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Abstract. This paper is about object deformations observed throughout a se-
quence of images. We present a statistical framework in which the observed images
are defined as noisy realizations of a randomly deformed template image. In this
framework, we focus on the problem of the estimation of parameters related to the
template and deformations. Our main motivation is the construction of estima-
tion framework and algorithm which can be applied to short sequences of complex
and highly-dimensional images. The originality of our approach lies in the rep-
resentations of the template and deformations, which are defined on a common
triangulated domain, adapted to the geometry of the observed images. In this way,
we have joint representations of the template and deformations which are compact
and parsimonious. Using such representations, we are able to drastically reduce
the number of parameters in the model. Besides, we adapt to our framework the
Stochastic Approximation EM algorithm combined with a Monte Carlo Markov
Chain procedure which was proposed in 2004 by Kuhn and Lavielle. Our imple-
mentation of this algorithm takes advantage of some properties which are specific
to our framework. More precisely, we use the Markovian properties of deformations
to build an efficient simulation strategy based on a Metropolis-Hasting-Within-
Gibbs sampler. Finally, we present some experiments on sequences of medical
images and synthetic data.

Keywords: SAEM algorithm, medical image sequence, template estimation,
image registration, image denoising.

1. Introduction

One of the major new trend in medical imaging is the development of dynamic
imaging modalities such as Dynamic Contrast-Enhanced Computed Tomography
(DCE-CT) [24] and Magnetic Resonance Imaging (DCE-MRI) [25]. Such modalities
usually produce time series of 2D or 3D images of human organs, which are relevant
for the diagnosis and the management of cancers [9, 21, 26, 33], ischemic diseases
such as stroke [31] and myocardial ischemia [20] and inflammation. The clinical
analysis of these image series is however difficult and complex due to several factors:
the size and complexity of images, their poor signal-to-noise ratio, and movements
of patients during the acquisition.

Such difficulties motivate the development of computer tools which can facilitate
the image interpretation by either improving the image quality, correcting the move-
ment of patients, or localizing the different anatomical structures in images. For the
construction of such tools, it is relevant to take into account the temporal aspect pe-
culiar to medical image sequences. For that, it is necessary to analyze deformations
of organs observed throughout the sequence.

In this paper, we propose a statistical framework for the analysis of deformations
in the sequence. In this framework, observed images are viewed as noisy realizations
of a randomly deformed template image, deformations being governed by a proba-
bility law. Such an approach takes inspiration in the pionneer work of Grenander
on pattern theory [17] and is akin to the one used in [18] for characterizing the geo-
metric variability of the brain, or the one used in [1] for the analysis of handwritten
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digit images. Such approaches raise some open and challenging issues: how to con-
struct a template which is adapted to data and how to set a deformation probability
distribution which suits observations? In this paper, we propose to address these
problems by estimating the template and deformation parameters of our statistical
model.

In [16], Glasbey and Mardia already set up a statistical framework in which the
template is estimated by averaging some images registered onto a common selected
image [16]. However, in their approach, the deformation distribution is fixed and not
adapted to observations. In [1], Allassonnière et al recently defined a hierarchical
Bayesian framework related to the one in [3]. In this framework, the template and
deformations are both represented as a weighted sum of kernel functions. The two
vectors of weights are then assumed randomly Gaussian distributed, the individual
deformations being interpreted as non-observed variables. In their paper, these
authors proved that the posterior maximum estimator of the parameters (means
and covariance matrices) of the two Gaussian distributions exists and is consistent.

They applied their estimation algorithm to the analysis of handwritten digit im-
ages. These images are small and binary. Compared to medical images we deal with,
they have a very low dimension and a low geometrical complexity. As presented in
[1], the model cannot easily be applied to highly dimensional and complex images.
The number of parameters associated to the template and deformation representa-
tions is too large and makes the estimation problem intractable in practice.

In this paper, our main motivation is to build a statistical framework in which
the parameter estimation is feasible on sequences of complex and highly dimensional
medical images. One of our main contributions is the construction and the use
of some parsimonious representations of the template and deformations. These
representations, which are both based on a common finite-element decomposition
of the template domain, are adapted to the geometry of the observed images. This
adaptation enables to drastically decrease the number of parameters in the model
and to reduce the problem complexity.

Although mandatory and critical, the parameter reduction strategy is still not
sufficient for dealing with medical sequences. Indeed, in some applications, the
number of available observed images may be very low. Hence, the estimation of
template and deformations is a difficult statistical problem.

Our model belongs to the class of statistical model with non-observed random vari-
ables. In this context, the well-known Expectation-Maximization (EM) algorithm
is a powerful tool to estimate parameters by likelihood maximum [12]. However,
due to the complexity of our model, the EM algorithm can not be directly applied.
In the framework of [1], Allassoniere et al first proposed a deterministic version of
the EM algorithm, in which the E-step is done using a simple approximation by the
mode of the posterior distribution. Due to this approximation, this deterministic
EM algorithm is not convergent. However, the use of stochastic versions of the EM
algorithm could circumvent this convergence problem. For example, authors used
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Figure 1. The object deformations.

a version of the EM algorithm based on a Stochastic Approximation (SAEM) and
combined with a Monte Carlo Markov Chain procedure [2]. The convergence of this
algorithm was demonstrated in [22].

Due to the good theoretical and computational properties of SAEM, we also adopt
this strategy. Hence, we present a complete construction of a SAEM algorithm which
is suitable for our statistical framework. Due to template and deformation repre-
sentations we use, we take advantage of some Markovian properties of deformations
for defining the simulation step of the SAEM algorithm.

