interaction, namely, a [2,2] active space (two

electrons distributed over two molecular orbitals).

3. The existence of the polaron

The first part of the calculation was a study of

2 PV, 4 PV, 6 PV, 8 PV and 10 PV molecular ions

charged with an electron or a hole (Fig. 1). We first

tried to detect directly a tendency of the charge to

self-localized. For this purpose, we compared the

ground state geometries of the ions to those of the

neutral molecules. Fig. 2 shows the deviation of

the bond lengths of the 8 PV anion with respect to

the corresponding neutral molecule. Each bond

length has been numbered according to the con-

jugation path shown in Fig. 1. The strongest de-
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formations are seen on the vinyl bridges that link

the phenyl rings together. However, in the DFT

calculations, the amplitude of deformation is uni-

form on the bridges over the entire molecule.

Obviously, the DFT polaron is broader than the

oligomer size, while the semi-empirical calculation

gives a well-defined polaron with a total width

2L � 3 monomers. The results are similar for the

cation. These results are in perfect agreement with

the works of [9] and [10].

In optimizing the geometries, we explored, with

particular care, the role of ethylene rotations with

respect to the phenyl rings. These originate from

the repulsion between two hydrogen atoms, one

sitting on the phenyl ring and the other on the

ethylene. The relative distance between the two is

2.04 �AA in the planar configuration (while the Van

der Waals radius of each is 1.2 �AA). As in the cal-

culations of [21], we observed a very flat potential

for torsions between +20� and )20�. A total en-

ergy change of 32 meV was calculated for 20�,

compatible with the experimental ring torsion

diffraction study in PPV [22], where the equilib-

rium torsional angle was found to vary from 7� to

13� as the temperature varies from 300 to 600 K.

We shall see further on, that such low-energy

values give a totally negligible contribution to the

polaron formation.

The relaxation energy of the charged oligomer

represents the gain in energy of the molecular ion

when the geometry is relaxed from the neutral to

the ionic configuration. When a polaron can be

clearly identified, this energy contribution coin-

cides with the formation energy of the polaron. In

Fig. 3, this is shown both for the cation and the

anion as a function of the number of phenyl rings

from 2 to 10. At large oligomer sizes, a polaron

with a formation energy of 0.3 eV can be clearly

identified both for the cation and the anion.

Obviously, at equilibrium, the polaron is cen-

tered on the central double bond of the symmet-

rical oligomer. However, the other local energy

minima, obtained by shifting the polaron by one

or two vinylene double bonds, are quite close.

Indeed, the relaxation energies obtained at the

center and at the second nearest vinylene double

Fig. 1. Schematic representation of the oligomer 4 PV, showing

how the different bonds have been numbered along the conju-

gation path. The origin is on the central bond (see Figs. 2

and 3).

Fig. 2. Deformation of the C–C bond along the skeleton of the

charged oligomer (8 PV)�. The continuous line is the result of

the semi-empirical AM1 calculation while the dashed line refers

to the ab initio DFT calculation.

Fig. 3. Relaxation energies of the molecular ions from the

neutral geometry to the ionic one as a function of the size of the

oligomer; as the charge increases, anions relax first to the po-

laron configuration at size 6. Above size 8, oligomers recover

the electron–hole symmetry observed in stilbene.
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bond differ by only 4.7 meV in the case of the

anion and 8.3 meV in the case of the cation. Thus

when an appropriate substituant is attached on the

phenyl ring at the extremity of the chain, the center

of the equilibrium polaron can be easily displaced.

For example, an OCH3 substitution achieved on

the para position of the terminal ring of 8 PV

displaces the equilibrium center of the polaron of

two monomers, without changing its extension.

A perfect understanding of the nature of the in-

trinsic polaron requires knowledge of the molecular

deformations (phonons) that are involved in its

formation. Raman spectroscopy gives some hints

that help in this task: First, recent experiments have

shown in n- (as well as in p-) doped PPV that the

vibrational modes that feel the presence of an extra

charge the most are in the 1300–1600 cm�1 range

[23,24]. Second, it has been noted that in pristine as

well as in doped oligomer solids, the frequencies of

these modes are only slightly dependent on the

length of the oligomer [23,25]. It is reasonable

therefore to consider studying the vibrational

properties of the smallest PPV oligomer, stilbene,

with the hope of extracting some important nu-

merical values driving polaron formation.

Consequently, the phonon spectrum for neutral

stilbene was computed using the DFT results and

compared to the experimental spectrum of [25]. The

determination of the normal modes of the vibra-

tional spectrum was based on the standard diago-

nalization procedure of the dynamical matrix of the

system. Using this method was the average differ-

ence between the two spectra was less than 3%. The

Raman mode which shows the stronger shift upon

charging the stilbenemolecule with a hole orwith an

electron is almost a pure stretching of the central

bond of the vinylene group with a vibration fre-

quency of 1627 cm�1. (The semi-empirical calcula-

tion gives 1597 cm�1.) Two othermodes at 1265 and

1560 cm�1 are significantly less active.

4. Consistent parameters for an Holstein hamilto-

nian

The vinylene chain has been identified as the

main deformable molecular unit driving polaron

formation. It is a real chance in PVs, that this

pertinent deformation can be accurately described

with only a stretching parameter u as in the simple

version of the Holstein model. It was thus possible

to calculate the stiffness K and the electron–pho-

non coupling constant c determining formation.

Because these quantities are essentially local, this

was done for the case of stilbene first. In the ranges

of stretching considered (u < 0:05 �AA), the total

energy is parabolic with the deformation u. The

values of K in both models and for both ions were

deduced from this total energy E through the re-

lation E ¼ ð1=2ÞKu2. The value of the phonon

coupling constant c was deduced from the energy

variations with u of the singly occupied molecular

orbitals (SOMO) of the molecular ions. In the

semi-empirical calculations, the SOMO levels were

directly accessible while in the DFT calculation,

the many-body molecular problem had to be

mapped onto a set of one-electron Schr€oodinger

equations known as Kohn and Sham�s.