The paper is organized as follows. In Section 2, we present the observation sta-
tistical model. The estimation stochastic algorithm is described in Section 3 with
convergence results. In Section 4, we detail some applications to a medical sequence
and to a synthetic sequence simulating real cases with a ground truth.

2. Registration Model

2.1. A scene model. A non-rigid object which has undergone some deformations in
a time interval [0, T ] is observed through a finite series of images. In our application,
the observed object is a part of the human body. For describing deformations of
the object, let D denote a common reference domain which is a connected subset of
R

3. Then, let us define a mapping φ of D× [0, T ] onto R
3 which gives the positions

φ(z, t) at any time t of any material point located at z in the reference domain (see
Figure 1 for illustration). Each map φ(·, t) is one-to-one and has an inverse denoted
by ψ(·, t); the value ψ(x, t) gives the position in the reference domain of a material
point which is located in x at time t. In continuum media mechanics, coordinates z
of the reference domain are called Lagrangian whereas coordinates x in the deformed
domain are called Eulerian. In our context, physical deformations of the object are
unknown.

In this paper, we only present a 2D description of our method. Hence, the ob-
servations exclusively concern a part of the object which is located in an horizontal
plane of R

3. We assume that while it deforms, the part of the object in the plane
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Figure 2. The scene representation and the image acquisition.

remains within the plane. In other words, at points of the plane, there is no dis-
placement of the objects in the vertical direction. In the remaining of the text, D
refers to a connected set in the plane of interest. Points of D are located by their
two coordinates on the plane. The application φ is identified with its restriction to
the plane and has values in R

2.
As illustrated on Figure 2, the object observed throughout the images sequence is

made of several tissues which have different material properties. The object is thus
non-homogeneous. We define an application M on D giving a description of the
material properties of the object in the reference configuration. This application is
unknown. It is introduced here for the sake of the presentation, but as it will appear
later, it will not be used as such.

2.2. Observation model. We assume that gray-level values observed in images
are related to the physical properties of the object, as illustrated on Figure 2 where
each kind of tissues has a specific gray-level value. Due to acquisition noise, the
image is however a noisy observation of the physical properties of the object. Let
f denote a mapping from D to R describing the noise-free image of the object
as positioned in the reference domain. Due to the above assumption, f is of the
form f = I(M),where I represents the action of the image acquisition system
which transforms the object properties into a signal. Here, a physical acquisition
model could be used for defining precisely the action I. However, this paper focuses
exclusively on the image f and not on the physical properties M the images are
related to. So a precise definition of I is not needed. In the followings, f will be
called the template.

The images are acquired on a finite set of nt times {t1, · · · , tnt
}. Throughout this

image sequence, the object is observed as it deforms from a fixed view point. At
any fixed observation point x and for any time t ∈ {t1, · · · , tnt

}, we observe a signal
g

(1) g(x, t) = I(M◦ ψ(·, t))(x) + ε(x, t),
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where ε is an additive noise and I(M ◦ ψ(·, t))(·) is the noise-free image of the
deformed object at time t; I(M◦ ψ(·, t))(x) reflects the properties of the material
point which passes through the position x at time t. We further assume that the
noise-free image of the deformed object is equal to the deformed image of the object
observed in the reference domain, leading to the expression

(2) I(M◦ ψ(·, t))(x) = I(M)(ψ(x, t)) = f(ψ(x, t)).

We then have the following observation model

(3) ∀ x ∈ D, ∀ t ∈ {t1, · · · , tnt
}, g(x, t) = f(ψ(x, t)) + ε(x, t).

For each t, this observation model is defined on a continuous space of R
3. In practice,

images are however observed on a fixed and finite set G of points of R
3 of dimension

ng (called the image grid),

(4) G = {xn, n = 1, · · · , ng}.

Let us denote by yin the gray level value g(xn, ti) which is observed at position xn
and at time ti and by εin the random noise at same position and time. The discrete
observation model is then defined as

yin = f(ψ(xn, ti)) + εin, ∀i ∈ {1, · · · , nt}, ∀ n ∈ {1, · · · , ng},(5)

εin ∼ N (0, σ2)

where the acquisition noise εin is assumed to be normally distributed with mean 0
and noise variance σ2. The template model is detailed in the next section.

2.3. Template model. We assume that the domain D is partitioned into ne regions
where the material properties of the object are homogeneous, i.e. where M is
constant. Let pe denote the regions of the partition and by ṗe the interiors of these
regions. We have

D = ∪ne

e=1pe and ∀e1 6= e2, ṗe1 ∩ ṗe2 = ∅.

Due to the above assumptions, the template f is constant on each element of the
partition. Let ρe be the gray-level value of f on the region pe. The template can
then be written as

(6) ∀ z ∈ D, f(z) =

ne
∑

e=1

ρe1z∈pe
.

In practice, a partition of D is defined by triangulation. The regions pe are triangles
of the plane which are called finite elements and defined by three vertices. Let N
denote the set of all the vertices of the triangulation, nv the number of vertices, and
Ne the set of vertices defining the finite element pe. The coordinates of the jth vertex
in D are denoted νj = (νj1, νj2) ∈ R

2. Notice that the described template model
can be easily extended to 3D by partitioning the domain D with tridimensional
simplices.
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Figure 3. Displacements of finite-elements at time tj .

The template model f is defined in the reference domain whereas the image is
observed in the deformed domain. The model of deformations linking these two
models is detailed in the next section.

2.4. Deformation model. Deformations φ(·, ti) are described with piecewise-affine
functions: let φ(·, ti) = id+u(·, ti), where id is the identity map and u is a displace-
ment map. We assume that for all time ti, displacements u(·, ti) are affine on each
finite elements. Deformations φ(·, ti) are thus continuous. In practice, we will also
ensure that φ(·, ti) are invertible on D (see Section 3.3.4). Furthermore, the im-
age φ(pe, ti) of a finite element pe by φ(·, ti) remains a triangle (denoted by pei). As
shown on Figure 3, the vertices of the triangle pei are the images of the vertices of pe.
Let vij denote the position at time ti of the jth vertex νj of the triangulation. The
triangle pei is entirely defined by the set of vertex positions {vij , j ∈ Ne}, which is
written formally as pei = P(vij , j ∈ Ne), where P(·) denotes the triangle defined by
these vertex positions. Moreover, as deformation φ(·, ti) at time ti is piecewise-affine,
it is completely characterized by the set of vertex positions {vij , j = 1, · · · , nv}.

We further introduce a stochastic representation of deformations. At time ti, the
vector vi = (vij)

nv

j=1 of vertex positions is assumed to be a random vector. Vec-
tors (vi)

nt

i=1 represent variations around positions ν = (νj)
nv

j=1 of the vertices in the
reference domain at different times. The definition of the probability distribution
governing these vectors strongly depends on the application at hand. In our appli-
cation, we assume that vectors vi are time-independent and identically distributed,
with a multidimensional Gaussian distribution of mean ν and covariance matrix Σ.
Note that in some applications, the assumption that vectors vi are time-independent
may not be realistic. In such a situation, we can extend our approach by describing
distributions of vi given vi−1, . . . ,v1.

In order to reduce the algorithmic complexity, we made some additional assump-
tions on vertex displacement dependencies. Let us define a neighborhood structure
on the vertex set N : two vertices are declared neighbors if and only if they are
distinct and if they belong to a same finite element (see Figure 4 for an illustration).
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Figure 4. The neighborhood structure on the finite-element representation.

Supplied with such a neighborhood structure, the vertex set N is a graph. On the
graph N , we assume that vertex positions are Markovian, i.e. the conditional distri-
bution of any vertex position vij given the other positions only depends on positions
in the neighborhood of j:

(7) p (vij |vik, k 6= j,y; θ) = p (vij |vik, k ∈ Nj,y; θ) .

The interest of this assumption will appear in Section 3.2 when describing the
estimation algorithm.

2.5. The complete statistical model. Due to the template and deformation rep-
resentations introduced above, the expression of the term f(ψ(xn, ti)) in Equation
(5) can be simplified. Replacing f by its expression given by Equation (6), we first
obtain

f(ψ(xn, ti)) =

ne
∑

e=1

ρe1ψ(xn,ti)∈pe
.

But, as the point ψ(xn, ti) is in pe if and only if the point xn is in pei = φ(pe, ti) =
P(vij , j ∈ Ne), we can write

f(ψ(xn, ti)) =

ne
∑

e=1

ρe1xn∈P(vij ,j∈Ne).

In this expression, the inverse deformation ψ is not present anymore and deforma-
tions are described in a Lagrangian way using only variables vij . Such a property is
important from a practical point of view, because the computation of the inverse of
φ is not required.
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We can now define the final statistical model:

yin =

ne
∑

e=1

ρe1xn∈P(vij ,j∈Ne) + εin, ∀i ∈ {1, · · · , nt}, ∀ n ∈ {1, · · · , ng},

εin ∼ N (0, σ2),(8)

vi ∼ N (ν,Σ),

where yi = (yin)
ng

n=1 is the vector of observed image gray-level values at time ti,
ρ = (ρe)

ne

e=1 is the vector of the template gray-level values, vi = (vij)
nv

j=1 are the
unobserved positions of the vertex at time ti, randomly distributed in a multidi-
mensional Gaussian distribution of mean ν and variance Σ, εin represents the image
acquisition noise at position xn at time ti, with a noise variance σ2.

Now, our objective is to propose a maximum likelihood estimation of the param-
eters vector θ from the observations (yi)

nt

i=1, where θ = (ρ, σ2, ν,Σ). This statistical
model is a non-linear mixed effect model [27]: unobserved displacements vi associ-
ated to each image can be interpreted as random effects, and positions ν as fixed
effects. Due to the definition of the template, the regression of variables yin on
descriptive variables xn is non-linear.

For the ease of presentation, we now write the model with matrix notations. Let
y = (yin)in denote the vector of gray-level values of the nt images, ε = (εin)in the
residual errors, and v = (vij)ij the vector of vertex positions at any time. Let us
define x = (xn)

ng

n=1. Let us define for all e = 1, · · · , ne the random vertical vector
We(v,x) of size ntng which has the random variable 1xn∈P(vij ,j∈Ne) on the (in)th

element. The vector We(v,x) is thus a non-linear function of v. Let us further
introduced the random matrix

W (v,x) = (W1(v,x)| · · · |Wne
(v,x))

defined by horizontal concatenation of vectors We(v,x). Using these notations, the
model becomes

y = W (v,x)ρ+ ε,(9)

ε ∼ N (0, σ2I),

vi ∼ N (ν,Σ), i = 1, . . . , nt.