In the range of deformations from )0.06 to

+0.06 �AA the electron lattice coupling is indeed

linear for all species and models ðESOMO ¼ cuÞ. The
local parameters for polaron formation are re-

ported in Table 1. The linear electron–phonon

coupling constant c in stilbene is of the same order

of magnitude for all species and models with val-

ues varying from 1.3 to 2.8 eV/�AA. However, the

values obtained from the AM1 model were always

larger than those from the DFT approach, and we

were not surprised that the latter did not produce

the same polaron as the former.

We also wanted to check the variation of the

local coupling constants with the size of the oli-

gomer. For this purpose we considered, the case of

the 8 PV and 10 PV anions within the AM1 frame

where a fully relaxed polaron is indeed observed.

We found that the electron–phonon coupling

constant deduced from the SOMO variation upon

stretching was significantly larger in 8 PV and 10

PV (c ¼ 3:7 and 3.9 eV/�AA) than in 2 PV (2.6 eV/�AA).
The stiffness K ¼ 46 eV/�AA2 per vinylene unit is

comparable to the other values in Table 1.

If we attribute to this precise SOMO level the

total electron lattice coupling driving the polaron

formation, we get, in the spirit of the Holstein

model [7] a relaxation energy c
2=2KL ’ 0:1 eV

which is three times too low with respect to the
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�measured� value of 0.31 eV. The rest of the con-

tribution comes from the numerous electrons in the

�valence band� which are also coupled to the

stretching field. We found, in the AM1 calculation,

that each one of the 62 p-electrons of 8 PV con-

tributes on the average a c
0 ¼ 0:05 eV/�AA to c. Thus

the total contribution to the relaxation energy can

be roughly estimated by ðcþ 62c0Þ
2
=2KL ffi 0:35 eV.

5. Conclusions

The polaron in PPV is basically intrinsic; it re-

sults from a symmetry breaking in the electron

density distribution at oligomer sizes larger than

three monomers for the anion-radical and four

monomers for the cation-radical; its formation

energy is large (0.3 eV) and compatible with ex-

periments. Correlatively the polaron is rather

small (2L � 3 monomers), but can glide easily

along the polymer segment at room temperature.

The driving force for polaron formation is pri-

marily the charge–lattice coupling through the

stretching mode at 1600 cm�1. The hole–polaron

and the electron–polaron have similar formation

energies and a similar width. The librations of the

phenyl rings with respect to the ethylene groups

were considered by different authors [26] as a

possible driving force for polaron formation. We

have always found here that the vibrations corre-

sponding to these torsional modes correspond to

wave numbers between 60 and 250 cm�1. This is

too low to enter into competition with the 1600

cm�1 stretching mode for polaron construction,

but these low-frequency modes can easily play an

important role in polaron motion either along the

chain or from chain to chain.

The intrinsic character of the polaronic ground

state does not mean that disorder has no influence:

a model has been developed by one of us (MNB)

to understand the interplay between electron–lat-

tice coupling and disorder in polaron formation

[27].

The mapping of the polaron to an Holstein

model [7] (or a Su, Schrieffer and Heeger model

[1]) is always useful for transport models, espe-

cially in PPV [28]. We have demonstrated here that

this mapping is possible with the following set of

parameters: transfer integral from monomer to

monomer, t ¼ 0:5 eV [20], electron–phonon linear

lattice coupling c � 8 eV/�AA and lattice stiffness

K ¼ 50 eV/�AA2. This effective c already contains the

contribution of valence electrons to the energy

relaxation due to an extra-charge.

The existence of an oligomer size threshold for

polaron formation can also be demonstrated

within the Holstein model. A work is in progress

on these lines [29]. Our first results show that this

Table 1

Local parameters (stiffness K and electron–phonon coupling constant c) determining the polaron in PPV

Type of calculation Neutral or charged state c K umax ¼ c=K

(eV/�AA) (eV/�AA2) (�AA)

DFT stilbene Neutral HOMO 2.15 41.0 0.05

Cation SOMO 1.64 39.3 0.04

Neutral LUMO 2.10 41.0 0.05

Anion SOMO 1.26 39.3 0.04

Semi-empirical AM1 stilbene Neutral HOMO 2.76 67.4 0.04

Cation SOMO 2.92 55.4 0.05

Neutral LUMO 2.13 67.4 0.03

Anion SOMO 2.61 58.2 0.04

Semi-empirical 8 PV Anion SOMO 3.7 46 0.08

Semi-empirical 10 PV Anion SOMO 3.9 52 0.08

These parameters are relative to the stretching mode at �1600 cm�1. In the case of stilbene the coupling constant c has been

determined both for the HOMO and LUMO of the neutral molecule and for the SOMOs of the molecular ions. The ratio c=K is an

estimation of the maximum deformation of the chain due to the polaron. The eight lines on the top of the table are related to stilbene,

while the last ones concern the oligomers 8 PV and 10 PV, where a polaron is clearly visible (see Fig. 2).
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threshold varies approximately like g�1=2 where

g ¼ c
2=ð2KtÞ is the dimensionless, vibrational

coupling constant.

Although electron interactions and correlations

are far from being negligible in PPV, the mapping

of the actual hamiltonian with a one-electron

model is finally possible as in many other conju-

gated polymers, provided that a linear effective

electron–phonon coupling term c is added to the

effective tight binding model. This is just a sign

that it is possible to confirm the crude picture of

the hole as well as the electron polaron as a piece

of quino€ııd structure within a conjugated chain.
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