Remark: The model is entirely based on the finite-element representation defining

both the template and the deformations. The structure of this representation is

characterized by a set of vertices and finite-elements. The number of vertices and

the definition of finite elements can also be viewed as model parameters. In this

paper, these structure parameters are however estimated before computations and

set once for all. The neighborhood structure on the vertex set defined in Section 2.4

could also be viewed as a model parameter and be set differently. In this paper, this

structure is however fixed.
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2.6. Markovian properties. In this section, we focus on properties of the random
field vi|yi which at time ti describes vertex positions given observations. We show
that this random field is Markovian for the graph structure N .

By the Hammersley-Clifford theorem [14], a random field is Markovian on a given
graph if and only if its distribution has a Gibbsian form on this graph. But, using
a Bayes formula, the distribution of vi|yi can be expressed as:

p(vi|yi; θ) =
p(yi|vi; θ)p(vi; θ)

∫

p(yi|v′
i; θ)p(v

′
i; θ)dv

′
i

, ∀ i = 1, · · · , nt.

Hence, the random field vi|yi is Markovian if the conditional distribution and the
prior distribution are both Gibbsian for the graph N . The prior distribution is
Gibbsian due to the Markovian assumption stated on displacements in Section 2.4.
So it suffices to show that the conditional distribution is Gibbsian.

Using the definition of the observation model in Equation (9), we have

p(yi|vi; θ) ∝ exp

(

−
1

2σ2

ng
∑

n=1

(yin −
ne
∑

e=1

We(v,x)inρe)
2

)

.

This equation can also be written as

p(yi|vi; θ) ∝ exp

(

−
1

2σ2

ne
∑

e=1

ng
∑

n=1

We(v,x)in(yin − ρe)
2

)

.

But, by definition, We(v,x)in only depends on vij for j ∈ Ne, hence, there exist
functions q̃ such that

p(yi|vi; θ) ∝ exp

(

−
1

2σ2

ne
∑

e=1

q̃(vij , j ∈ Ne,yi; ρe)

)

.

But, the three vertices of a finite element pe (indexed in the set Ne) are pairwise-
neighbors by definition of the graph structure. Hence, potentials q̃j are defined on
cliques of order 3 and the conditional distribution p(yi|vi; θ) has a Gibbsian form.
Finally the random field vi|yi is Markovian on the graph N .

Besides, using Hammersley-Clifford theorem, this conditional probability is pro-
portional to:

p (vij |vik, k 6= j,y; θ) ∝(10)

exp



−
∑

k∈Nj

(vij − νj)
tΓj,k(vik − νk) −

1

2
(vij − νj)

tΓj,j(vij − νj)





× exp



−
1

2σ2

∑

e∈Pj

ng
∑

n=1

We(v,x)in(yin − ρe)
2



 ,

where Pj denotes the set of finite elements which the vertex j belongs to. This
Markovian property is used in the estimation algorithm presented in the next section.
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3. Estimation by maximum likelihood

In this section, we present the construction of a SAEM algorithm for the estima-
tion of parameters in the model defined by Equation (8).

3.1. The statistical problem. The model (8) is an incomplete data model, y
being the observed data, v the missing data (or unobserved data) and (y,v) the
complete data. Due to the non-linearity of the regression function in the unobserved
data, the likelihood has no closed form. The estimation of θ is therefore a difficult
challenge. We consider a stochastic version of the EM algorithm introduced in [12]
and dedicated to the parameter estimation of incomplete data model.

3.2. SAEM algorithm. The classical EM algorithm is based on an iterative pro-
cedure which aims at the maximization of the conditional expectation of the log
likelihood p(y,v; θ) of the complete data with respect to parameters θ. At each
iteration k, the EM is decomposed into two successive steps called the expectation
step (E-step) and the maximization step (M-step):

E-step: the conditional expectation of the complete log-likelihood, given the
observations y and a current approximation θ(k−1) of parameters is evaluated

∀ θ, Q(k)(θ) = E(log p(y,v; θ)|y; θ(k−1)).

M-step: the parameters are updated by

θ(k) = arg max
θ
Q(k)(θ).

The initial values of Q and θ are arbitrary chosen.
The EM algorithm cannot be directly applied whenever the conditional expec-

tation Q(k) cannot be explicitly computed in the E-step. For dealing with such a
situation, Delyon, Lavielle and Moulines propose to use a stochastic approximation
of Q(k) based on a sampling of the posterior distribution [11]. In their algorithm
(called SAEM), the traditional E-step of the EM algorithm is replaced by two new
steps, a simulation step (S-step) and a stochastic approximation step (SA-step):

S-step: the non-observed data v(k) are sampled from the posterior distribution
p(v|y; θ(k−1)).

SA-step: a stochastic approximation is done on the complete log-likelihood
using the simulated value of the non-observed data

Q(k)(θ) = (1 − γk)Q
(k−1)(θ) + γk log(p(y,v(k); θ(k−1))),

where (γk)k is a decreasing sequence of positive step-sizes.

In [11], the convergence of the SAEM algorithm is proved under general conditions
when the likelihood p(y,v; θ) belongs to a regular curved exponential family

(11) log p(y,v; θ) = −Ψ(θ) + 〈S(y,v),Φ(θ)〉,
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where 〈., .〉 is the scalar product and S(y,v) is the minimal sufficient statistic of the
model. For such a model, we have

Q(k)(θ) = −Ψ(θ) + 〈s(k),Φ(θ)〉,

where s(k) denotes the conditional expectation E(S(y,v)|y; θ(k−1)) at the kth itera-
tion. Hence, the SA-step of SAEM reduces to the approximation of s(k) and can be
simplified as follows.

SA-step (curved exponential model): s(k) is updated by the stochastic ap-
proximation scheme

(12) s(k) = (1 − γk)s
(k−1) + γkS(y,v(k)).

For the same kind of models, the M-step is

M-step (curved exponential model): θ(k) is updated by

(13) θ(k) = arg max
(

−Ψ(θ) + 〈s(k),Φ(θ)〉
)

.

The S-step of SAEM requires a sampling from the posterior distribution. In
many situations, this distribution cannot however be sampled directly. For dealing
with such a situation, Kuhn and Lavielle propose to couple SAEM with a Monte
Carlo Markov Chain scheme (MCMC) [22]. In their algorithm, the S-step at the
kth iteration is based on the construction of a non-homogeneous Markov chain with
p(v|y; θ(k−1)) as unique stationary distribution. Kuhn and Lavielle prove the conver-
gence of the combined SAEM/MCMC algorithm under general assumptions. The
more restrictive assumption is that the non observed variables live in a compact set.
Allassonnière et al generalize the convergence proof to a non compact setting, which
is the case when the prior of the non observed data is a Gaussian distribution [2].
Finally, the main assumptions to be checked to ensure the convergence of the SAEM
algorithm coupled with MCMC are the two followings:

A1: For any θ ∈ Θ, the MCMC algorithm generates a uniformly ergodic chain
for which the invariant probability is p(v|y; θ).

A2: For all k in N, γk ∈ [0, 1],
∑∞

k=1 γk = ∞ and
∑∞

k=1 γ
2
k <∞.

The assumption A2 can be trivially checked by choosing a careful step size sequence.
The assumption A1 is more delicate and requires a careful implementation of MCMC
as detailed in next section.

3.3. Application of SAEM to image sequence. This section details why the
version of SAEM adapted to exponential model can be applied to model (8) and the
different steps of the algorithm.
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3.3.1. Exponential model family. The log-likelihood of the complete data (y,v) in
the model described by Equation (9) can be expressed as

log p(y,v; θ) = log p(y|v; θ) + log p(v; θ),(14)

= −
1

2σ2
(y −W (v,x)ρ)t(y −W (v,x)ρ)

−
1

2

nt
∑

i=1

(vi − ν)tΣ−1(vi − ν) −K(θ),

where K(θ) is the logarithm of the normalization constant of the probability distri-
bution p(y,v; θ). This equation can further be written as

log p(y,v; θ) =
5
∑

i=1

Si(y,v),Φi(θ) − Ψ(θ),

with

S1(y,v) = W (v,x)ty, S2(y,v) = W (v,x)tW (v,x), S3(y,v) =
∑nt

i=1 vi,
S4(y,v) =

∑nt

i=1 viv
t
i, S5(y,v) = yty.

and

Φ1(θ) = −σ−2ρt, Φ2(θ) = 1
2
σ−2ρtρ Φ3(θ) = −νtΣ−1,

Φ4(θ) = 1
2
Σ−1, Φ5(θ) = 1

2
σ−2.

Therefore, this model belongs to the curved exponential family defined by Equa-
tion (11). Moreover, the sufficient statistics associated to the model and to be
updated in the SAEM algorithm are S1(y,v), S2(y,v), S3(y,v) and S4(y,v).

3.3.2. SA-step. Consequently, when applying SAEM to our model, the SA-step at
the kth iteration simply consists of computing

s
(k)
1 = (1 − γk)s

(k−1)
1 + γkW (v(k)t,x)y,(15)

s
(k)
2 = (1 − γk)s

(k−1)
2 + γkW (v(k)t,x)W (v(k),x),(16)

s
(k)
3 = (1 − γk)s

(k−1)
3 + γk

nt
∑

i=1

v
(k)
i ,(17)

s
(k)
4 = (1 − γk)s

(k−1)
4 + γk

nt
∑

i=1

v
(k)t
i v

(k)
i .(18)

3.3.3. M-step. In the M-step, parameter θ is estimated as the maximum of −Ψ(θ)+
〈s(k),Φ(θ)〉. This maximization is explicit in the case of model (14). A simple
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differentiation implies the following expressions for the M-step:

ρ(k) = (s
(k)
2 )−1s

(k)
1 ,(19)

σ2(k) =
1

ng
(yty − 2ρ(k)ts

(k)
1 + ρ(k)ts

(k)
2 ρ(k)),(20)

ν(k) =
1

nt
s
(k)
3 ,(21)

Σ(k) =
1

nt
s
(k)
4 − ν(k)tν(k).(22)

Furthermore, the inverse matrix Γ of the matrix Σ is required in the S-step of
SAEM. But, the matrix Σ(k) is ill-conditioned and the computation of its inverse
is numerically unstable. More accurately, if a vertex position vij is almost fixed
throughout the sequence, the diagonal element of Σ corresponding to this vertex
is null or very small and Σ is not invertible. Therefore, we decide to sidestep this
conditioning problem by substituting Σ(k) with Σ(k)+λI2ng

, where I2ng
is the identity

matrix of size 2ng×2ng and λ is a fixed positive value. The small diagonal elements
of Σ are therefore artificially replaced by a greater value, avoiding the problem of
inverse computation. This is equivalent to the assumption that the distribution
of each vertex position vij has a variance greater or equal to λ. This can also be
interpreted as an additional prior distribution on Σ in the complete statistical model,
which is a deterministic distribution.

Finally, we obtain an estimator of Γ at iteration k of SAEM by computing

(23) Γ(k) = (Σ(k) + λI2ng
)−1.

3.3.4. S-step. When combining a MCMC algorithm to the SAEM algorithm in the S-
step, the choice of the MCMC is a critical issue. This section details the implemented
MCMC scheme.

At iteration k of the S-step, vectors vi are updated separately, since vertex posi-
tions are assumed to be time-independent. The dimension of vector vi being very

large for standard images, the direct simulation of the whole vector v
(k)
i in the

posterior distribution p(vi|yi; θ(k−1)) is inefficient. Therefore a Gibbs algorithm is

absolutely essential to simulate v
(k)
i coordinates by coordinates. For each time ti,

all vertices are therefore successively scanned and for each vertex j, we update the
vertex position vij by simulating in the target distribution

(24) π
(k)
ij (vij) = p

(

vij |{v
(k−1)
il , l < j}, {v(k)

il , j < l},yi; θ
(k−1)

)

,

this expression being detailed in Equation (10). This uni-dimensional conditional
distribution being known up to a constant, a Metropolis-Hastings scheme (MH) is
coupled with the Gibbs algorithm, in a so-called Metropolis-Hastings-Within-Gibbs
(MHWG) algorithm.

In Section 2.6, we have shown that the random field v|y is Markovian. Hence,
the target distribution depends only on positions of vertices in the neighborhood of



PREPRINT MAP5 2007-13 15

j. This means that the simulation of each vij involves only a few vertices located in
the neighborhood of the vertex j. At iteration k of SAEM, to update the current

vector v
(k−1)
ij during the MHWG algorithm, the MH scheme consists of three steps:

MH1: A candidate position v′ij is sampled from a proposal distribution q
(k)
ij ,

as described next.
MH2: We compute the so-called acceptance probability

α = min

(

π
(k)
ij (v′ij)

π
(k)
ij (v

(k−1)
ij )

q
(k)
ij (v

(k−1)
ij )

q
(k)
ij (v′ij)

, 1

)

using Equations (10) and (24).
MH3: We simulate u with an uniform distribution U [0, 1]. If u < α then

v
(k)
ij = v′ij else v

(k)
ij = v

(k−1)
ij .

The definition of the proposal distribution qij in the step MH1 is crucial for the
speed of convergence of the whole SAEM. We define this distribution carefully so as

to ensure that simulated candidates are reasonable. We define the set c
(k)
ij of points

in the interior of the polygon formed by positions v
(k)
il of neighbor vertices. The new

candidate position v′ij is chosen in the set c
(k)
ij , excluding points which would generate

mesh singularities (crossings of triangle edges). This choice of the new candidate
guarantees that deformations remain one-to-one. The selection of the position v′ij is

done randomly using the uniform distribution q
(k)
ij on non-singular points of the set

c
(k)
ij . Notice that this distribution does not depend on the current vertex position

v
(k−1)
ij and that q

(k)
ij (v′ij) = q

(k)
ij (v

(k−1)
ij ). Hence the acceptance probability reduces to

α = min

(

π
(k)
ij (v′ij)

π
(k)
ij (v

(k−1)
ij )

, 1

)

.

Due to the Markovian properties shown in Section 2.6, the computation of the
acceptance probability for the jth vertex position only involves the values of vertex
positions in the neighborhood of j. This reduces drastically the complexity of the
MH algorithm.

Besides, let us notice that this MH algorithm is a random walk scheme. The con-
vergence and ergodicity of this Random-Walk-Within-Gibbs are therefore ensured
by the theorem demonstrated in [23, 28].

4. Results

4.1. Application to a temporal series of medical images. We apply the SAEM
algorithm to a series of ten consecutives computed tomography (CT) images of the
upper abdomen (Figure 5). These images were acquired every seconds at the same
level of the abdomen with an in-plane resolution of 512x512 pixels. The sequence
was acquired after the injection of an iodinated contrast media which enhances
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the tissues according to their vascularity. In order to avoid severe image gray-
level variations due to the diffusion of the media throught tissues, the sequence
acquisition started at 80 seconds after the tissue enhancement had reached a steady
state. For this reason, we can assume that the range of gray-level values of a same
tissue remains constant with time. On CT images, gray-level ranges of the different
tissues, which are measured as the Hounsfied Units (UH), are directly related to
their chemical composition (fat, air, bone, water,...) and their content in contrast
media. Such a property is consistent with the assumption we made for defining
the image acquisition model in Section 2.2. On the images, the liver, the spleen,
the aorta, the stomach, a vertebra and some blood vessels are visible. However,
images suffer from a poor signal-to-noise ratio, due to the limited irradiation dose
used for the sequential acquisition (acquisition parameters were fixed at 80Kv and
50 mAs). Moreover, the observed tissues were deformed during the sequence, due
to the patient breathing, heart pulsations, gastric contractions and some volontary
movements. These deformations are clearly visible in Figure 5 on the substracted
images. Hence, image restoration and motion correction are required for the analysis
of these images.

(a1) (a2) (a3) (a4)

(b2) (b3) (b4)

Figure 5. Images extracted from a series of CT images of the upper
abdomen before estimation. Images (a1) to (a4) are taken at different
times and the images (bn) are the differences between (an) and (a1)
showing some patient motions.

For the initialization of the template and the finite-element structure, we use an
image approximation procedure. We select an image of the sequence and extract
borders of its homogeneous regions using a Canny-Deriche edge-detector algorithm
[6, 7]. We then select a set of border points which cover all borders and are pairwise
distant of at least 2 pixels. We add to this set (1) some equally spaced points located
within the homogeneous regions and (2) some points located outside the image which
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are used as boundary conditions. Finally, we obtain a triangulation of the image
by computing the Delaunay triangulation of the set of all points. On each triangle
pe of this partition, we further initialize the gray-level value ρe of the template on
pe by averaging gray-level values of the image on pe. The initial template and the
associated finite-element structure obtained for our sequence are shown on Figures
6 (a) and (b). For this template, the number of finite elements used is around 2400,
which is about one third of the image size.

(a) (b)

(c) (d)

Figure 6. Application of the SAEM algorithm to the sequence. (a)
initial template gray-level values. (b) initial template mesh. (c) final
template gray-level values. (d) final template mesh.

The SAEM algorithm is used to estimate deformation and template parameters
from the last ten images of the sequence. Let detail some implementation parameters
of the SAEM algorithm. The weight sequence (γk)k≥0 used in the SA step has to
be chosen to fulfill the condition (A2) (see Section 3.2): we use γk = 1 during the
K first iterations 1 ≤ k ≤ K, and γk = (k −K)−1 during the last iterations; in our
implementation, we set K = 100 and have a total of 500 iterations. Five iterations of
Metropolis-Hasting algorithm are performed at each S-step of the SAEM algorithm.
We implement the SAEM algorithm in Matlab; the code source will be available for
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a public use. Figure 7 illustrates the convergence of parameter estimates during the
SAEM iterations. SAEM shows a good convergence: most of parameter estimates
reach a steady state in about 200 iterations.

(a) (b) (c) (d)

Figure 7. Convergence of parameter estimates in the application of
SAEM. Parameter estimates are (a) gray-level values of the template,
(b) noise standard deviation, (c) stiffness matrix elements, (d) vertex
positions.

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Figure 8. Application of the SAEM algorithm to the sequence. (a1)-
(a2) difference between the initial template and the observed image.
(b1)-(b2) observations. (c1)-(c2) deformations of the final template
at times corresponding to the observed images. (d1)-(d2) difference
between the deformed template and the observed image. The images
(b1) and (b2) correspond to images (a1) and (a2) of Figure 5, respec-
tively.

On Figures 6 and 8, we illustrate the application of the SAEM algorithm to the
sequence. The effect of estimating the template and its deformations can be seen
by comparing images of differences between the template and observations before
and after estimation (images (an) and (dn)). We observe that the initial differences
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are well corrected by the algorithm. After estimation, there only remain some small
differences due to either inaccurate approximations of observations by the template
(e.g. on the spin, middle and top of the image (d1)) or misregistration of the template
and observations. On Figure 8 (a2)-(d2), we show a misregistration example: in the
part indicated by an arrow, separate regions of tissues have merged, leading to a
singular non-injective deformation which is not taken into account in our model.
This example is the only significant misregistration we observed.

The quality of the registration can also be quantified by the parameter σ. This
noise, which represents the noise of the difference between the template and the
images after registration, can not be lower than the image acquisition noise. This
acquisition noise can be evaluated by computing the standard deviation of image
gray-level values on manually selected homogeneous regions. The obtained mean
value is 50 in our images. Before registration, the noise between the initial template
and each observation is equal to 104. After registration with the SAEM algorithm,
the parameter σ is estimated at the value 66. This means that our method reduces
the noise of the difference between two images to a value close to the image acquisi-
tion noise. This suggests that using the SAEM algorithm, the template is correctly
estimated and accurately registered to observations.

The quality of the template obtained by SAEM is also very good. At initialization,
the template has some defaults, mostly located on region borders. After SAEM
application, these defaults no longer appear on the template. The noise on the final
template is very low. Regions formed by similar tissues have homogeneous gray-level
values and regions of different tissues are fairly well-separated. Using HU bounds,
we have thresholded the template gray-level values. A classification of different
components present in the image is thus obtained. From Figure 9, the physician of
our group was able to identify different classes: (a) in brown, the vertebra and ribs,
(b) in orange, the blood vessels, (c) in green, the parenchyma (liver and spleen) and
muscles (stomach and dorsal muscle), (d) in blue, the fat, and (e) in dark blue, the
air within lungs. Notice that some parts of the bones are classified in the blood
vessel class. This is due to the normal structure of the bone which has a continuum
of intermediate densities varying from the low density of the marrow (in the vertebra
center) to the high density of the vertebra wall (in the periphery). Some of these
intermediate bone densities have the same gray-level value ranges as the vessels.
The classification result we obtained illustrates the quality of the template. Let us
also mention that the classification obtained on the template can be propagated to
all observed images using the estimated deformations.

4.2. Evaluation on synthetic data. For evaluating the precision of the parameter
estimation, some experiments are performed on synthetic data. Using the template
and parameter values estimated on the medical sequence by SAEM, ten sequences
of five observed images are simulated using the following three steps:

(1) simulation of vertex displacements v with a Gibbs sampler,
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(2) application of the simulated displacements to the template for forming a
deformed image,

(3) addition of noise to the deformed image.

The SAEM algorithm is then applied to the ten simulated sequences. The relative
bias and variance of each parameter estimator are computed and reported on Table
1.

param. unit dimension relative bias (%) relative std error (%)
ρ gray-level 1069 0.7 14.9
σ gray-level 1 7.1 7.1
ν pixels 1106 2.9 22.2

Σ−1 (*) 15180 0 0.03

Table 1. Estimation of parameters on synthetic data. (*) For the
estimates of Σ−1, bias and variance are in absolute unit.

As we can see, the bias are very low, although the number of samples is low (five
images). The relative standard errors are satisfactory. They are of the same order
than the ones which are usually obtained using mixed effect models [29].

5. Discussion and conclusion

In Section 2, we present a statistical model describing the observation of deformed
objects throughout an image sequence. Similarly to [1, 3, 18], the model defines
observed images as noisy realizations of a randomly deformed template. We then
construct a SAEM algorithm for the estimation of the template and deformation
parameters of the model. The estimation algorithm was finally applied to a medical
image sequence and some synthetic data, showing good registration and estimation
results. These results encourage us to pursue the application of the algorithm to

Figure 9. Segmentation of the template obtained by a thresholding procedure.
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medical image sequences and to extend its implementation in 3D. In collaboration
with physicians, we also plan to fully investigate the potential applications of our
algorithm: (a) image denoising for the improvement of image quality, (b) image
registration for the correction of patient movements, and (c) tissue classification
and segmentation of images for the localization of structures of interest.

The model we present departs from the one proposed in [1]. The major difference
concerns the way the template and deformations are represented. In [1], the tem-
plate and deformations are represented as combinations of kernel functions centered
around some control points. The sets of control points used for defining the template
and the deformations are different, leading to two separate representations. In our
model, the template and deformation are defined on a same triangulated domain;
the template is defined as a piecewise-constant function on the triangulated domain
and deformations as piecewise-affine functions on the same domain. By adapting
the domain triangulation to the geometry of objects observed in the sequence, we
obtain some joint representations of the template and deformations which are com-
pact and parsimonious. Due to the geometry-adapted representations, the number
of template and deformation parameters to be estimated is much lower than the one
in [1].

Besides, as mentioned in introduction, we are faced with applications where the
number of available observed images is very low and which requires the use of ro-
bust estimation techniques. In the literature of Statistics, several algorithms have
been proposed for solving maximum likelihood estimation problems associated to
hierarchical or mixed models. Those based on the well-known EM algorithm, which
takes advantage of the incomplete data model structure of the mixed model [12],
are the most adapted to complex data with a low number of images. However,
in our context of non-linear mixed models, the application of the EM algorithm is
not direct because the E-step has no close form. A solution to this problem is to
adopt stochastic versions of the EM algorithm, as proposed by Celeux and Diebolt
(Stochastic EM) [8], Wei and Tanner (Monte Carlo EM) [30] and Delyon et al (Sto-
chastic Approximation EM) [11]. The SEM and the MCEM algorithms consist of
estimating the E-step by the averaging of Monte-Carlo replications, being thus com-
putationally intensive. As an alternative, the SAEM algorithm computes the E-step
by a stochastic approximation procedure, requiring only one simulation of the non-
observed data. Furthermore, although convergence of the SEM and MCEM are not
proved, the almost sure convergence of the SAEM estimates towards a likelihood
maximum is proved. Therefore, we only focus on this powerful SAEM algorithm
combined with a MCMC scheme to realize the simulation step, as proposed by [22].

In this paper, we propose an efficient SAEM-MCMC algorithm. In such an ap-
proach, the crucial issue is the implementation of the MCMC procedure used for the
simulation of displacements under the posterior distribution. In our algorithm, the
MCMC implementation takes full advantage of a Markovian property of the non-
observed displacements, which is specific to our framework. More precisely, we use
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a Metropolis-Hastings-Within-Gibbs (MHWG) approach so as to simulate each dis-
placement component successively, the simulation in a one-dimensional distribution
being more manageable. The use of the Markovian structure obviously improves
the efficacy of this MHWG scheme. In practice, the computation of the acceptance
probability of the MH algorithm only requires the positions of the neighboring ver-
tices and the correlations of these neighboring vertex positions. This reduces the
complexity and the computational cost of the MCMC scheme.

In our approach, the structure of the domain triangulation used for defining the
template and deformations is fixed before the estimation procedure. Hence the pre-
cision of the parameter estimation depends on the initial definition of this structure.
One way of fixing this limitation would consist of allowing changes of this structure
during the estimation procedure. This could be done by adapting the triangulation
with some merging and refinement procedures. Such a strategy could be managed
by implementing an adaptive version of MCMC algorithms such as the one proposed
in [4, 5].

From a last statistical point of view, the issue of parameter identifiability should
not be neglected given the complexity of our model. The Markovian assumption on
the displacements is therefore crucial to reduce the number parameters used in the
estimation algorithm. The risk of data over-fitting obviously exists. However, since
our aim is not to build a predictive model but to build a template as adapted as
possible to a specific image sequence, this problem is secondary.
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[15] P. Girard and F. Mentré. A comparison of estimation methods in nonlinear mixed effects
models using a blind analysis. PAGE 14, Sep 2005.

[16] C.A. Glasbey and K.V. Mardia. A penalized likelihood approach to image warping. J. R. Stat.
Soc. (Series C), 63(3):465–514, 2001.

[17] U. Grenander. General Pattern Theory. Oxford University Press, 1994.
[18] U. Grenander and M. Miller. Computational anatomy: an emerging discipline. Quarterly of

Applied Mathematics, 4:617–694, 1998.
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